Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,009)

Search Parameters:
Keywords = NO scavenger

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1548 KiB  
Article
Phytochemical Analysis, Antioxidant Activity, and Anticancer Potential of Afzelia quanzensis Welw—Bark Extract: A Traditional Remedy Utilized by Indigenous Communities in KwaZulu-Natal and Eastern Cape Provinces of South Africa
by Siphamandla Qhubekani Njabuliso Lamula, Thando Bhanisa, Martha Wium, Juliano Domiraci Paccez, Luiz Fernando Zerbini and Lisa V. Buwa-Komoreng
Int. J. Mol. Sci. 2025, 26(15), 7623; https://doi.org/10.3390/ijms26157623 - 6 Aug 2025
Abstract
Despite the significant advancements in treatment and prevention, the fight against cancer is ongoing worldwide. This study evaluated the pharmacological properties and anticancer activity of Afzelia quanzensis bark, traditionally used by the indigenous communities of KwaZulu Natal and Eastern Cape Provinces of South [...] Read more.
Despite the significant advancements in treatment and prevention, the fight against cancer is ongoing worldwide. This study evaluated the pharmacological properties and anticancer activity of Afzelia quanzensis bark, traditionally used by the indigenous communities of KwaZulu Natal and Eastern Cape Provinces of South Africa to treat cancer and related illnesses. Phytochemical screening, high-performance liquid chromatography–diode array detection (HPLC-DAD), and Fourier-transform infrared spectroscopy (FTIR) analyses were carried out using established protocols. The antioxidant activity was assessed via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity and nitric oxide radicals. The anticancer activity was evaluated using the MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). Phytochemical analysis revealed the presence of saponins, flavonoids, terpenoids, alkaloids, steroids, cardiac glycosides, and phlobatannins. The HPLC-DAD analysis detected seven distinctive peaks in the aqueous extract and three distinctive peaks in the methanolic extract. The FTIR spectra of the aqueous extract displayed characteristic peaks corresponding to O-H, C=O, C=C, and =C–H functional groups. Among the tested extracts, the methanol extract exhibited the strongest antioxidant activity, followed by the ethanolic extract, in both DPPH and nitric oxide. The methanol extract showed a higher cell proliferation inhibition against the DU-145 cancer cell line with the percentage of inhibition of 37.8%, followed by the aqueous extract with 36.3%. In contrast, limited activity was observed against PC-3, SK-UT-1, and AGS cell lines. The results demonstrated notable dose-dependent antioxidant and antiproliferative activities supporting the ethnomedicinal use of Afzelia quanzensis bark in cancer management. These findings warrant further investigation into its bioactive constituents and mechanisms of action. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
24 pages, 2024 KiB  
Article
New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms
by Hubert Sytykiewicz, Sylwia Goławska and Iwona Łukasik
Molecules 2025, 30(15), 3294; https://doi.org/10.3390/molecules30153294 - 6 Aug 2025
Abstract
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in [...] Read more.
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in skin-related applications, particularly through the modulation of melanin biosynthesis and protection of skin-relevant cells from oxidative damage—a primary contributor to hyperpigmentation disorders. Zingiber officinale Rosc. (ginger) and Humulus lupulus L. (hop) are medicinal plants widely recognized for their diverse pharmacological properties. To the best of our knowledge, this study provides the first report on the synergistic interactions between essential oils derived from these species (referred to as EOZ and EOH) offering novel insights into their combined bioactivity. The purpose of this study was to evaluate essential oils extracted from ginger rhizomes and hop strobiles with respect to the following: (1) chemical composition, determined by gas chromatography–mass spectrometry (GC-MS); (2) tyrosinase inhibitory activity; (3) capacity to inhibit linoleic acid peroxidation; (4) ABTS•+ radical scavenging potential. Furthermore, the study utilizes both the combination index (CI) and dose reduction index (DRI) as quantitative parameters to evaluate the nature of interactions and the dose-sparing efficacy of essential oil (EO) combinations. GC–MS analysis identified EOZ as a zingiberene-rich chemotype, containing abundant sesquiterpene hydrocarbons such as α-zingiberene, β-bisabolene, and α-curcumene, while EOH exhibited a caryophyllene diol/cubenol-type profile, dominated by oxygenated sesquiterpenes including β-caryophyllene-9,10-diol and 1-epi-cubenol. In vitro tests demonstrated that both oils, individually and in combination, showed notable anti-tyrosinase, radical scavenging, and lipid peroxidation inhibitory effects. These results support their multifunctional bioactivity profiles with possible relevance to skin care formulations, warranting further investigation. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Figure 1

16 pages, 1651 KiB  
Article
Standardization of Germinated Oat Extracts and Their Neuroprotective Effects Against Aβ1-42 Induced Cytotoxicity in SH-SY5Y Cells
by Yu-Young Lee, In-Su Na, Jeong-Eun Kim, Jae-Gwang Song, Chae-Eun Han, Hyung-Wook Kim and Soon-Mi Shim
Molecules 2025, 30(15), 3291; https://doi.org/10.3390/molecules30153291 - 6 Aug 2025
Abstract
The present study aimed to standardize germinated oat extracts (GOEs) by profiling avenanthramides (AVNs) and phenolic acids and evaluate their neuroprotective effects against Aβ1-42-induced cytotoxicity in human neuroblastoma (SH-SY5Y) cells. GOEs were standardized to contain 1652.56 ± 3.37 µg/g dry weight [...] Read more.
The present study aimed to standardize germinated oat extracts (GOEs) by profiling avenanthramides (AVNs) and phenolic acids and evaluate their neuroprotective effects against Aβ1-42-induced cytotoxicity in human neuroblastoma (SH-SY5Y) cells. GOEs were standardized to contain 1652.56 ± 3.37 µg/g dry weight (dw) of total AVNs, including 468.52 ± 17.69 µg/g AVN A, 390.33 ± 10.26 µg/g AVN B, and 641.22 ± 13.89 µg/g AVN C, along with 490.03 ± 7.83 µg/g dw of ferulic acid, using a validated analytical method. Treatment with AVN C and GOEs significantly inhibited Aβ1-42-induced cytotoxicity (p < 0.05). Furthermore, both AVNs and GOEs markedly reduced Aβ1-42-induced reactive oxygen species (ROS) generation in SH-SY5Y cells, showing significant scavenging activity at concentrations of 25 μg/mL (AVNs) and 50 μg/mL (GOEs) (p < 0.05). RT-PCR analysis revealed that AVNs and GOEs effectively downregulated the expression of inflammation- and apoptosis-related genes triggered by Aβ1-42 exposure. These findings suggest that GOEs rich in AVNs may serve as a potential functional ingredient for enhancing memory function through the inhibition of neuroinflammation and oxidative stress. Full article
(This article belongs to the Special Issue Bioactive Compounds in Foods and Their By-Products)
Show Figures

Graphical abstract

12 pages, 560 KiB  
Article
Determination of Antioxidant Activity and Proximate Composition of a Variety of Red Pigmented Zea mays L. from Puebla, Mexico
by Jesabel Pineda-Quiroz, Juan Alex Hernández-Rivera, Ivonne Pérez-Xochipa, Pedro Antonio-López and Alan Carrasco-Carballo
AppliedChem 2025, 5(3), 18; https://doi.org/10.3390/appliedchem5030018 - 6 Aug 2025
Abstract
Corn is one of the most consumed cereals in the Mexican diet. In this country, there are multiple varieties that exhibit nutraceutical potential due to their content of different metabolites with biological activity, such as blue corn. Another variety that has received little [...] Read more.
Corn is one of the most consumed cereals in the Mexican diet. In this country, there are multiple varieties that exhibit nutraceutical potential due to their content of different metabolites with biological activity, such as blue corn. Another variety that has received little study is the red pigmented corn variety Chilac from Puebla, Mexico, which is being studied for its nutraceutical potential. A differential extraction using the Soxhlet method was carried out to evaluate the phenolic content, total flavonoid content, and monomeric anthocyanins, and free radical scavenging test was performed using the DPPH reagent. A proximate analysis was also conducted to identify the main macronutrients. The results of the proximate analysis were comparable to those of other traditional corn varieties, with carbohydrates being the macronutrient present in the highest amount at 77.9%. Regarding phenolic content and the presence of anthocyanins, the best extractions were obtained using alcoholic solvents; for example, ethanol for phenols, yielding 1368.420 ± 104.094 mg of gallic acid equivalents (GAE)/kg plant. In contrast, the flavonoid content was higher in the aqueous extract, with 833.984 ± 65.218 mg QE/Kg. In the case of the DPPH assay, the best result was obtained with ethyl acetate (73.81 ± 5.31%). These findings provide a foundation for expanding the use of corn varieties with nutraceutical potential, opening the possibility of studies focused on deeper characterization. Full article
Show Figures

Graphical abstract

24 pages, 4193 KiB  
Article
Evaluation of Bioactive Compounds, Antioxidant Activity, and Anticancer Potential of Wild Ganoderma lucidum Extracts from High-Altitude Regions of Nepal
by Ishor Thapa, Ashmita Pandey, Sunil Tiwari and Suvash Chandra Awal
Curr. Issues Mol. Biol. 2025, 47(8), 624; https://doi.org/10.3390/cimb47080624 - 5 Aug 2025
Abstract
Wild Ganoderma lucidum from Nepal’s high-altitude regions was studied to identify key bioactive compounds and assess the influence of solvent type—water, ethanol, methanol, and acetone—on extraction efficiency and biological activity. Extracts were evaluated for antioxidant potential, cytotoxicity against HeLa cells, and phytochemical composition [...] Read more.
Wild Ganoderma lucidum from Nepal’s high-altitude regions was studied to identify key bioactive compounds and assess the influence of solvent type—water, ethanol, methanol, and acetone—on extraction efficiency and biological activity. Extracts were evaluated for antioxidant potential, cytotoxicity against HeLa cells, and phytochemical composition via gas chromatography–mass spectrometry (GC-MS). Solvent type significantly affected both yield and bioactivity. Acetone yielded the highest crude extract (5.01%), while ethanol extract exhibited the highest total phenolic (376.5 ± 9.3 mg PG/g) and flavonoid content (30.3 ± 0.5 mg QE/g). Methanol extract was richest in lycopene (0.07 ± 0.00 mg/g) and β-carotene (0.45 ± 0.02 mg/g). Ethanol extract demonstrated consistently strong DPPH, superoxide, hydroxyl, and nitric oxide radical scavenging activity, along with high reducing power. All extracts showed dose-dependent cytotoxicity against HeLa cells, with ethanol and water extracts showing the greatest inhibition (>65% at 1000 µg/mL). GC-MS profiling identified solvent-specific bioactive compounds including sterols, terpenoids, polyphenols, and fatty acids. Notably, pharmacologically relevant compounds such as hinokione, ferruginol, ergosterol, and geranylgeraniol were detected. These findings demonstrate the therapeutic potential of G. lucidum, underscore the importance of solvent selection, and suggest that high-altitude ecological conditions may influence its bioactive metabolite profile. Full article
Show Figures

Graphical abstract

24 pages, 3027 KiB  
Article
Resisting the Final Line: Phenotypic Detection of Resistance to Last-Resort Antimicrobials in Gram-Negative Bacteria Isolated from Wild Birds in Northern Italy
by Maria Cristina Rapi, Joel Filipe, Laura Filippone Pavesi, Stefano Raimondi, Maria Filippa Addis, Maria Pia Franciosini and Guido Grilli
Animals 2025, 15(15), 2289; https://doi.org/10.3390/ani15152289 - 5 Aug 2025
Abstract
Antimicrobial resistance (AMR) is a growing global health threat, with wild birds increasingly recognized as potential reservoirs of resistant pathogens and as sentinels of environmental AMR. This study investigated the occurrence and AMR profiles of Gram-negative bacteria isolated from wild birds that died [...] Read more.
Antimicrobial resistance (AMR) is a growing global health threat, with wild birds increasingly recognized as potential reservoirs of resistant pathogens and as sentinels of environmental AMR. This study investigated the occurrence and AMR profiles of Gram-negative bacteria isolated from wild birds that died at the Wildlife Rescue Center in Vanzago, Lombardy, in 2024. Cloacal swabs were collected from 112 birds representing various ecological categories. A total of 157 Gram-negative bacteria were isolated and identified, including clinically relevant genera and species, such as Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Salmonella spp., Pseudomonas aeruginosa, and Acinetobacter baumannii. Antimicrobial susceptibility testing revealed resistance to first-line and critically important antimicrobials, including those exclusively authorized for human use. Notably, a phenotype compatible with Extended-Spectrum Beta-Lactamase (ESBL) production was detected in four out of ten (40%) K. pneumoniae isolates. In addition, 20 out of the 157 (12.7%) isolated bacteria phenotypically exhibited a resistance profile indicative of AmpC beta-lactamase (AmpC) production, including Enterobacter spp. and P. aeruginosa. Resistance patterns were particularly interesting in birds with carnivorous, scavenging, or migratory-associated behaviors. These findings highlight the role of wild birds in the ecology and dissemination of antimicrobial-resistant bacteria (ARB) and highlight the need for wildlife-based AMR monitoring programs as part of a One Health approach. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

25 pages, 816 KiB  
Article
Bioactive Compounds and Antioxidant Activity of Boletus edulis, Imleria badia, Leccinum scabrum in the Context of Environmental Conditions and Heavy Metals Bioaccumulation
by Zofia Sotek, Katarzyna Malinowska, Małgorzata Stasińska and Ireneusz Ochmian
Molecules 2025, 30(15), 3277; https://doi.org/10.3390/molecules30153277 - 5 Aug 2025
Abstract
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria [...] Read more.
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria badia, and Leccinum scabrum collected from two forested regions of north-western Poland differing in anthropogenic influence and soil characteristics. The analysis encompassed structural polysaccharides (β- and α-glucans, chitin), carotenoids, L-ascorbic acid, phenolic and organic acids. B. edulis exhibited the highest β-glucan and lycopene contents, but also the greatest cadmium accumulation. I. badia was distinguished by elevated ascorbic and citric acid levels and the strongest DPPH radical scavenging activity, while L. scabrum showed the highest ABTS and FRAP antioxidant capacities and accumulated quinic acid and catechin. Principal component analysis indicated strong correlations between antioxidant activity and phenolic acids, while cadmium levels were inversely associated with antioxidant potential and positively correlated with chitin. Although all metal concentrations remained within EU food safety limits, B. edulis showed consistent cadmium bioaccumulation. From a practical perspective, the results highlight the importance of species selection and sourcing location when considering wild mushrooms for consumption or processing, particularly in the context of nutritional value and contaminant load. Importantly, regular or excessive consumption of B. edulis may result in exceeding the tolerable weekly intake (TWI) levels for cadmium and nickel, which warrants particular attention from a food safety perspective. These findings underscore the influence of species-specific traits and environmental conditions on mushroom biochemical profiles and support their potential as functional foods, provided that metal contents are adequately monitored. Full article
Show Figures

Figure 1

21 pages, 22173 KiB  
Article
Nature Nano-Barrier: HPMC/MD-Based Lactobacillus plantarum Pickering Emulsion to Extend Cherry Tomato Shelf Life
by Youwei Yu, Tian Li, Shengwang Li, Silong Jia, Xinyu Yang, Yaxuan Cui, Hui Ma, Shuaishuai Yan and Shaoying Zhang
Foods 2025, 14(15), 2729; https://doi.org/10.3390/foods14152729 - 5 Aug 2025
Abstract
To improve the postharvest preservation of cherry tomatoes and combat pathogenic, both bacterial and fungal contamination (particularly Alternaria alternata), a novel biodegradable coating was developed based on a water-in-water (W/W) Pickering emulsion system. The emulsion was stabilized by L. plantarum (Lactobacillus [...] Read more.
To improve the postharvest preservation of cherry tomatoes and combat pathogenic, both bacterial and fungal contamination (particularly Alternaria alternata), a novel biodegradable coating was developed based on a water-in-water (W/W) Pickering emulsion system. The emulsion was stabilized by L. plantarum (Lactobacillus plantarum), with maltodextrin (MD) as the dispersed phase and hydroxypropyl methylcellulose (HPMC) as the continuous phase. Characterization of emulsions at varying concentrations revealed that the optimized W/W-PL^8 film exhibited superior stability, smooth morphology, and low water vapor permeability (WVP = 220.437 g/(m2·24 h)), making it a promising candidate for fruit and vegetable preservation. Furthermore, the coating demonstrated strong antioxidant activity, with scavenging rates of 58.99% (ABTS) and 94.23% (DPPH), along with potent antimicrobial effects, showing inhibition rates of 12.8% against Escherichia coli and 23.7% against Staphylococcus aureus. Applied to cherry tomatoes, the W/W-PL^8 coating significantly reduced respiration rates, minimized decay incidence, and maintained nutritional quality during storage. Remarkably, the coating successfully controlled Alternaria alternata contamination, enhancing the storage duration of cherry tomatoes. These findings highlight the potential of W/W-PL^8 as an eco-friendly and functional packaging material for fresh produce preservation. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

16 pages, 2073 KiB  
Article
Physiological Mechanisms of the Enhanced UV-B Radiation Triggering Plant-Specific Peroxidase-Mediated Antioxidant Defences
by Yijia Gao, Ling Wei, Chenyu Jiang, Shaopu Shi, Jiabing Jiao, Hassam Tahir, Minjie Qian and Kaibing Zhou
Antioxidants 2025, 14(8), 957; https://doi.org/10.3390/antiox14080957 (registering DOI) - 4 Aug 2025
Abstract
In this study, an artificially simulated enhanced UV-B radiation treatment of 96 kJ/m2·d−1 was applied with natural sunlight as the control. By observing changes in biological tissue damage, peroxidase (POD) enzyme activity, and hormone content, combined with transcriptome analysis and [...] Read more.
In this study, an artificially simulated enhanced UV-B radiation treatment of 96 kJ/m2·d−1 was applied with natural sunlight as the control. By observing changes in biological tissue damage, peroxidase (POD) enzyme activity, and hormone content, combined with transcriptome analysis and quantitative fluorescence PCR validation, this study preliminarily elucidated the physiological mechanisms of plant-specific peroxidase (POD) in responding to enhanced UV-B radiation stress. Enhanced UV-B treatment significantly inhibited biological tissue growth, particularly during the rapid growth stage. At this stage, the treatment exhibited higher malondialdehyde (MDA) content, indicating increased oxidative stress due to the accumulation of reactive oxygen species (ROS). Despite the inhibition in growth, the treatment showed improvements in the accumulation of organic nutrients as well as the contents of abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA). Additionally, an increase in POD activity and lignin content was observed in the treatment, especially during the middle period of the rapid growth period. Transcriptome analysis revealed that two POD multigene family members, LOC123198833 and LOC123225298, were significantly upregulated under enhanced UV-B radiation, which was further validated through qPCR. In general, enhanced UV-B radiation triggered a defence response in biological tissue by upregulating POD genes, which can effectively help to scavenge excess ROS. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant Stress and Plant Physiology)
Show Figures

Figure 1

16 pages, 1313 KiB  
Article
Mycorrhizas Promote Total Flavonoid Levels in Trifoliate Orange by Accelerating the Flavonoid Biosynthetic Pathway to Reduce Oxidative Damage Under Drought
by Lei Liu and Hong-Na Mu
Horticulturae 2025, 11(8), 910; https://doi.org/10.3390/horticulturae11080910 (registering DOI) - 4 Aug 2025
Abstract
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis [...] Read more.
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis mosseae or not, and subjected to well-watered (70–75% of field maximum water-holding capacity) or drought stress (50–55% field maximum water-holding capacity) conditions for 10 weeks. Plant growth performance, photosynthetic physiology, leaf flavonoid content and their antioxidant capacity, reactive oxygen species levels, and activities and gene expression of key flavonoid biosynthesis enzymes were analyzed. Although drought stress significantly reduced root colonization and soil hyphal length, inoculation with F. mosseae consistently enhanced the biomass of leaves, stems, and roots, as well as root surface area and diameter, irrespective of soil moisture. Despite drought suppressing photosynthesis in mycorrhizal plants, F. mosseae substantially improved photosynthetic capacity (measured via gas exchange) and optimized photochemical efficiency (assessed by chlorophyll fluorescence) while reducing non-photochemical quenching (heat dissipation). Inoculation with F. mosseae elevated the total flavonoid content in leaves by 46.67% (well-watered) and 14.04% (drought), accompanied by significantly enhanced activities of key synthases such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), 4-coumarate:coA ligase (4CL), and cinnamate 4-hydroxylase (C4H), with increases ranging from 16.90 to 117.42% under drought. Quantitative real-time PCR revealed that both mycorrhization and drought upregulated the expression of PtPAL1, PtCHI, and Pt4CL genes, with soil moisture critically modulating mycorrhizal regulatory effects. In vitro assays showed that flavonoid extracts scavenged radicals at rates of 30.07–41.60% in hydroxyl radical (•OH), 71.89–78.06% in superoxide radical anion (O2•−), and 49.97–74.75% in 2,2-diphenyl-1-picrylhydrazyl (DPPH). Mycorrhizal symbiosis enhanced the antioxidant capacity of flavonoids, resulting in higher scavenging rates of •OH (19.07%), O2•− (5.00%), and DPPH (31.81%) under drought. Inoculated plants displayed reduced hydrogen peroxide (19.77%), O2•− (23.90%), and malondialdehyde (17.36%) levels. This study concludes that mycorrhizae promote the level of total flavonoids in trifoliate orange by accelerating the flavonoid biosynthesis pathway, hence reducing oxidative damage under drought. Full article
Show Figures

Figure 1

8 pages, 2685 KiB  
Proceeding Paper
Dye Decolorization Under Visible Light Irradiation Using Bismuth Subcarbonate
by Kentaro Yamauchi, Mai Furukawa, Ikki Tateishi, Hideyuki Katsumata and Satoshi Kaneco
Chem. Proc. 2025, 17(1), 5; https://doi.org/10.3390/chemproc2025017005 - 4 Aug 2025
Viewed by 17
Abstract
Commercially available bismuth subcarbonate (Bi2O2CO3) was treated with nitric acid and the surfactant cetyltrimethylammonium bromide. The treated catalysts exhibited enhanced photocatalytic activity compared to pure Bi2O2CO3 in the decolorization of rhodamine B [...] Read more.
Commercially available bismuth subcarbonate (Bi2O2CO3) was treated with nitric acid and the surfactant cetyltrimethylammonium bromide. The treated catalysts exhibited enhanced photocatalytic activity compared to pure Bi2O2CO3 in the decolorization of rhodamine B (RhB) under visible light irradiation. The absorbance at 554 nm gradually decreased over time and disappeared completely within 80 min. The crystal structure, morphology, and optical properties of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The improved photocatalytic activity of the treated catalysts was attributed to partial carbonate removal and the formation of Bi5+ species. Scavenger experiments indicated that superoxide radicals (·O2) and photogenerated holes (h+) played significant roles in the photocatalytic decolorization of RhB. Full article
Show Figures

Figure 1

14 pages, 2597 KiB  
Article
Chemical and Isotopic Investigation of Abiotic Oxidation of Lactate Substrate in the Presence of Varied Electron Acceptors and Under Circumneutral Anaerobic Conditions
by Tsigabu A. Gebrehiwet and R. V. Krishnamurthy
Water 2025, 17(15), 2308; https://doi.org/10.3390/w17152308 - 3 Aug 2025
Viewed by 210
Abstract
Abiotic processes have ramifications in wastewater treatment, in situ degradation of organic matter, and cycling of nutrients in wetland ecosystems. Experiments were conducted to investigate abiotic oxidation of organic compounds (lactate) as a function of electron acceptors (ferric citrate and hydrous ferric oxide [...] Read more.
Abiotic processes have ramifications in wastewater treatment, in situ degradation of organic matter, and cycling of nutrients in wetland ecosystems. Experiments were conducted to investigate abiotic oxidation of organic compounds (lactate) as a function of electron acceptors (ferric citrate and hydrous ferric oxide (HFO), media composition, and pH under anaerobic conditions, using sodium bicarbonate as the buffering agent. Dissolved inorganic carbon (DIC) was used as a proxy for the oxidation of substrates. HFO media generated more DIC compared to ferric citrate containing media. Light and pH had major roles in the oxidation of lactate in the presence of ferric iron. Under dark conditions in the presence or absence of Fe(III), the DIC produced was low in all pH conditions. Inhibition of DIC production was also observed upon photo exposure when Fe (III) was absent. Isotopically, the system showed initial mixing between the bicarbonate and the carbon dioxide produced from oxidation later being dominated by carbon isotope value of lactate used. These redox conditions align with previous studies suggesting cleavage of organic compounds by hydroxyl radicals. The slower redox processes observed here, compared to previous studies, could be due to the scavenging effect of chloride ion on the hydroxyl radical. Full article
Show Figures

Figure 1

26 pages, 2221 KiB  
Article
Effects of ε-Poly-L-Lysine/Chitosan Composite Coating on the Storage Quality, Reactive Oxygen Species Metabolism, and Membrane Lipid Metabolism of Tremella fuciformis
by Junzheng Sun, Yingying Wei, Longxiang Li, Mengjie Yang, Yusha Liu, Qiting Li, Shaoxiong Zhou, Chunmei Lai, Junchen Chen and Pufu Lai
Int. J. Mol. Sci. 2025, 26(15), 7497; https://doi.org/10.3390/ijms26157497 - 3 Aug 2025
Viewed by 111
Abstract
This study aimed to investigate the efficacy of a composite coating composed of 150 mg/L ε-Poly-L-lysine (ε-PL) and 5 g/L chitosan (CTS) in extending the shelf life and maintaining the postharvest quality of fresh Tremella fuciformis. Freshly harvested T. fuciformis were treated [...] Read more.
This study aimed to investigate the efficacy of a composite coating composed of 150 mg/L ε-Poly-L-lysine (ε-PL) and 5 g/L chitosan (CTS) in extending the shelf life and maintaining the postharvest quality of fresh Tremella fuciformis. Freshly harvested T. fuciformis were treated by surface spraying, with distilled water serving as the control. The effects of the coating on storage quality, physicochemical properties, reactive oxygen species (ROS) metabolism, and membrane lipid metabolism were evaluated during storage at (25 ± 1) °C. The results showed that the ε-PL/CTS composite coating significantly retarded quality deterioration, as evidenced by reduced weight loss, maintained whiteness and color, and higher retention of soluble sugars, soluble solids, and soluble proteins. The coating also effectively limited water migration and loss. Mechanistically, the coated T. fuciformis exhibited enhanced antioxidant capacity, characterized by increased superoxide anion (O2) resistance capacity, higher activities of antioxidant enzymes (SOD, CAT, APX), and elevated levels of non-enzymatic antioxidants (AsA, GSH). This led to a significant reduction in malondialdehyde (MDA) accumulation, alongside improved DPPH radical scavenging activity and reducing power. Furthermore, the ε-PL/CTS coating preserved cell membrane integrity by inhibiting the activities of lipid-degrading enzymes (lipase, LOX, PLD), maintaining higher levels of key phospholipids (phosphatidylinositol and phosphatidylcholine), delaying phosphatidic acid accumulation, and consequently reducing cell membrane permeability. In conclusion, the ε-PL/CTS composite coating effectively extends the shelf life and maintains the quality of postharvest T. fuciformis by modulating ROS metabolism and preserving membrane lipid homeostasis. This study provides a theoretical basis and a practical approach for the quality control of fresh T. fuciformis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

13 pages, 6042 KiB  
Article
Whey Protein–Quercetin–Gellan Gum Complexes Prepared Using pH-Shift Treatment: Structural and Functional Properties
by Na Guo, Xin Zhou, Ganghua Zhou, Yimeng Zhang, Guoqing Yu, Yangliu Liu, Beibei Li, Fangyan Zhang and Guilan Zhu
Foods 2025, 14(15), 2720; https://doi.org/10.3390/foods14152720 - 3 Aug 2025
Viewed by 179
Abstract
The objectives of this study were to prepare whey protein–quercetin–gellan gum conjugates using the pH-shift method and to evaluate the impacts of varying pH values and quercetin concentrations on the interaction mechanisms and functional characteristics of the complexes. Spectroscopic analyses (fluorescence, UV-vis, and [...] Read more.
The objectives of this study were to prepare whey protein–quercetin–gellan gum conjugates using the pH-shift method and to evaluate the impacts of varying pH values and quercetin concentrations on the interaction mechanisms and functional characteristics of the complexes. Spectroscopic analyses (fluorescence, UV-vis, and FT-IR) revealed that new complexes formed under alkaline conditions. Notably, an increasing quercetin concentration led to a reduction in complex particle size and an increase in the zeta potential value, with these effects being more pronounced under alkaline conditions. The particle size was 425.7 nm, and the zeta potential value was −30.00 mV at a quercetin addition concentration of 15 umol/g protein. Additionally, the complexes formed under alkaline conditions exhibited superior foaming capacity, emulsification properties, and significantly enhanced free radical scavenging activity. The complex’s DPPH and ABTS radical scavenging rates rose by 41.57% and 57.69%, respectively. This study provides theoretical foundations and practical insights for developing protein—polyphenol systems, offering significant implications for the application of quercetin functional foods and supplements in the food science and pharmaceutical industries. Full article
(This article belongs to the Special Issue Oil and Protein Engineering and Its Applications in Food Industry)
Show Figures

Figure 1

19 pages, 582 KiB  
Article
Xylitol Antioxidant Properties: A Potential Effect for Inflammation Reduction in Menopausal Women?—A Pilot Study
by Ilona Górna, Magdalena Kowalówka, Barbara Więckowska, Michalina Banaszak, Grzegorz Kosewski, Olivia Grządzielska, Juliusz Przysławski and Sławomira Drzymała-Czyż
Curr. Issues Mol. Biol. 2025, 47(8), 611; https://doi.org/10.3390/cimb47080611 - 2 Aug 2025
Viewed by 199
Abstract
Introduction: Oxidative stress is a key factor in the pathogenesis of many chronic diseases, especially in postmenopausal women. Xylitol, a sugar alcohol with potential antioxidant properties, may affect oxidative balance when used as a sugar substitute. Aim: This pilot study aimed to assess [...] Read more.
Introduction: Oxidative stress is a key factor in the pathogenesis of many chronic diseases, especially in postmenopausal women. Xylitol, a sugar alcohol with potential antioxidant properties, may affect oxidative balance when used as a sugar substitute. Aim: This pilot study aimed to assess the effect of replacing sucrose with xylitol on serum antioxidant capacity in postmenopausal women. Methods: This study included 34 women aged 50 to 65 years who successively consumed 5 g/d, 10 g/d, and 15 g/d of xylitol. The dietary intervention lasted a total of 6 weeks, with each phase covering a 2-week period. Diet was assessed twice based on a 7-day dietary interview (Diet 6.0, NIZP–PZH, Warsaw). The material for this study was venous blood. Antioxidant capacity was determined using the DPPH radical scavenging method and the ABTS cation radical scavenging method. Results: In both methods, a significant increase in serum antioxidant potential was observed after replacing sugar with xylitol (p < 0.0001). An increase in the ability to neutralize free radicals was observed in almost all women studied. Additional analysis of the effect of selected nutrients on the obtained effects of the nutritional intervention showed that the most significant effect could potentially be exerted by manganese, maltose, sucrose, and mercury, and the strongest positive correlation was exerted by vitamin A, retinol, and vitamin E. Although the values obtained in the constructed models were not statistically significant, the large effect indicates potentially significant relationships that could have a significant impact on serum antioxidant potential in the studied group of women. Conclusions: The results suggest a potential role of xylitol in enhancing antioxidant defense mechanisms in menopausal women. Although the sample size was relatively small, this study was powered at approximately 80% to detect large effects, supporting the reliability of the observed results. Nevertheless, given the pilot nature of this study, further research with larger cohorts is warranted to confirm these preliminary observations and to clarify the clinical significance of xylitol supplementation in populations exposed to oxidative stress. Full article
(This article belongs to the Special Issue Role of Natural Products in Inflammatory Diseases)
Show Figures

Graphical abstract

Back to TopTop