New Cannabinoids and Chlorin-Type Metabolites from the Flowers of Cannabis sativa L.: A Study on Their Neuroblastoma Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of the Isolated Compounds
2.2. Bioactivity Results
2.3. Molecular Docking Studies
2.4. ADMET Studies
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Materials
3.3. The Isolation of Compounds
3.4. Cell Culture
3.5. Cell Viability Assay
3.6. Statistical Analysis
3.7. Molecular Docking Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Radwan, M.M.; Chandra, S.; Gul, S.; Eisohly, M.A. Cannabinoids, Phenolics, Terpenes and Alkaloids of Cannabis. Molecules 2021, 26, 2774. [Google Scholar] [CrossRef] [PubMed]
- Schurman, L.D.; Lu, D.; Kendall, D.A.; Howlett, A.C.; Lichtman, A.H. Molecular Mechanism and Cannabinoid Pharmacology. Handb Expx. Pharmcol. 2020, 258, 323–353. [Google Scholar]
- Bukowska, B. Current and Potential Use of Biologically Active Compounds Derived from Cannabis sativa L. in the Treatment of Selected Diseases. Int. J. Mol. Sci. 2024, 25, 12738. [Google Scholar] [CrossRef] [PubMed]
- Rock, E.M.; Limebeer, C.L.; Pertwee, R.G.; Mechoulam, R.; Parker, L.A. Therapeutic potential of Cannabidiol, Cannabidiolic acid, and Cannabidiolic acid methyl ester as treatments for Nausea and Vomiting. Cannabis Cannabinoid Res. 2021, 6, 266–274. [Google Scholar]
- Odieka, A.E.; Obuzor, G.U.; Oyedeji, O.O.; Gondwe, M.; Hosu, Y.S.; Oyedeji, A.O. The medicinal natural products of Cannabis sativa Linn.: A review. Molecules 2022, 27, 1689. [Google Scholar] [CrossRef]
- Hurgobin, B.; Tamiru-Oli, M.; Welling, M.T.; Doblin, M.S.; Bacic, A.; Whelan, J.; Lewsey, M.G. Recent advances in Cannabis sativa genomics research. N. Phytol. 2021, 230, 73–89. [Google Scholar]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The seed of industrial Hemp (Cannabis sativa L.): Nutritional quality and potential functionality for human health and nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef]
- Sanchez-Sanchez, L.; Garcia, J.; Fernandez, R.; Noskova, E.; Egiguren-Ortiz, J.; Gulak, M.; Ochoa, E.; Laso, A.; Oiarbide, M.; Santos, J.I.; et al. Characterization of the Antitumor Potential of Extracts of Cannabis sativa Strains with high CBD content in Human Neuroblastoma. Int. J. Mol. Sci. 2023, 24, 3837. [Google Scholar] [CrossRef]
- Faiz, M.B.; Naeem, F.; Irfan, M.; Aslam, M.A.; Estevinho, L.M.; Atessahin, D.A.; Alshahrani, A.M.; Calina, D.; Khan, K.; Sharifi-Rad, J. Exploring the therapeutic potential of cannabinoids in cancer by modulating signaling pathways and addressing clinical challenges. Discov. Oncol. 2024, 15, 490. [Google Scholar]
- Whynot, E.G.; Tomko, A.M.; Dupre, D.J. Anticancer properties of cannabidiol and Δ9-tetrahydrocannabinol and synergistic effects with gemcitabine and cisplatin in bladder cancer cell lines. J. Cannabis Res. 2023, 5, 7. [Google Scholar]
- Nahler, G. Treatment of malignant diseases with phytocannbinoids: Promising observations in animal models and patients. Explor. Med. 2023, 4, 847–877. [Google Scholar]
- Cherkasova, V.; Wang, B.; Gerasymchuk, M.; Fiselier, A.; Kovalchuk, O.; Kovalchuk, I. Use of Cannabis and Cannabinoids for Treatment of Cancer. Cancers 2022, 14, 5142. [Google Scholar] [CrossRef] [PubMed]
- Dobovisek, L.; Borstnar, S.; Debeljak, N.; Brezar, S.K. Cannabinoids and triple-negative breast cancer treatment. Front. Immunol. 2024, 15, 1386548. [Google Scholar] [CrossRef]
- Pellati, F.; Borgonetti, V.; Brighenti, V.; Biagi, M.; Benvenuti, S.; Corsi, L. Cannabis sativa L. and Nonpsychoactive Cannabinoids: Their chemistry and role against oxidative stress, inflammation, and cancer. BioMed Res. Int. 2018, 2018, 1691428. [Google Scholar] [CrossRef]
- Romko, A.M.; Whynot, E.G.; Ellis, L.D.; Dupre, D.J. Anti-cancer potential of Cannabinoids, Terpenes, and Flavonoids present in Cannabis. Cancers 2020, 12, 1985. [Google Scholar] [CrossRef] [PubMed]
- Mangal, N.; Erridge, S.; Habib, N.; Sadanandam, A.; Reebye, V.; Sodergren, M.H. Cannabinoids in the landscape of cancer. J. Cancer Res. Clin. Oncol. 2021, 147, 2507–2534. [Google Scholar] [PubMed]
- Cheng, H.-H.; Wang, H.-K.; Ito, J.; Bastow, K.F.; Tachibana, Y.; Nakanishi, Y.; Xu, Z.; Luo, T.-Y.; Lee, K.-H. Cytotoxic pheophorbide-related compounds from Clerodendrum calamitosum and C. cyrtophyllum. J. Nat. Prod. 2001, 64, 915–919. [Google Scholar] [CrossRef]
- Laranjo, M.; Pereira, N.A.M.; Oliveira, A.S.R.; Aguiar, M.C.; Brotes, G.; Nascimento, B.F.O.; Serambeque, B.; Costa, B.D.P.; Pina, J.; Melo, J.S.S.d.; et al. Ring-Fused meso-Tetraarylchlorins as Auspicious PDT Sensitizers: Synthesis, Structural Characterization, Photophysics, and Biological Evaluation. Front. Chem. 2022, 10, 873245. [Google Scholar] [CrossRef]
- Akbar, A.; Khan, S.; Chatterjee, T.; Ghosh, M. Unleashing the power of porphyrin photosensitizers: Illuminating breakthroughs in photodynamic therapy. J. Photochem. Photobiol. B Biol. 2023, 248, 112797. [Google Scholar] [CrossRef]
- Dandash, F.; Leger, D.Y.; Diab-Assaf, M.; Sol, V.; Liagre, B. Porphyrin/Chlorin Derivatives ass Promising Molecules for Therapy of Colorectal Cancer. Molecules 2021, 26, 7268. [Google Scholar] [CrossRef]
- Chang, J.E.; Liu, Y.; Lee, T.H.; Lee, W.K.; Yoon, I.; Kim, K. Tumor Size-Dependent Anticancer Efficacy of Chlorin Derivatives for Photodynamic Therapy. Int. J. Mol. Sci. 2018, 19, 1596. [Google Scholar] [CrossRef] [PubMed]
- Linares, I.A.P.; Martinelli, L.P.; Moritz, M.N.O.; Selistre-de-Araujo, H.S.; Oliveira, K.T.d.; Perussi, J.R. Cytotoxicity of structurally-modified chlorins aimed for photodynamic therapy applications. J. Photochem. Photobiol. A Chem. 2022, 425, 113647. [Google Scholar] [CrossRef]
- Knapp, S.; Huang, B.; Emge, T.J.; Sheng, S.; Krogh-Jespersen, K.; Potenza, J.A.; Schugar, H.J. A pyropheophorbide dimer with single pyrrol π overlap and a low-Energy Q absorption. J. Am. Chem. Soc. 1999, 121, 7977–7978. [Google Scholar] [CrossRef]
- Ma, S.; Weng, M.; Yang, T.; Ge, L.; Yang, K. Triterpenes and Pheophorbides from Camellia ptilosperma and Their Cytotoxicity, Photocytotoxicity, and Photodynamic Antibacterial Activity. Molecules 2023, 28, 7058. [Google Scholar] [CrossRef]
- Li, G.; Li, L.; Zheng, Q.; Kuroda, C.; Wang, Q. Phaeophytin analogues from Ligularia knorringiana. Molecules 2012, 17, 5219–5224. [Google Scholar] [CrossRef]
- Choi, Y.H.; Hazekamp, A.; Peltenburg-Looman, A.M.G.; Frederich, M.; Erkelens, C.; Lefeber, A.W.M.; Verpoorte, R. NMR assignments of the major Cannabinoids and Cannabiflavonoids isolated from flowers of Cannabis sativa. Phytochem. Anal. 2004, 15, 345–354. [Google Scholar] [CrossRef]
- Tamburello, M.; Salamone, S.; Anceschi, L.; Governa, P.; Brighenti, V.; Morellini, A.; Rossini, G.; Manetti, F.; Gallinella, G.; Pollastro, F.; et al. Antiviral activity of Cannabidiolic acid and its methyl ester against SARS-CoV-2. J. Nat. Prod. 2023, 86, 1698–1707. [Google Scholar] [CrossRef]
- Radwan, M.M.; Wanas, A.S.; Gul, W.; Ibrahim, E.A.; Elsohly, M.A. Isolation and characterization of impurities in Commercilly marketed Δ8-THC products. J. Nat. Prod. 2023, 86, 822–829. [Google Scholar] [CrossRef]
- Udoh, M.; Santiago, M.; Devenish, S.; McGregor, I.S.; Connor, M. Cannabichromene is a cannabinoid CB2 receptor agonist. Br. J. Pharmacol. 2019, 176, 4537–4547. [Google Scholar] [CrossRef]
- Taglialatela-Scafati, O.; Pagani, A.; Scala, F.; Petrocellis, L.D.; Marzo, V.D.; Grassi, G.; Appendino, G. Cannabimovone, a Cannabinoid with a Rearranged Terpenoid Skeleton from Hemp. Eur. J. Org. Chem. 2010, 2010, 2067–2072. [Google Scholar] [CrossRef]
- Ye, Z.; Chen, D.; Zheng, R.; Chen, H.; Xu, T.; Wang, C.; Zhu, S.; Gao, X.; Zhang, J.; Li, D.; et al. Curcumin induced G2/M cycle arrest in SK-N-SH neuroblastoma cells through the ROS-mediated p53 signaling pathway. J. Food Biochem. 2001, 45, e13888. [Google Scholar]
- Sun, S.-Q.; Du, F.-X.; Hao-Shi; Zhang, L.-H.; Gu, F.-Y.; Deng, Y.-L.; Ji, Y.-Z. Prevention of STAT3-related pathway in SK-N-SH cells by natural product astaxanthin. BMC Complement. Med. Ther. 2023, 23, 430. [Google Scholar]
- Zhang, W.; Lawa, R.E.; Hintona, D.R.; Su, Y.; Couldwell, W.T. Growth inhibition and apoptosis in human neuroblastoma SK-N-SH cells induced by hypericin, a potent inhibitor of protein kinase C. Cancer Lett. 1995, 96, 31–35. [Google Scholar] [PubMed]
- Vinh, L.B.; Shin, S.H.; Han, Y.K.; Kim, Y.J.; Cuong, N.C.; Oh, S.; Lee, K.Y. Identification of Interleukin (IL)-33 Inhibitory Constituents from Canavalia gladiata Pods. Antioxidants 2024, 13, 767. [Google Scholar] [CrossRef]
- Ly, H.T.; Tran, P.T.; Le, B.V.; Nguyen, T.M.; Nguyen, T.H.L.; Nguyen, T.T.; Dao, A.H.; Kang, K.W.; Do, T.H. Standardized extract and its compounds from fruits of Piper longum suppress MDA-MB-231 cancer stem cells via down-regulation of intracellular signals. S. Afr. J. Bot. 2024, 167, 509–518. [Google Scholar]
- Minh, P.H.; Van Anh, P.T.; Tung, B.T.; Dung, H.M.; Trang, T.T.T.; Nhung, P.T.H.; Hang, N.T.; Nguyet, N.T.M.; Phong, N.V.; Vinh, L.B. Efficacy of Jasminum subtriplinerve Extract against 7, 12-Dimethylbenz [α] anthracene-Induced Cancer in Mice. J. Microbiol. Biotechnol. 2024, 34, 2173. [Google Scholar]
- Berman, H.; Henrick, K.; Nakamura, H. Announcing the worldwide Protein Data Bank. Nat. Struct. Biol. 2003, 10, 980. [Google Scholar]
- Consortium, W. Protein Data Bank: The single global archive for 3D macromolecular structure data. Nucleic Acids Res. 2019, 47, D520–D528. [Google Scholar]
- Singh, N.; Miner, A.; Hennis, L.; Mittal, S. Mechanisms of temozolomide resistance in gliblastoma—A comprehensive review. Cancer Drug Resist. 2021, 4, 17–43. [Google Scholar]
- Davis, A.M.; Riley, R.J. Predictive ADMET studies, the challenges and the opportunities. Curr. Opin. Chem. Biol. 2004, 8, 378–386. [Google Scholar] [CrossRef]
- Bakchi, B.; Krishna, A.D.; Sreecharan, E.; Puttagunta, V.B.; Sigalapalli, D.K.; Bhandare, R.R.; Shaik, A.B. An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: A medicinal chemist’s perspective. J. Mol. Struct. 2022, 1259, 132712. [Google Scholar] [CrossRef]
- Wang, J.; Krudy, G.; Hou, T.; Zhang, W.; Holland, G.; Xu, X. Development of Reliable Aqueous Solubility Models and Their Application in Druglike Analysis. J. Chem. Inf. Model. 2007, 47, 1395–1404. [Google Scholar] [PubMed]
- Buyukyildirim, T.; Deniz, F.S.S.; Tugay, O.; Salmas, R.E.; Ulutas, O.K.; Aysal, I.A.; Orhan, I.E. Chromatographic Analysis and Enzyme Inhibition Potential of Reynoutria japonica Houtt.: Computational Docking, ADME, Pharmacokinetic, and Toxicokinetic Analyses of the Major Compounds. Pharmaceuticals 2025, 18, 408. [Google Scholar] [CrossRef]
- Luer, M.S.; Hamani, C.; Dujovny, M.; Gidal, B.; Cwik, M.; Deyo, K.; Fischer, J.H. Saturable transport of gabapentin at the bloodbrain barrier. Neurol. Res. 1999, 21, 559–562. [Google Scholar] [PubMed]
- Amin, M.L. P-glycoprotein Inhibition for Optimal Drug Delivery. Drug Target Insights 2013, 7, 27–34. [Google Scholar] [PubMed]
- Zhao, M.; Ma, J.; Li, M.; Zhang, Y.; Jiang, B.; Zhao, X.; Huai, C.; Shen, L.; Zhang, N.; He, L.; et al. Cytochrome P450 Enzymes and Drug Metabolism in Humans. Int. J. Mol. Sci. 2021, 22, 12808. [Google Scholar] [CrossRef]
- Guengerich, F.P. Inhibition of Cytochrome P450 Enzymes by Drugs—Molecular Basis and Practical Applications. Biomol. Ther. 2022, 30, 1–18. [Google Scholar] [CrossRef]
- Teo, Y.L.; Ho, H.K.; Chan, A. Metabolism-related pharmacokinetic drug-drug interactions with tyrosine kinase inhibitors: Current understanding, challenges and recommendations. Br. J. Clin. Pharmacol. 2014, 79, 241–253. [Google Scholar]
- Chen, L. Role of Enzyme Inhibition in Drug-Drug Interactions: Clinical Implications. J. Drug Metab. Toxicol. 2024, 15, 348. [Google Scholar]
- Rettie, A.E.; Jones, J.P. Clinical and Toxicological Relevance of CYP2C9: Drug-Drug Interactions and Pharmacogenetics. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 477–494. [Google Scholar]
- Tateishi, H.; Miyazu, D.; Kurinami, M.; Ieiri, I.; Hirakawa, M.; Watanabe, H. Hypoglycemia possibly caused by CYP2C9 mediated drug interaction in combination with bucolome: A case report. J. Pharm. Health Care Sci. 2021, 7, 39. [Google Scholar] [PubMed]
- Zhou, S.; Chan, E.; Li, X.T.; Huang, M. Clinical outcomes and management of mechanism-based inhibition of cytochrome P450 3A4. Ther. Clin. Risk Manag. 2005, 1, 3–13. [Google Scholar] [PubMed]
- Schaaf, M.V.; Luth, K.; Townsend, D.M.; Chessman, K.H.; Mills, C.M.; Garner, S.S.; Peterson, Y.K. CYP3A4 drug metabolism considerations in pediatric pharmacotherapy. Med. Chem. Res. 2024, 33, 2221–2235. [Google Scholar] [CrossRef]
- Shin, J.; Hills, N.K.; Finley, P.R. Combining Antidepressants with b-Blockers: Evidence of a Clinically Significant CYP2D6 Drug Interaction. Pharmacotherapy 2020, 40, 507–516. [Google Scholar] [PubMed]
- Beaudry, P.; Nilsson, M.; Rioth, M.; Prox, D.; Poon, D.; Xu, L.; Zweidler-Mckay, P.; Ryan, A.; Folkman, J.; Ryeom, S.; et al. Potent antitumor effects of ZD6474 on neuroblastoma via dual targeting of tumor cells and tumor endothelium. Mol. Cancer Ther. 2008, 2, 418–424. [Google Scholar]
- Kurita, M.; Takada, T.; Wakabayashi, N.; Asami, S.; Ono, S.; Uchiyama, T.; Suzuki, T. Antitumor Effect of Burchellin Berivatives Against Neuroblastoma. Anticancer Res. 2018, 38, 855–862. [Google Scholar]
- Han, J.-Y.; Lee, Y.J.; Lim, D.-W.; Jung, H.-J.; Kwon, E.; Hong, J.; Lee, Y.-M. Cheungsam Seed Husk Extract Reduces Skin Inflammation through Regulation of Inflammatory mediator in TNF-α/IFN-γ-Induced HaCaT Cells. Plants 2024, 13, 1704. [Google Scholar] [CrossRef]
- Fisher, T.; Golan, H.; Schiby, G.; Prichen, S.; Smoum, R.; Moshe, I.; Peshes-Yaloz, N.; Castiel, A.; Waldman, D.; Gallily, R.; et al. In vitro and in vivo efficacy of non-psychoactive cannabidiol in neuroblastoma. Curr. Oncol. 2016, 23, S15–S22. [Google Scholar] [CrossRef]
- Tang, N.; Wang, Y.; Miao, J.; Zhao, Y.; Cao, Y.; Sun, W.; Zhang, J.; Sui, H.; Li, B. Potential pharmacological mechanisms of tanshinone IIA in the treatment of human neuroblastoma based on network pharmacological and molecular docking Technology. Front. Pharmacol. 2024, 15, 1363415. [Google Scholar] [CrossRef]
Position | 1H [δH, Mult. (J in Hz)] | 13C (δC) |
---|---|---|
1 | 4.34, d (5.6) | 91.3 |
2 | 3.44, dd (11.2, 5.6) | 41.6 |
3 | 1.89, m | 48.2 |
4 | 1.56, m | 31.2 |
5 | 1.74, m | 34.7 |
6 | - | 68.8 |
7 | 1.52, s | 28.2 |
8 | - | 152.9 |
9 | 5.06, d (3.6) | 111.6 |
10 | 1.83, s | 22.7 |
1′ | - | 155.4 |
2′ | 6.41, s | 114.1 |
3′ | - | 149.6 |
4′ | - | 105.6 |
5′ | - | 160.2 |
6′ | - | 117.0 |
7′ | - | 164.8 |
1″ | 2.92, m; 3.03, m | 34.8 |
2″ | 1.57, m | 25.7 |
3″ | 1.33, m | 32.1 |
4″ | 1.32, m | 22.6 |
5″ | 0.88, t (6.8) | 14.2 |
No. | 2 | 3 | 4 | 5 | ||||
---|---|---|---|---|---|---|---|---|
δH, mult. (J in Hz) | δC | δH, mult. (J in Hz) | δC | δH, mult. (J in Hz) | δC | δH, mult. (J in Hz) | δC | |
1 | - | 141.7 | - | 141.7 | - | 143.8 | - | 141.4 |
2 | - | 131.7 | - | 131.7 | - | 133.1 | - | 131.7 |
21 | 3.41, s | 12.2 | 3.41, s | 12.2 | 3.39, s | 12.2 | 3.45, s | 12.2 |
3 | - | 136.0 | - | 136.0 | - | 137.0 | - | 136.2 |
31 | 8.01, dd (18.0, 12.0) | 129.4 | 8.01, dd (18.0, 12.0) | 129.4 | 8.01, dd (17.6, 11.6) | 132.3 | 8.02, dd (18.0, 12.0) | 129.1 |
32 | 6.18, dd (11.6, 1.6) | 122.7 | 6.18, dd (11.6, 1.2) | 122.7 | 6.24, d (12.0) | 123.8 | 6.17, d (10.8) | 122.9 |
6.30, dd (18.0, 1.2) | 6.30, dd (18.0, 1.2) | 6.35, d (18.0) | 6.32, d (18.0) | |||||
4 | - | 136.2 | - | 136.2 | - | 138.1 | - | 136.2 |
5 | 9.38, s | 97.4 | 9.38, s | 97.4 | 10.38, s | 102.2 | 9.76, s | 104.3 |
6 | - | 155.4 | - | 155.4 | - | 159.5 | - | 155.9 |
7 | - | 136.4 | - | 136.4 | - | 137.9 | - | 136.7 |
71 | 3.24, s | 11.4 | 3.24, s | 11.4 | 11.10, s | 187.9 | 3.27, s | 11.4 |
8 | - | 145.2 | - | 145.2 | - | 147.3 | - | 145.7 |
81 | 3.69, q (7.6) | 19.6 | 3.69, q (7.6) | 19.6 | 4.02, q (7.6) | 19.6 | 3.74, q (7.2) | 19.7 |
82 | 3.69, q (7.6) | 17.4 | 1.69, t (7.6) | 17.6 | 1.81, t (7.6) | 19.2 | 1.72, t (7.2) | 17.7 |
9 | - | 150.9 | - | 150.9 | - | 151.0 | - | 150.2 |
10 | 9.49, s | 104.2 | 9.50, s | 104.3 | 9.67, s | 106.8 | 9.51, s | 99.8 |
11 | - | 138.0 | - | 138.0 | - | 138.1 | - | 138.9 |
12 | - | 130.6 | - | 130.6 | - | 127.9 | - | 131.6 |
121 | 3.69, s | 12.0 | 3.67, s | 12.2 | 3.64, s | 12.6 | 3.90, s | 12.6 |
13 | - | 128.5 | - | 128.5 | - | 128.8 | - | 111.5 |
131 | - | 196.4 | - | 196.4 | - | 192.1 | - | 102.1 |
132 | - | ND | 5.13, d (20.0) | 48.2 | - | 89.0 | - | 100.6 |
5.24, d (20.0) | ||||||||
133 | - | - | - | - | - | 173.7 | - | 171.3 |
134 | - | - | - | - | 3.72, s | 53.7 | 3.78, s | 54.3 |
14 | - | 149.2 | - | 149.2 | - | 151.1 | - | 161.2 |
15 | - | 106.2 | - | 106.2 | - | 107.6 | - | 134.6 |
16 | - | 160.5 | - | 160.4 | - | 165.4 | - | 166.5 |
17 | 4.30, m | 51.8 | 4.29, d (8.4, 2.4) | 51.7 | 4.14, m | 52.2 | 4.08, d (8.8) | 53.9 |
171 | 2.54, m | 30.0 | 2.56, m; 2.69, m | 30.0 | 2.59, m; 2.96, m | 31.1 | 2.16, m | 32.2 |
172 | 2.28, m | 31.3 | 2.25–2.34, m | 31.1 | 2.48, m | 31.8 | 2.44, m | 31.4 |
173 | - | 173.2 | - | 173.6 | - | 174.4 | - | 173.4 |
174 | 4.08, dd (6.8, 2.4) | 60.3 | 3.61, s | 51.8 | 4.13, m | 60.6 | 3.95, m | 60.6 |
175 | 1.16, t (6.8) | 14.3 | - | - | 1.17, t (6.8) | 14.3 | 1.07, t (7.6) | 14.2 |
18 | 4.50, dd (7.2, 1.6) | 50.1 | 4.48, dd (7.2, 1.6) | 50.1 | 4.49, dd (7.6, 7.2) | 50.5 | 4.45, d (6.8) | 50.3 |
181 | 1.81, d (7.6) | 23.3 | 1.81, d (7.6) | 23.3 | 1.62, d (7.2) | 22.8 | 1.60, d (7.2) | 22.4 |
19 | - | 171.6 | - | 171.5 | - | 172.6 | - | 171.1 |
20 | 8.55, s | 93.2 | 8.55, s | 93.2 | 8.61, s | 94.0 | 8.71, s | 94.0 |
1″ | - | 178.3 | ||||||
2″ | 2.35, t (7.6) | 33.9 | ||||||
3″ | 1.64, m | 24.8 | ||||||
4″ | 1.24–1.30, m | 29.8 | ||||||
5″ | 1.24–1.30, m | 29.8 | ||||||
6″ | 1.24–1.30, m | 29.5 | ||||||
7″ | 1.24–1.30, m | 22.8 | ||||||
8″ | 0.88, t (6.4) | 14.3 |
Compound | 6 | 7 | 8 | Gabapentin |
---|---|---|---|---|
GI abs | High | High | High | High |
BBB per | No | No | Yes | Yes |
P-gp substrate | No | No | No | No |
CYP1A2 inhibitor | No | No | No | No |
CYP2C19 inhibitor | No | No | Yes | No |
CYP2C9 inhibitor | Yes | Yes | Yes | No |
CYP2D6 inhibitor | No | No | Yes | No |
CYP3A4 inhibitor | Yes | Yes | Yes | No |
Compound | 6 | 7 | 8 |
---|---|---|---|
MW (g mol−1) | 358.47 | 372.50 | 314.46 |
Log P | 3.45 | 4.38 | 2.17 |
nHBD | 0 | 0 | 0 |
nHBA | 4 | 4 | 2 |
TPSA | 77.76 | 66.76 | 40.46 |
MR | 106.81 | 111.13 | 99.85 |
Lipinski violation | 0 | 0 | 0 |
Log S | −5.93 | −6.15 | −5.54 |
nRotB | 7 | 8 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.-Q.; Park, H.-S.; Choi, S.-H.; Hong, D.-Y.; Cheon, J.-Y.; Lee, Y.-M.; Kim, C.-M.; Hong, J.-K.; Oh, S.-J.; Cho, M.-S.; et al. New Cannabinoids and Chlorin-Type Metabolites from the Flowers of Cannabis sativa L.: A Study on Their Neuroblastoma Activity. Pharmaceuticals 2025, 18, 521. https://doi.org/10.3390/ph18040521
Nguyen T-Q, Park H-S, Choi S-H, Hong D-Y, Cheon J-Y, Lee Y-M, Kim C-M, Hong J-K, Oh S-J, Cho M-S, et al. New Cannabinoids and Chlorin-Type Metabolites from the Flowers of Cannabis sativa L.: A Study on Their Neuroblastoma Activity. Pharmaceuticals. 2025; 18(4):521. https://doi.org/10.3390/ph18040521
Chicago/Turabian StyleNguyen, Tuan-Quoc, Hyo-Shin Park, Sun-Hyeong Choi, Da-Yun Hong, Jae-Yong Cheon, Young-Mi Lee, Chul-Min Kim, Jong-Ki Hong, Seo-Jeong Oh, Man-Soo Cho, and et al. 2025. "New Cannabinoids and Chlorin-Type Metabolites from the Flowers of Cannabis sativa L.: A Study on Their Neuroblastoma Activity" Pharmaceuticals 18, no. 4: 521. https://doi.org/10.3390/ph18040521
APA StyleNguyen, T.-Q., Park, H.-S., Choi, S.-H., Hong, D.-Y., Cheon, J.-Y., Lee, Y.-M., Kim, C.-M., Hong, J.-K., Oh, S.-J., Cho, M.-S., Kim, J.-H., Lee, E.-S., Seo, J., & Jung, H.-J. (2025). New Cannabinoids and Chlorin-Type Metabolites from the Flowers of Cannabis sativa L.: A Study on Their Neuroblastoma Activity. Pharmaceuticals, 18(4), 521. https://doi.org/10.3390/ph18040521