Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (222)

Search Parameters:
Keywords = NOESY NMR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3505 KiB  
Article
Linker-Dependent Variation in the Photophysical Properties of Dinuclear 2-Phenylpyridinato(salicylaldiminato)platinum(II) Complexes Featuring NDI Units
by Soichiro Kawamorita, Tatsuya Matsuoka, Kazuki Nakamura, Bijak Riyandi Ahadito and Takeshi Naota
Molecules 2025, 30(12), 2664; https://doi.org/10.3390/molecules30122664 - 19 Jun 2025
Viewed by 341
Abstract
Through-space charge transfer (TSCT) between spatially adjacent donor and acceptor units has garnered considerable attention as a promising design principle for optoelectronic materials. While TSCT systems incorporating rigid spacers have been extensively studied to enhance through-space interactions, transition metal complexes connected by flexible [...] Read more.
Through-space charge transfer (TSCT) between spatially adjacent donor and acceptor units has garnered considerable attention as a promising design principle for optoelectronic materials. While TSCT systems incorporating rigid spacers have been extensively studied to enhance through-space interactions, transition metal complexes connected by flexible linkers remain underexplored, despite increasing interest in their potential TSCT behavior. Herein, we report the design and synthesis of a donor–acceptor–donor (D-A-D)-type complex (1), in which a central naphthalenediimide (NDI) electron acceptor is linked to 2-phenylpyridinato(salicylaldiminato)platinum(II) complexes via flexible alkyl linkers. By systematically varying the linker length (n = 3, 4, 5, 6; 1ad), we achieved precise control over the spatial arrangement between the NDI core and the platinum moieties in solution. Notably, compound 1a (n = 3) adopts an S-shaped conformation in solution, giving rise to a distinct TSCT absorption band. The structural and photophysical properties were thoroughly investigated using single-crystal X-ray diffraction, 1H NMR, NOESY analysis, and DFT calculations, which collectively support the existence of the folded conformation and associated TSCT behavior. These findings highlight that TSCT can be effectively induced in flexible molecular systems by exploiting intramolecular spatial proximity and non-covalent interactions, thereby offering new avenues for the design of responsive optoelectronic materials. Full article
Show Figures

Graphical abstract

20 pages, 2994 KiB  
Article
A Novel and Reliable Analysis Method Utilizing Hennosides to Improve the Quality Assessment of Lawsonia inermis L. Material Used in Cosmetic Formulations
by Nele Dallmann, Volkmar Vill and Fabian Straske
Cosmetics 2025, 12(3), 99; https://doi.org/10.3390/cosmetics12030099 - 14 May 2025
Viewed by 1205
Abstract
Lawsonia inermis L. is renowned for its hair dyeing properties, with henna quality and safety often regulated by restrictions on the lawsone (2-hydroxy-1,4-naphthoquinone) content. In henna leaves, lawsone exists as glycosylated precursors, hennosides A, B, and C. Aqueous maceration revealed the sensitivity of [...] Read more.
Lawsonia inermis L. is renowned for its hair dyeing properties, with henna quality and safety often regulated by restrictions on the lawsone (2-hydroxy-1,4-naphthoquinone) content. In henna leaves, lawsone exists as glycosylated precursors, hennosides A, B, and C. Aqueous maceration revealed the sensitivity of enzymatic lawsone release, while ethanol extraction inhibited β-glucosidase activity, enabling controlled hennoside extraction. Hennoside A was isolated via RP-column chromatography and characterized using ESI-TOF, 1H-/13C-NMR, COSY, NOESY, HSQC, and HMBC. The purified compound proved suitable as an HPLC reference standard. The acidic hydrolysis of hennoside-rich extracts highlighted the limitations of lawsone-based analysis, underscoring glycosylated precursors as more reliable quality markers. Lawsone quantification via enzymatic or acid catalysis demonstrated varying accuracy in quality control. A hennoside-based approach ensures consistency by estimating the maximum releasable lawsone without inducing its formation, providing a more robust metric for a henna quality assessment. Full article
(This article belongs to the Section Cosmetic Technology)
Show Figures

Figure 1

18 pages, 12445 KiB  
Article
New Cannabinoids and Chlorin-Type Metabolites from the Flowers of Cannabis sativa L.: A Study on Their Neuroblastoma Activity
by Tuan-Quoc Nguyen, Hyo-Shin Park, Sun-Hyeong Choi, Da-Yun Hong, Jae-Yong Cheon, Young-Mi Lee, Chul-Min Kim, Jong-Ki Hong, Seo-Jeong Oh, Man-Soo Cho, Jang-Hoon Kim, Eun-Sol Lee, Jungwon Seo and Hyun-Ju Jung
Pharmaceuticals 2025, 18(4), 521; https://doi.org/10.3390/ph18040521 - 3 Apr 2025
Viewed by 6651
Abstract
Background/Objectives: Cannabis sativa has been utilized for medical purposes for thousands of years. It continues to be recognized as a plant with an extensive variety of medicinal and nutraceutical uses today. In this study, a chemical investigation of the flowers of C. [...] Read more.
Background/Objectives: Cannabis sativa has been utilized for medical purposes for thousands of years. It continues to be recognized as a plant with an extensive variety of medicinal and nutraceutical uses today. In this study, a chemical investigation of the flowers of C. sativa isolated by using a variety of chromatographic techniques led to the isolation of eleven compounds. These purified compounds were evaluated for antitumor activity against SK-N-SH neuroblastoma cells. Methods: The compounds were isolated by using chromatographic techniques. Their structures were identified by the examination of spectroscopic methods, including 1D (1H, 13C, and DEPT) and 2D (COSY, HSQC, HMBC, and NOESY) nuclear magnetic resonance (NMR) spectra and mass spectrum, together with the comparison to those reported previously in the literature. The evaluation of toxicity on SK-N-SH cells was performed by the MTT method. Results: Eleven compounds were isolated from the flowers of C. sativa, including two new compounds, namely cannabielsoxa (1), 132-hydroxypheophorbide c ethyl ester (2), and six known cannabinoids (611), together with the first isolation of chlorin-type compounds: pyropheophorbide A (3), 132-hydroxypheophorbide b ethyl ester (4), and ligulariaphytin A (5) from this plant. The results also demonstrated that cannabinoid compounds had stronger inhibitory effects on neuroblastoma cells than chlorin-type compounds. Conclusions: The evaluation of the biological activities of compounds showed that compounds 410 could be considered as the potential compounds for antitumor effects against neuroblastomas. This is also highlighted by using docking analysis. Additionally, the results of this study also suggest that these compounds have the potential to be developed into antineuroblastoma products. Full article
(This article belongs to the Special Issue Pharmacologically Active Compounds from Plants)
Show Figures

Figure 1

8 pages, 1086 KiB  
Communication
Zopfiellamides C and D, New Decalin-Type Tetramic Acid Derivatives from the Marine-Derived Fungus Aspergillus sp. NF666
by Fangwen Jiao, Tianyu Liu, Kaiwei Wang, Shuai Li, Ruihua Jiao and Wei Lin
Molecules 2025, 30(7), 1502; https://doi.org/10.3390/molecules30071502 - 28 Mar 2025
Viewed by 577
Abstract
Two new decalin-tetramic acid hybrid metabolites, zopfiellamides C (1) and D (2) were isolated from the marine-derived fungus Aspergillus sp. NF666. The structure determination was accomplished on the basis of HRESIMS and NMR spectral data analyses including COSY, HSQC, [...] Read more.
Two new decalin-tetramic acid hybrid metabolites, zopfiellamides C (1) and D (2) were isolated from the marine-derived fungus Aspergillus sp. NF666. The structure determination was accomplished on the basis of HRESIMS and NMR spectral data analyses including COSY, HSQC, HMBC, and NOESY experiments. Both isolated metabolites (1 and 2) exhibited significant growth inhibition against four clinically relevant bacterial strains with minimum inhibitory concentration (MIC) values of about 12.5 μΜ. Moreover, we proposed a plausible biosynthetic pathway of zopfiellamide D (2) in this work. Full article
(This article belongs to the Special Issue Bioproducts for Health III)
Show Figures

Graphical abstract

13 pages, 1096 KiB  
Article
Marmaricines A-C: Antimicrobial Brominated Pyrrole Alkaloids from the Red Sea Marine Sponge Agelas sp. aff. marmarica
by Diaa T. A. Youssef, Areej S. Alqarni, Ameen M. Almohammadi, Turki Abujamel and Lamiaa A. Shaala
Mar. Drugs 2025, 23(2), 80; https://doi.org/10.3390/md23020080 - 12 Feb 2025
Cited by 2 | Viewed by 1231
Abstract
The Red Sea is the home of a rich diversity of sponge species with unique ecological adaptations that thrive in its saline, warm, and nutrient-poor waters. Red Sea sponges offer potential as sources of bioactive compounds and novel drugs. The organic extract of [...] Read more.
The Red Sea is the home of a rich diversity of sponge species with unique ecological adaptations that thrive in its saline, warm, and nutrient-poor waters. Red Sea sponges offer potential as sources of bioactive compounds and novel drugs. The organic extract of the Red Sea sponge Agelas sp. aff. marmarica was investigated for its antimicrobial constituents. Through bioassay-guided fractionation of the antimicrobial fraction of the extract on SiO2 and Sephadex LH-20, as well as HPLC purification, three bioactive compounds, marmaricines A-C (13), were isolated. Structural elucidation of the compounds was performed using 1D (1H and 13C) and 2D (COSY, HSQC, HMBC, and NOESY) NMR, as well as (+)-HRESIMS, leading to the identification of the compounds. The antimicrobial activities of the compounds were assessed through evaluation of their inhibition zones, MIC, MBC, and MFC, against Methicillin-Resistant Staphylococcus aureus (MRSA), Escherichia coli, and Candida albicans. Marmaricines A and B exhibited the strongest antibacterial effects against MRSA, with inhibition zones ranging from 14.00 to 15.00 mm, MIC values of 8 µg/mL, and MBC values of 16 µg/mL. In comparison, marmaracine C showed slightly weaker activity (inhibition zone: 12 mm, MIC: 16 µg/mL, MBC: 32 µg/mL). In terms of antifungal activity, marmaricines B and C demonstrated the greatest effect against C. albicans, with inhibition zones of 14–15 mm, MIC values of 8 µg/mL, and MFCs of 16 µg/mL. Interestingly, none of the compounds showed any inhibitory effect against E. coli. The results indicate that marmaricines A-C are selectively active against MRSA, and marmaricines B and C demonstrate potential against C. albicans, making them promising candidates for the development of novel antimicrobial agents targeting resistant pathogens. Full article
Show Figures

Figure 1

5 pages, 409 KiB  
Short Note
9,10-Dimethoxy-4-oxo-1-phenyl-1,3,4,6,7,11b-hexahydro-[1,4]thiazino[3,4-a]isoquinoline-1-carboxylic Acid
by Valentin Petrov, Teodora Aleksandrova and Aleksandar Pashev
Molbank 2025, 2025(1), M1955; https://doi.org/10.3390/M1955 - 21 Jan 2025
Viewed by 818
Abstract
The synthesis of the compound 9,10-dimethoxy-4-oxo-1-phenyl-1,3,4,6,7,11b-hexahydro-[1,4]thiazino[3,4-a]isoquinoline-1-carboxylic acid (4) was described for the first time using a reaction between 6,7-dimethoxy-3,4-dihydroisoquinoline and phenyl-substituted thiodiacetic anhydride 3. The reaction proceeded in excellent yield and furnished the compound 4 as a single diastereomer. The [...] Read more.
The synthesis of the compound 9,10-dimethoxy-4-oxo-1-phenyl-1,3,4,6,7,11b-hexahydro-[1,4]thiazino[3,4-a]isoquinoline-1-carboxylic acid (4) was described for the first time using a reaction between 6,7-dimethoxy-3,4-dihydroisoquinoline and phenyl-substituted thiodiacetic anhydride 3. The reaction proceeded in excellent yield and furnished the compound 4 as a single diastereomer. The structure and relative configuration of 4 was elucidated using a combination of spectroscopic techniques–1H, 13C, COSY, HSQC, HMBC, and NOESY NMR spectra, as well as elemental analysis. Full article
Show Figures

Scheme 1

16 pages, 2021 KiB  
Article
Anthoteibinenes F–Q: New Sesquiterpenes from the Irish Deep-Sea Coral Anthothela grandiflora
by Stine S. H. Olsen, Sam Afoullouss, Ezequiel Cruz Rosa, Ryan M. Young, Mark Johnson, A. Louise Allcock and Bill. J. Baker
Mar. Drugs 2025, 23(1), 44; https://doi.org/10.3390/md23010044 - 17 Jan 2025
Viewed by 1517
Abstract
New technology has opened opportunities for research and exploration of deep-water ecosystems, highlighting deep-sea coral reefs as a rich source of novel bioactive natural products. During our ongoing investigation of the chemodiversity of the Irish deep sea and the soft coral Anthothela grandiflora, [...] Read more.
New technology has opened opportunities for research and exploration of deep-water ecosystems, highlighting deep-sea coral reefs as a rich source of novel bioactive natural products. During our ongoing investigation of the chemodiversity of the Irish deep sea and the soft coral Anthothela grandiflora, we report 12 unreported cadinene-like functionalized sesquiterpenes, anthoteibinenes F–Q. The metabolites were isolated using both bioassay- and 1H NMR-guided approaches. One-/two-dimensional NMR spectroscopy and high-resolution mass spectrometry were used for structure elucidation, while a combination of NOESY NMR experiments, GIAO NMR calculations coupled with DP4+ probabilities measures, and ECD comparisons were incorporated to propose relative and absolute configurations of the anthoteibinenes. The metabolites were screened against the Respiratory Syncytial Virus (RSV), ESKAPE pathogens, five Candida albicans strains, and one strain of C. auris. Full article
(This article belongs to the Special Issue Bioactive Molecules from Extreme Environments III)
Show Figures

Graphical abstract

13 pages, 3232 KiB  
Article
Eremophilane- and Acorane-Type Sesquiterpenes from the Deep-Sea Cold-Seep-Derived Fungus Furcasterigmium furcatum CS-280 Cultured in the Presence of Autoclaved Pseudomonas aeruginosa QDIO-4
by Xiao-Dan Chen, Xin Li, Xiao-Ming Li, Sui-Qun Yang and Bin-Gui Wang
Mar. Drugs 2024, 22(12), 574; https://doi.org/10.3390/md22120574 - 22 Dec 2024
Viewed by 1227
Abstract
Six new sesquiterpenes, including four eremophilane derivatives fureremophilanes A–D (14) and two acorane analogues furacoranes A and B (5 and 6), were characterized from the culture extract of the cold-seep derived fungus Furcasterigmium furcatum CS-280 co-cultured with [...] Read more.
Six new sesquiterpenes, including four eremophilane derivatives fureremophilanes A–D (14) and two acorane analogues furacoranes A and B (5 and 6), were characterized from the culture extract of the cold-seep derived fungus Furcasterigmium furcatum CS-280 co-cultured with autoclaved Pseudomonas aeruginosa QDIO-4. All the six compounds were highly oxygenated especially 2 and 3 with infrequent epoxyethane and tetrahydrofuran ring systems. The structures of 16 were established on the basis of detailed interpretation of 1D and 2D NMR and MS data. Their relative and absolute configurations were assigned by a combination of NOESY and single crystal X-ray crystallographic analysis, and by time-dependent density functional (TDDFT) ECD calculations as well. All compounds were tested the anti-inflammatory activity against human COX-2 protein, among which, compounds 2 and 3 displayed activities with IC50 values 123.00 µM and 93.45 µM, respectively. The interaction mechanism was interpreted by molecular docking. Full article
(This article belongs to the Special Issue Bioactive Natural Products from the Deep-Sea-Sourced Microbes)
Show Figures

Graphical abstract

12 pages, 1316 KiB  
Article
Synthesis of Antimicrobial Norlabdane Compounds with Rearranged Cycle B and Molecular Docking Studies
by Alexandru Ciocarlan, Lidia Lungu, Sergiu Shova, Nicoleta Vornicu, Natalia Bolocan, Veaceslav Kulcitki and Aculina Aricu
Molecules 2024, 29(23), 5714; https://doi.org/10.3390/molecules29235714 - 3 Dec 2024
Viewed by 931
Abstract
The synthesis of tetra- and pentanorlabdane compounds with rearranged cycle B based on commercially available (+)-sclareolide is reported. Desired compounds were prepared from intermediate ketones via Baeyer–Villiger oxidation. The structures of synthesized compounds were confirmed by spectral IR, 1D (1H, 13 [...] Read more.
The synthesis of tetra- and pentanorlabdane compounds with rearranged cycle B based on commercially available (+)-sclareolide is reported. Desired compounds were prepared from intermediate ketones via Baeyer–Villiger oxidation. The structures of synthesized compounds were confirmed by spectral IR, 1D (1H, 13C, and DEPT), and 2D (H-COSY, H,C-HSQC, H,C-HMBC, H,N-HMBC, NOESY) NMR analyses, mass-spectrometry and single crystal X-rays diffraction. Two out of the four synthesized compounds showed high antifungal and antibacterial activities comparable to and exceeding standard antifungal (caspofungin) and antibacterial (kanamycin) agents. DFT calculations show that in gas and DCM, compound 4 is more stable than 3 with a difference in the Gibbs free energy of 23.3 kJ/mol and 20.7 kJ/mol, respectively. In water and methanol, compound 3 is slightly more stable, by 2.4 kJ/mol and 2.78 kJ/mol, respectively. Molecular docking to four targets DNA gyrase from E. coli (1KZN), Fabz from P. aeruginosa (1U1Z), dihydrofolate reductase from C. albicans (3QLS) and MurB from E. coli (2Q85) showed good agreement with the results of in vitro evaluation and confirmed the biological activity of compounds 3 and 4, with binding affinities comparable and for some targets exceeding that of Caspofungin and Kanamycin. Full article
Show Figures

Figure 1

15 pages, 4451 KiB  
Article
Using Poly(amidoamine) PAMAM-βCD Dendrimer for Controlled and Prolonged Delivery of Doxorubicin as Alternative System for Cancer Treatment
by Kendra Sorroza-Martínez, Ignacio González-Sánchez, Raúl Villamil-Ramos, Marco Cerbón, Jorge Antonio Guerrero-Álvarez, Cristina Coronel-Cruz, Ernesto Rivera and Israel González-Méndez
Pharmaceutics 2024, 16(12), 1509; https://doi.org/10.3390/pharmaceutics16121509 - 23 Nov 2024
Cited by 2 | Viewed by 1278
Abstract
Background/Objectives: Doxorubicin (Dox) is an anticancer drug used in the treatment of a wide range of solid tumors; however, Dox causes systemic toxicity and irreversible cardiotoxicity. The design of a new nanosystem that allows for the control of Dox loading and delivery results [...] Read more.
Background/Objectives: Doxorubicin (Dox) is an anticancer drug used in the treatment of a wide range of solid tumors; however, Dox causes systemic toxicity and irreversible cardiotoxicity. The design of a new nanosystem that allows for the control of Dox loading and delivery results is a powerful tool to control Dox release only in cancer cells. For this reason, supramolecular self-assembly was performed between a poly(amidoamine) (PAMAM) dendrimer decorated with four β-cyclodextrin (βCD) units (PAMAM-βCD) and an adamantane–hydrazone–doxorubicin (Ad-h-Dox) prodrug. Methods: The formation of inclusion complexes (ICs) between the prodrug and all the βCD cavities present on the surface of the PAMAM-βCD dendrimer was followed by 1H-NMR titration and corroborated by 2D NOESY experiments. A full characterization of the supramolecular assembly was performed in the solid state by thermal analysis (DSC/TGA) and scanning electron microscopy (SEM) and in solution by the DOSY NMR technique in D2O. Furthermore, the Dox release profiles from the PAMAM-βCD/Ad-h-Dox assembly at different pH values was studied by comparing the efficiency against a native βCD/Ad-h-Dox IC. Additionally, in vitro cytotoxic activity assays were performed for the nanocarrier alone and the two supramolecular assemblies in different carcinogenic cell lines. Results: The PAMAM-βCD/Ad-h-Dox assembly was adequately characterized, and the cytotoxic activity results demonstrate that the nanocarrier alone and its hydrolysis product are innocuous compared to the PAMAM-βCD/Ad-h-Dox nanocarrier that showed cytotoxicity equivalent to free Dox in the tested cancer cell lines. The in vitro drug release assays for the PAMAM-βCD/Ad-h-Dox system showed an acidic pH-dependent behavior and a prolonged profile of up to more than 72 h. Conclusions: The design of PAMAM-βCD/Ad-h-Dox consists of a new controlled and prolonged Dox release system for potential use in cancer treatment. Full article
(This article belongs to the Special Issue Cyclodextrin-Based Gene and Drug Delivery Applications)
Show Figures

Figure 1

4 pages, 1108 KiB  
Proceeding Paper
Transamination of 3-[(Dimethylamino)methylidene]-5-arylfuran-2(3H)-thiones with the Participation of 1,2-Phenylenediamine
by Alexandra S. Tikhomolova and Alevtina Yu. Yegorova
Chem. Proc. 2024, 16(1), 31; https://doi.org/10.3390/ecsoc-28-20121 - 14 Nov 2024
Viewed by 302
Abstract
Synthesis of 3-[((2-aminophenyl)amino)methylidene]furan-2(3H)-thiones was carried out by transamination reaction of 5-arylfuran-2(3H)-thiones under the influence of 1,2-phenylenediamine. A probable scheme of their formation was proposed. Configurational features of the obtained compounds were established on the basis of IR and NMR [...] Read more.
Synthesis of 3-[((2-aminophenyl)amino)methylidene]furan-2(3H)-thiones was carried out by transamination reaction of 5-arylfuran-2(3H)-thiones under the influence of 1,2-phenylenediamine. A probable scheme of their formation was proposed. Configurational features of the obtained compounds were established on the basis of IR and NMR spectroscopy data, as well as using the NOESY 2D experiment. Full article
Show Figures

Figure 1

17 pages, 1405 KiB  
Article
Phytochemical Analysis and Biological Evaluation of Carob Leaf (Ceratonia siliqua L.) Crude Extracts Using NMR and Mass Spectroscopic Techniques
by Themistoklis Venianakis, Nikolaos Parisis, Atalanti Christou, Vlasios Goulas, Nikolaos Nikoloudakis, George Botsaris, Tjaša Goričan, Simona Golič Grdadolnik, Andreas G. Tzakos and Ioannis P. Gerothanassis
Molecules 2024, 29(22), 5273; https://doi.org/10.3390/molecules29225273 - 7 Nov 2024
Cited by 1 | Viewed by 1743
Abstract
Carob leaves have gained attention for their bioactive properties and traditional medicinal uses, including as treatment for diabetes, digestive disorders, and microbial infections. The aim of this study was to explore the phytochemical composition of carob leaf acetone extracts using advanced spectroscopic techniques. [...] Read more.
Carob leaves have gained attention for their bioactive properties and traditional medicinal uses, including as treatment for diabetes, digestive disorders, and microbial infections. The aim of this study was to explore the phytochemical composition of carob leaf acetone extracts using advanced spectroscopic techniques. The combined use of heteronuclear nuclear magnetic resonance (NMR) experiments with 1D selective nuclear Overhauser effect spectroscopy (NOESY) offers detailed structural insights and enables the direct identification and quantification of key bioactive constituents in carob leaf extract. In particular, the NMR and mass spectrometry techniques revealed the presence of myricitrin as a predominant flavonoid, as well as a variety of glycosylated derivatives of myricetin and quercetin, in acetone extract. Furthermore, siliquapyranone and related gallotannins are essential constituents of the extract. The potent inhibitory effects of the carob leaf extract on Staphylococcus aureus (MIC = 50 μg mL−1) and a-glucosidase enzyme (IC50 = 67.5 ± 2.4 μg mL−1) were also evaluated. Finally, the antibacterial potency of carob leaf constituents were calculated in silico; digalloyl-parasorboside and gallic acid 4-O-glucoside exert a stronger bactericidal activity than the well-known myricitrin and related flavonoids. In summary, our findings provide valuable insights into the bioactive composition and health-promoting properties of carob leaves and highlight their potential for pharmaceutical and nutraceutical applications. Full article
Show Figures

Figure 1

13 pages, 1218 KiB  
Article
Monoterpene Hydroxy Lactones Isolated from Thalassiosira sp. Microalga and Their Antibacterial and Antioxidant Activities
by Alcina M. M. B. Morais, Decha Kumla, Valter F. R. Martins, Ana Alves, Luis Gales, Artur M. S. Silva, Paulo M. Costa, Sharad Mistry, Anake Kijjoa and Rui M. S. C. Morais
Molecules 2024, 29(21), 5175; https://doi.org/10.3390/molecules29215175 - 31 Oct 2024
Cited by 2 | Viewed by 1852
Abstract
Two monoterpenoid lactones, loliolide (1) and epi-loliolide (2), were isolated from the crude dichloromethane extract of a microalga, Thalassiosira sp.). The structures of loliolide (1) and epi-loliolide (2) were elucidated by 1D and [...] Read more.
Two monoterpenoid lactones, loliolide (1) and epi-loliolide (2), were isolated from the crude dichloromethane extract of a microalga, Thalassiosira sp.). The structures of loliolide (1) and epi-loliolide (2) were elucidated by 1D and 2D NMR analysis, as well as a comparison of their 1H or/and 13C NMR data with those reported in the literature. In the case of loliolide (1), the absolute configurations of its stereogenic carbons were confirmed by X-ray analysis, whereas those of epi-loliolide (2) were determined by NOESY correlations. Loliolide (1) and epi-loliolide (2) were tested for their growth inhibitory activity against two Gram-positive (Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212) and two Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853) bacteria, as well as one clinical isolate (E. coli SA/2, an extended-spectrum β-lactamase producer-ESBL) and two environmental isolates, S. aureus 74/24, a methicillin-resistant (MRSA), and E. faecalis B3/101, a vancomycin-resistant (VRE) isolates. The results showed that none of the tested compounds exhibited antibacterial activity at the highest concentrations tested (325 μM), and both revealed low antioxidant activity, with ORAC values of 2.786 ± 0.070 and 2.520 ± 0.319 µmol TE/100 mg for loliolide (1) and epi-loliolide (2), respectively. Full article
(This article belongs to the Special Issue Natural Products: Extraction, Analysis and Biological Activities)
Show Figures

Figure 1

5 pages, 870 KiB  
Short Note
(R/S)-Ethyl 2-Acetoxy-4-phenyl-4H-chromene-3-carboxylate
by Nevena I. Petkova-Yankova, Ana I. Koleva and Rositca D. Nikolova
Molbank 2024, 2024(3), M1875; https://doi.org/10.3390/M1875 - 26 Aug 2024
Viewed by 1533
Abstract
A simple protocol for the preparation of O-acylated enol form (R/S)-ethyl-2-acetoxy-4-phenyl-4H-chromene-3-carboxylate 5 was presented. The compound was characterized by 1H-, 13C-and DEPT135 NMR spectra, including {1H,1H} COSY, {1H,13C} HSQC, {1 [...] Read more.
A simple protocol for the preparation of O-acylated enol form (R/S)-ethyl-2-acetoxy-4-phenyl-4H-chromene-3-carboxylate 5 was presented. The compound was characterized by 1H-, 13C-and DEPT135 NMR spectra, including {1H,1H} COSY, {1H,13C} HSQC, {1H,13C} HMBC, and 2D-NOESY spectra. The preferred regioselectivity for O-acylation of 3,4-dihydrocoumarin 5 in the presence of substituent in the 4th position in the chroman ring and accounting for the steric hindrance of the ester group in the 3rd place was confirmed. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

25 pages, 9692 KiB  
Article
Influence of Solvent Polarity on the Conformer Ratio of Bicalutamide in Saturated Solutions: Insights from NOESY NMR Analysis and Quantum-Chemical Calculations
by Valentina V. Sobornova, Konstantin V. Belov, Michael A. Krestyaninov and Ilya A. Khodov
Int. J. Mol. Sci. 2024, 25(15), 8254; https://doi.org/10.3390/ijms25158254 - 28 Jul 2024
Cited by 6 | Viewed by 37784
Abstract
The study presents a thorough and detailed analysis of bicalutamide’s structural and conformational properties. Quantum chemical calculations were employed to explore the conformational properties of the molecule, identifying significant energy differences between conformers. Analysis revealed that hydrogen bonds stabilise the conformers, with notable [...] Read more.
The study presents a thorough and detailed analysis of bicalutamide’s structural and conformational properties. Quantum chemical calculations were employed to explore the conformational properties of the molecule, identifying significant energy differences between conformers. Analysis revealed that hydrogen bonds stabilise the conformers, with notable variations in torsion angles. Conformers were classified into ‘closed’ and ‘open’ types based on the relative orientation of the cyclic fragments. NOE spectroscopy in different solvents (CDCl3 and DMSO-d6) was used to study the conformational preferences of the molecule. NOESY experiments provided the predominance of ‘closed’ conformers in non-polar solvents and a significant presence of ‘open’ conformers in polar solvents. The proportions of open conformers were 22.7 ± 3.7% in CDCl3 and 59.8 ± 6.2% in DMSO-d6, while closed conformers accounted for 77.3 ± 3.7% and 40.2 ± 6.2%, respectively. This comprehensive study underscores the solvent environment’s impact on its structural behaviour. The findings significantly contribute to a deeper understanding of conformational dynamics, stimulating further exploration in drug development. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

Back to TopTop