Zopfiellamides C and D, New Decalin-Type Tetramic Acid Derivatives from the Marine-Derived Fungus Aspergillus sp. NF666
Abstract
:1. Introduction
2. Results
2.1. Structural Elucidation of the Compounds
2.2. Antibacterial Activities
2.3. Proposed Biosynthesis Pathway
3. Materials and Methods
3.1. General Experiment Procedure
3.2. Fungal Material
3.3. Fermentation, Extraction and Isolation
3.4. Antibacterial Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Genilloud, O. Natural products discovery and potential for new antibiotics. Curr. Opin. Microbiol. 2019, 51, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Wu, W.; Liu, X.; Zaleta-Pinet, D.A.; Clark, B.R. Bioactive Compounds Isolated from Marine-Derived Microbes in China: 2009–2018. Mar. Drugs 2019, 17, 339. [Google Scholar] [CrossRef]
- de Sá, J.D.M.; Kumla, D.; Dethoup, T.; Kijjoa, A. Bioactive Compounds from Terrestrial and Marine-Derived Fungi of the Genus Neosartorya. Molecules 2022, 27, 2351. [Google Scholar] [CrossRef]
- Orfali, R.; Aboseada, M.A.; Abdel-Wahab, N.M.; Hassan, H.M.; Perveen, S.; Ameen, F.; Alturki, E.; Abdelmohsen, U.R. Recent updates on the bioactive compounds of the marine-derived genus Aspergillus. RSC Adv. 2021, 11, 17116–17150. [Google Scholar] [CrossRef]
- Ha, Y.; Zhou, Y.; Ma, M.; Wang, N.; Wang, P.; Zhang, Z. Antimicrobial metabolites from the marine-derived fungus Aspergillus sp. ZZ1861. Phytochemistry 2024, 224, 114164. [Google Scholar] [CrossRef]
- Sun, L.; Wang, H.; Yan, M.; Sai, C.; Zhang, Z. Research Advances of Bioactive Sesquiterpenoids Isolated from Marine-Derived Aspergillus sp. Molecules 2022, 27, 7376. [Google Scholar] [CrossRef]
- Butler, M.S. The role of natural product chemistry in drug discovery. J. Nat. Prod. 2004, 67, 2141–2153. [Google Scholar] [CrossRef]
- Mo, X.; Li, Q.; Ju, J. Naturally occurring tetramic acid products: Isolation, structure elucidation and biological activity. RSC Adv. 2014, 4, 50566–50593. [Google Scholar] [CrossRef]
- Li, G.; Kusari, S.; Spiteller, M. Natural products containing ’decalin’ motif in microorganisms. Nat. Prod. Rep. 2014, 31, 1175–1201. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.B.; Zink, D.L.; Goetz, M.A.; Dombrowski, A.W.; Polishook, J.D.; Hazuda, D.J. Equisetin and a Novel Opposite Stereochemical Homolog Phomasetin, Two Fungal Metabolites as Inhibitors of HIV-1 Integrase. Tetrahedron Lett. 1998, 39, 2243–2246. [Google Scholar] [CrossRef]
- Yang, S.W.; Mierzwa, R.; Terracciano, J.; Patel, M.; Gullo, V.; Wagner, N.; Baroudy, B.; Puar, M.; Chan, T.M.; McPhail, A.T.; et al. Chemokine receptor CCR-5 inhibitors produced by Chaetomium globosum. J. Nat. Prod. 2006, 69, 1025–1028. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kaushik, N.; Proksch, P. Identification of antifungal principle in the solvent extract of an endophytic fungus Chaetomium globosum from Withania somnifera. Springerplus 2013, 2, 37. [Google Scholar] [CrossRef]
- Kakule, T.B.; Zhang, S.; Zhan, J.; Schmidt, E.W. Biosynthesis of the tetramic acids Sch210971 and Sch210972. Org. Lett. 2015, 17, 2295–2297. [Google Scholar] [CrossRef]
- Izumikawa, M.; Hashimoto, J.; Hirokawa, T.; Sugimoto, S.; Kato, T.; Takagi, M.; Shin-Ya, K. JBIR-22, an inhibitor for protein-protein interaction of the homodimer of proteasome assembly factor 3. J. Nat. Prod. 2010, 73, 628–631. [Google Scholar] [CrossRef]
- Healy, A.R.; Izumikawa, M.; Slawin, A.M.; Shin-Ya, K.; Westwood, N.J. Stereochemical assignment of the protein-protein interaction inhibitor JBIR-22 by total synthesis. Angew. Chem. Int. Ed. Engl. 2015, 54, 4046–4050. [Google Scholar] [CrossRef]
- Jiao, F.W.; Xing, Y.N.; Liu, T.Y.; Wu, F.; Li, W.; Jiao, R.H. New azaspirene derivatives from marine-derived fungus Aspergillus micronesiensis NF666. Tetrahedron Lett. 2023, 123, 154566. [Google Scholar] [CrossRef]
- Daferner, M.; Anke, T.; Sterner, O. Zopfiellamides A and B, antimicrobial pyrrolidinone derivatives from the marine fungus Zopfiella latipes. Tetrahedron 2002, 58, 7781–7784. [Google Scholar] [CrossRef]
- Boettger, D.; Hertweck, C. Molecular diversity sculpted by fungal PKS-NRPS hybrids. Chembiochem 2013, 14, 28–42. [Google Scholar] [CrossRef]
- Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. Engl. 2009, 48, 4688–4716. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Yagishita, F.; Mino, T.; Uchiyama, N.; Patel, A.; Chooi, Y.H.; Goda, Y.; Xu, W.; Noguchi, H.; Yamamoto, T.; et al. Involvement of Lipocalin-Like CghA in Decalin-Forming Stereoselective Intramolecular [4+2] Cycloaddition. Chembiochem 2015, 16, 2294–2298. [Google Scholar] [CrossRef] [PubMed]
- Fujiyama, K.; Kato, N.; Re, S.; Kinugasa, K.; Watanabe, K.; Takita, R.; Nogawa, T.; Hino, T.; Osada, H.; Sugita, Y.; et al. Molecular Basis for Two Stereoselective Diels-Alderases that Produce Decalin Skeletons. Angew. Chem. Int. Ed. Engl. 2021, 60, 22401–22410. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, S.; Tsunematsu, Y.; Sato, M.; Watanabe, K. Elucidation of Biosynthetic Pathways of Natural Products. Chem. Rec. 2017, 17, 1095–1108. [Google Scholar] [CrossRef]
- Maglangit, F.; Fang, Q.; Leman, V.; Soldatou, S.; Ebel, R.; Kyeremeh, K.; Deng, H. Accramycin A, a New Aromatic Polyketide, from the Soil Bacterium, Streptomyces sp. MA37. Molecules 2019, 24, 3384. [Google Scholar] [CrossRef]
Position | 1 | 2 | ||
---|---|---|---|---|
δC, Type | δH, Multi. (J in Hz) | δC, Type | δH, Multi. (J in Hz) | |
1 | 174.8, C | - | 172.9, C | - |
2 | 115.7, CH | 7.11 (d, 16.1) | 115.8, CH | 7.10 (d, 16.3) |
3 | 164.9, CH | 7.62 (d, 16.1) | 163.1, CH | 7.52 (d, 16.3) |
4 | 43.6, C | - | 43.4, C | - |
5 | 50.9, CH | 1.56 (q, 6.8) | 50.8, CH | 1.55 (q, 6.8) |
6 | 136.5, C | - | 136.5, C | - |
7 | 126.0, CH | 5.13 (s) | 125.9, CH | 5.13 (s) |
8 | 41.4, CH | 1.83 (m) | 41.4, CH | 1.82 (m) |
9 | 34.8, CH2 | 1.17 (m), 1.79 (m) | 34.9, CH2 | 1.18(m), 1.78 (m) |
10 | 27.6, CH2 | 1.73 (m) | 27.6, CH2 | 1.73 (m) |
11 | 39.0, CH2 | 1.22 (m), 1.68 (m) | 39.0, CH2 | 1.22 (m), 1.68 (m) |
12 | 36.5, CH | 1.44 (m) | 36.5, CH | 1.43 (m) |
13 | 49.3, CH | 1.44 (m) | 49.3, CH | 1.41 (m) |
14 | 17.9, CH3 | 1.18 (s) | 17.9, CH3 | 1.17 (s) |
15 | 16.8, CH3 | 1.01, d (7.0) | 16.8, CH3 | 1.01, d (7.0) |
16 | 22.3, CH3 | 1.67 (s) | 22.3, CH3 | 1.67 (s) |
17 | 23.1, CH3 | 0.82 (d, 5.7) | 23.1, CH3 | 0.82 (d, 5.8) |
2′ | 174.2, C | - | 175.0, C | - |
3′ | 100.1, C | - | 100.7, C | - |
4′ | 197.4, C | - | 195.5, C | - |
5′ | 65.0, CH | 3.93 (d, 6.7) | 65.1, CH | 3.86 (dd, 6.0, 3.0) |
6′ | 39.2, CH2 | 2.02 (m) 2.39 (dd, 2.3, 14.7) | 39.5, CH2 | 2.25 (dd, 2.9,15.0) 2.48 (dd, 6.0,15.0) |
7′ | 74.0, C | - | 73.2, C | - |
8′ | 177.3, C | - | 177.3, C | - |
9′ | 27.2, CH3 | 1.47 (s) | 28.0, CH3 | 1.45 (s) |
10′ | 27.1, CH3 | 2.98 (s) | 27.8, CH3 | 2.97 (s) |
Compound | MIC (μM) | |
---|---|---|
1 | 2 | |
Pseudomonas aeruginosa | 12.5 | 25.0 |
Staphylococcus aureus | 12.5 | 12.5 |
Bacillus subtilis | >100 | >100 |
Escherichia coli | 12.5 | 12.5 |
Pectobacterium carotovorum subsp. Carotovorum | 12.5 | 25.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, F.; Liu, T.; Wang, K.; Li, S.; Jiao, R.; Lin, W. Zopfiellamides C and D, New Decalin-Type Tetramic Acid Derivatives from the Marine-Derived Fungus Aspergillus sp. NF666. Molecules 2025, 30, 1502. https://doi.org/10.3390/molecules30071502
Jiao F, Liu T, Wang K, Li S, Jiao R, Lin W. Zopfiellamides C and D, New Decalin-Type Tetramic Acid Derivatives from the Marine-Derived Fungus Aspergillus sp. NF666. Molecules. 2025; 30(7):1502. https://doi.org/10.3390/molecules30071502
Chicago/Turabian StyleJiao, Fangwen, Tianyu Liu, Kaiwei Wang, Shuai Li, Ruihua Jiao, and Wei Lin. 2025. "Zopfiellamides C and D, New Decalin-Type Tetramic Acid Derivatives from the Marine-Derived Fungus Aspergillus sp. NF666" Molecules 30, no. 7: 1502. https://doi.org/10.3390/molecules30071502
APA StyleJiao, F., Liu, T., Wang, K., Li, S., Jiao, R., & Lin, W. (2025). Zopfiellamides C and D, New Decalin-Type Tetramic Acid Derivatives from the Marine-Derived Fungus Aspergillus sp. NF666. Molecules, 30(7), 1502. https://doi.org/10.3390/molecules30071502