Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (443)

Search Parameters:
Keywords = NIR-fluorescence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
1 pages, 136 KB  
Correction
Correction: Yu et al. Application of NIR Fluorescent Materials in Imaging and Treatment of Tumors of Different Depths. Nanomaterials 2025, 15, 811
by Mengdi Yu, Xuan Liu, Shuqiong Wang, Ziyao Qin, Beibei Hu, Zhiwei Li and Shiguo Sun
Nanomaterials 2025, 15(19), 1535; https://doi.org/10.3390/nano15191535 - 9 Oct 2025
Viewed by 107
Abstract
In the original publication [...] Full article
16 pages, 13443 KB  
Article
NIR Indocyanine–White Light Overlay Visualization for Neuro-Oto-Vascular Preservation During Anterior Transpetrosal Approaches: A Technical Note
by Leonardo Tariciotti, Alejandra Rodas, Erion De Andrade, Juan Manuel Revuelta Barbero, Youssef M. Zohdy, Roberto Soriano, Jackson R. Vuncannon, Justin Maldonado, Samir Lohana, Francesco DiMeco, Tomas Garzon-Muvdi, Camilo Reyes, C. Arturo Solares and Gustavo Pradilla
J. Clin. Med. 2025, 14(19), 6954; https://doi.org/10.3390/jcm14196954 - 1 Oct 2025
Viewed by 272
Abstract
Objectives: Anterior petrosectomy is a challenging neurosurgical procedure requiring precise identification and preservation of multiple critical structures. This technical note explores the feasibility of using real-time near-infrared indocyanine green (NIR-ICG) fluorescence with white light overlay to enhance visualization of the petrous internal [...] Read more.
Objectives: Anterior petrosectomy is a challenging neurosurgical procedure requiring precise identification and preservation of multiple critical structures. This technical note explores the feasibility of using real-time near-infrared indocyanine green (NIR-ICG) fluorescence with white light overlay to enhance visualization of the petrous internal carotid artery (ICA) during transpetrosal drilling. We aimed to assess its utility for planning and performing modified Dolenc–Kawase drilling. Methods: We integrated NIR-ICG and white light overlay using a robotic microscope with simultaneous visualization capabilities. This technique was applied to improve neurovascular preservation and skull base landmark identification. Intraoperative video frames and images were captured during an anterior transpetrosal approach for a petroclival meningioma, with technical details, surgical time, and feedback documented. Results: Real-time NIR-ICG with white light overlay successfully identified the posterior genu, horizontal petrosal segment, anterior genu, and superior petrosal sinus. It facilitated precise localization of cochlear landmarks, enabling tailored drilling of the Dolenc–Kawase rhomboid according to patient anatomy and accommodating potential anatomical variants. Conclusions: This approach could enhance intraoperative safety and improve exposure, possibly reducing neurovascular risks without extending operative time. It may serve as a valuable adjunct for complex skull base surgeries. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Graphical abstract

16 pages, 4987 KB  
Article
Nitrogen Transformation Survival Strategies of Ammonia-Oxidizing Bacterium N.eA1 Under High Nitrite Stress
by Zhiyao Yan, Kai Li, Yuhang Liu, Zhijun Ren, Xueying Li and Haobin Yang
Sustainability 2025, 17(19), 8708; https://doi.org/10.3390/su17198708 - 27 Sep 2025
Viewed by 398
Abstract
Ammonia-oxidizing bacteria (AOB) are key to the nitrogen cycle, but their resistance to nitrite (NO2-N) accumulation is unclear. This study examined N.eA1, an AOB from the completely autotrophic nitrogen removal over nitrite (CANON) process, assessing its adaptive responses to [...] Read more.
Ammonia-oxidizing bacteria (AOB) are key to the nitrogen cycle, but their resistance to nitrite (NO2-N) accumulation is unclear. This study examined N.eA1, an AOB from the completely autotrophic nitrogen removal over nitrite (CANON) process, assessing its adaptive responses to NO2-N. The ammonia oxidation and N2O emission were evaluated at varying NO2-N levels, and 3D fluorescence, extracellular polymeric substances (EPS), and soluble microbial products (SMP) analysis were used to probe stress responses. Cellular respiration and key enzyme activities were measured, and proteomics was applied to study protein expression changes. Results showed that higher NO2-N levels boosted N2O production, inhibited nitrification, and stimulated denitrification in N.eA1. At 100 mg·L−1 NO2-N, EPS rose and SMP fell, with ammonia monooxygenase (AMO) suppressed and nitrite reductase (NIR) as well as nitric oxide reductase (NOR) enhanced. Gene expression analysis revealed decreased AMO, hydroxylamine oxidoreductase (HAO), and energy transport-related enzymes, but increased NIR and NOR genes. The downregulation of electron transport complex genes offered insights into molecular adaptation to nitrite stress of N.eA1, highlighting the interplay between metabolic and genetic responses, which is essential for developing sustainable and efficient nitrogen management strategies. Full article
(This article belongs to the Special Issue Sustainability and Advanced Research on Microbiology)
Show Figures

Figure 1

16 pages, 1046 KB  
Review
How Can Technology Improve Burn Wound Care: A Review of Wound Imaging Technologies and Their Application in Burns—UK Experience
by Nawras Farhan, Zakariya Hassan, Mohammad Al Mahdi Ali, Zaid Alqalaf, Roeya E. Rasul and Steven Jeffery
Diagnostics 2025, 15(17), 2277; https://doi.org/10.3390/diagnostics15172277 - 8 Sep 2025
Viewed by 805
Abstract
Burn wounds are complex injuries that require timely and accurate assessment to guide treatment decisions and improve healing outcomes. Traditional clinical evaluations are largely subjective, often leading to delays in intervention and increased risk of complications. Imaging technologies have emerged as valuable tools [...] Read more.
Burn wounds are complex injuries that require timely and accurate assessment to guide treatment decisions and improve healing outcomes. Traditional clinical evaluations are largely subjective, often leading to delays in intervention and increased risk of complications. Imaging technologies have emerged as valuable tools that enhance diagnostic accuracy and enable objective, real-time assessment of wound characteristics. This review aims to evaluate the range of imaging modalities currently applied in burn wound care and assess their clinical relevance, diagnostic accuracy, and cost-effectiveness. It explores how these technologies address key challenges in wound evaluation, particularly related to burn depth, perfusion status, bacterial burden, and healing potential. A comprehensive narrative review was conducted, drawing on peer-reviewed journal articles, NICE innovation briefings, and clinical trial data. The databases searched included PubMed, Ovid MEDLINE, and the Cochrane Library. Imaging modalities examined include Laser Doppler Imaging (LDI), Fluorescence Imaging (FI), Near-Infrared Spectroscopy (NIR), Hyperspectral Imaging, Spatial Frequency Domain Imaging (SFDI), and digital wound measurement systems. The clinical application and integration of these modalities in UK clinical practice were also explored. Each modality demonstrated unique clinical benefits. LDI was effective in assessing burn depth and perfusion, improving surgical planning, and reducing unnecessary procedures. FI, particularly the MolecuLight i:X device (MolecuLight Inc., Toronto, ON, Canada), accurately identified bacterial burden and guided targeted interventions. NIR and Hyperspectral Imaging provided insights into tissue oxygenation and viability, while SFDI enabled early detection of infection and vascular compromise. Digital measurement tools offered accurate, non-contact assessment and supported telemedicine use. NICE recognized both LDI and MolecuLight as valuable tools with the potential to improve outcomes and reduce healthcare costs. Imaging technologies significantly improve the precision and efficiency of burn wound care. Their ability to offer objective, non-invasive diagnostics enhances clinical decision-making. Future research should focus on broader validation and integration into clinical guidelines to ensure widespread adoption. Full article
(This article belongs to the Special Issue Diagnostics in the Emergency and Critical Care Medicine)
Show Figures

Figure 1

25 pages, 4977 KB  
Article
2-Styrylquinolines with Push-Pull Architectures as Sensors for β-Amyloid Aggregation with Theranostic Properties
by Marta Piquero, Álvaro Sarabia-Vallejo, Latoya Bote-Matías, Gonzalo León-Espinosa, Macarena Hernández-Arasti, Sagrario Martín-Aragón, Paloma Bermejo-Bescós, Ana I. Olives, Pilar López-Alvarado, M. Antonia Martín and J. Carlos Menéndez
Int. J. Mol. Sci. 2025, 26(17), 8270; https://doi.org/10.3390/ijms26178270 - 26 Aug 2025
Viewed by 646
Abstract
The design and synthesis of a small library of 2-styrylquinoline derivatives containing a push-pull system, aimed at displacing their fluorescence emission towards the NIR region, is described. We describe here their synthesis, fluorescent characterization and pharmacological evaluation against different amyloid proteins. Their study [...] Read more.
The design and synthesis of a small library of 2-styrylquinoline derivatives containing a push-pull system, aimed at displacing their fluorescence emission towards the NIR region, is described. We describe here their synthesis, fluorescent characterization and pharmacological evaluation against different amyloid proteins. Their study showed that these compounds are capable to change their spectroscopic properties upon protein interaction, resulting in changes in the absorption and emission wavelengths, together with increased fluorescence intensity. They also showed sensitivity to pH and environment polarity, exhibiting red shifts in lower polarity environments with regard to aqueous media. Inner charge transfer is observed and employed for detecting the interaction of these compounds with protein aggregates. The study of the alterations in the fluorescence intensity allows to calculate the dissociation constant values for the protein-sensor interaction. These spectroscopic results were the basis for the use of these compounds to visualize β-amyloid plates with selectivity over phosphorylated tau in samples of cerebral tissue from deceased Alzheimer patients under fluorescence microscopy, using immunofluorescence techniques. Pharmacological assays showed that the compounds inhibit the aggregation of the Aβ1–42 and AcPHF6 peptides, representing tau protein. They also showed neuroprotective activity following okadaic acid insult. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Graphical abstract

30 pages, 2129 KB  
Review
Fluorescence-Guided Surgery in Head and Neck Squamous Cell Carcinoma (HNSCC)
by Albrecht Blosse, Markus Pirlich, Andreas Dietz, Christin Möser, Katrin Arnold, Jessica Freitag, Thomas Neumuth, David M. Smith, Hans Kubitschke and Maximilian Gaenzle
Int. J. Transl. Med. 2025, 5(3), 40; https://doi.org/10.3390/ijtm5030040 - 22 Aug 2025
Viewed by 1741
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are the seventh most common form of cancer worldwide, typically characterized by high mortality and significant morbidity, including pain and speech and swallowing disorders. Complete tumor tissue resection, the common first line of therapy, remains a [...] Read more.
Head and neck squamous cell carcinomas (HNSCCs) are the seventh most common form of cancer worldwide, typically characterized by high mortality and significant morbidity, including pain and speech and swallowing disorders. Complete tumor tissue resection, the common first line of therapy, remains a surgical challenge with room for improvements. Because tumor cells express highly specific surface molecules serving as receptors for ligands, specific targeting ligands can be conjugated to fluorescent molecules in order to better visualize tumor borders. Targeted fluorescence-guided surgery (T-FGS) as well as tumor-targeted and near-infrared (NIR) fluorescence imaging are emerging techniques for real-time intraoperative cancer imaging. Targeting agents include nanodots or fluorophores, which have been conjugated to specific ligands like antibodies, peptides, or other synthetic moieties. This article surveys tumor-targeted ligands in recent and current preclinical studies and clinical trials related to HNSCC, highlighting common NIRF dyes used for molecular imaging and their physical properties, working concentrations, and associated risks. Smaller ligands, nanodots, dual-modality NIR dyes, and activatable agents can enhance tumor-targeting processes, resulting in faster, more penetrable, and clearer imaging, which could lead to improved clinical applications and better tumor removal rates in the future. Full article
Show Figures

Figure 1

19 pages, 1779 KB  
Review
Current and Emerging Fluorescence-Guided Techniques in Glioma to Enhance Resection
by Trang T. T. Nguyen, Hayk Mnatsakanyan, Eunhee Yi and Christian E. Badr
Cancers 2025, 17(16), 2702; https://doi.org/10.3390/cancers17162702 - 19 Aug 2025
Viewed by 938
Abstract
Maximal safe surgical resection remains a critical component of glioblastoma (GBM) management, improving both survival and quality of life. However, complete tumor removal is hindered by the infiltrative nature of GBM and its proximity to eloquent brain regions. Fluorescence-guided surgery (FGS) has emerged [...] Read more.
Maximal safe surgical resection remains a critical component of glioblastoma (GBM) management, improving both survival and quality of life. However, complete tumor removal is hindered by the infiltrative nature of GBM and its proximity to eloquent brain regions. Fluorescence-guided surgery (FGS) has emerged as a valuable tool to enhance intraoperative tumor visualization and optimize resection outcomes. Currently used fluorophores such as 5-aminolevulinic acid (5-ALA), fluorescein sodium (FS), and indocyanine green (ICG) have distinct advantages but are limited by suboptimal specificity, shallow tissue penetration, and technical constraints. 5-ALA and SF often yield unreliable signals in low-grade tumors or infiltrative regions and also pose challenges such as phototoxicity and poor depth resolution. In contrast, near-infrared (NIR) fluorescence imaging represents a promising next-generation approach, providing superior tissue penetration, reduced autofluorescence, and real-time delineation of tumor margins. This review explores the mechanisms, clinical applications, and limitations of currently approved FGS agents and highlights future directions in image-guided neurosurgery. Full article
(This article belongs to the Special Issue Research on Fluorescence-Guided Surgery in Cancer Treatment)
Show Figures

Figure 1

22 pages, 5884 KB  
Article
Clinical Integration of NIR-II Fluorescence Imaging for Cancer Surgery: A Translational Evaluation of Preclinical and Intraoperative Systems
by Ritesh K. Isuri, Justin Williams, David Rioux, Paul Dorval, Wendy Chung, Pierre-Alix Dancer and Edward J. Delikatny
Cancers 2025, 17(16), 2676; https://doi.org/10.3390/cancers17162676 - 17 Aug 2025
Viewed by 957
Abstract
Background/Objectives: Back table fluorescence imaging performed on freshly excised tissue specimens represents a critical step in fluorescence-guided surgery, enabling rapid assessment of tumor margins before final pathology. While most preclinical NIR-II imaging platforms, such as the IR VIVO (Photon, etc.), offer high-resolution [...] Read more.
Background/Objectives: Back table fluorescence imaging performed on freshly excised tissue specimens represents a critical step in fluorescence-guided surgery, enabling rapid assessment of tumor margins before final pathology. While most preclinical NIR-II imaging platforms, such as the IR VIVO (Photon, etc.), offer high-resolution and depth-sensitive imaging under controlled, enclosed conditions, they are not designed for intraoperative or point-of-care use. This study compares the IR VIVO with the LightIR system, a more compact and clinically adaptable imaging platform using the same Alizé 1.7 InGaAs detector, to evaluate whether the LightIR can offer comparable performance for back table NIR-II imaging under ambient light. Methods: Standardized QUEL phantoms containing indocyanine green (ICG) and custom agar-based tissue-mimicking phantoms loaded with IR-1048 were imaged on both systems. Imaging sensitivity, spatial resolution, and depth penetration were quantitatively assessed. LightIR was operated in pulse-mode under ambient lighting, mimicking back table or intraoperative use, while IR VIVO was operated in a fully enclosed configuration. Results: The IR VIVO system achieved high spatial resolution (~125 µm) and detected ICG concentrations as low as 30 nM in NIR-I and 300 nM in NIR-II. The LightIR system, though requiring longer exposure times, successfully resolved features down to ~250 µm and detected ICG to depths ≥4 mm. Importantly, the LightIR maintained robust NIR-II contrast under ambient lighting, aided by real-time background subtraction, and enabled clear visualization of subsurface IR-1048 targets in unshielded phantom setups, conditions relevant to back table workflows. Conclusions: LightIR offers performance comparable to the IR VIVO in terms of depth penetration and spatial resolution, while also enabling open-field NIR-II imaging without the need for a blackout enclosure. These features position the LightIR as a practical alternative for rapid, high-contrast fluorescence assessment during back table imaging. The availability of such clinical-grade systems may catalyze the development of new NIR-II fluorophores tailored for real-time surgical applications. Full article
(This article belongs to the Special Issue Application of Fluorescence Imaging in Cancer)
Show Figures

Graphical abstract

25 pages, 5899 KB  
Review
Non-Invasive Medical Imaging in the Evaluation of Composite Scaffolds in Tissue Engineering: Methods, Challenges, and Future Directions
by Samira Farjaminejad, Rosana Farjaminejad, Pedram Sotoudehbagha and Mehdi Razavi
J. Compos. Sci. 2025, 9(8), 400; https://doi.org/10.3390/jcs9080400 - 1 Aug 2025
Viewed by 1174
Abstract
Tissue-engineered scaffolds, particularly composite scaffolds composed of polymers combined with ceramics, bioactive glasses, or nanomaterials, play a vital role in regenerative medicine by providing structural and biological support for tissue repair. As scaffold designs grow increasingly complex, the need for non-invasive imaging modalities [...] Read more.
Tissue-engineered scaffolds, particularly composite scaffolds composed of polymers combined with ceramics, bioactive glasses, or nanomaterials, play a vital role in regenerative medicine by providing structural and biological support for tissue repair. As scaffold designs grow increasingly complex, the need for non-invasive imaging modalities capable of monitoring scaffold integration, degradation, and tissue regeneration in real-time has become critical. This review summarizes current non-invasive imaging techniques used to evaluate tissue-engineered constructs, including optical methods such as near-infrared fluorescence imaging (NIR), optical coherence tomography (OCT), and photoacoustic imaging (PAI); magnetic resonance imaging (MRI); X-ray-based approaches like computed tomography (CT); and ultrasound-based modalities. It discusses the unique advantages and limitations of each modality. Finally, the review identifies major challenges—including limited imaging depth, resolution trade-offs, and regulatory hurdles—and proposes future directions to enhance translational readiness and clinical adoption of imaging-guided tissue engineering (TE). Emerging prospects such as multimodal platforms and artificial intelligence (AI) assisted image analysis hold promise for improving precision, scalability, and clinical relevance in scaffold monitoring. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

16 pages, 3508 KB  
Article
Stability of Carbon Quantum Dots for Potential Photothermal and Diagnostic Applications
by María Fernanda Amezaga Gonzalez, Abdiel Ramirez-Reyes, Monica Elvira Mendoza-Duarte, Alejandro Vega-Rios, Daniel Martinez-Ozuna, Claudia A. Rodriguez-Gonzalez, Santos-Adriana Martel-Estrada and Imelda Olivas-Armendariz
C 2025, 11(3), 56; https://doi.org/10.3390/c11030056 - 29 Jul 2025
Viewed by 1238
Abstract
Theranostic agents enable the simultaneous diagnosis and treatment of diseases, and they are particularly useful in fluorescent imaging and cancer therapies. In this study, carbon quantum dots were synthesized via a microwave-assisted method using citric acid and bovine serum albumin (BSA) as precursors. [...] Read more.
Theranostic agents enable the simultaneous diagnosis and treatment of diseases, and they are particularly useful in fluorescent imaging and cancer therapies. In this study, carbon quantum dots were synthesized via a microwave-assisted method using citric acid and bovine serum albumin (BSA) as precursors. The resulting CQDs exhibited spherical morphology, an average size of 4 nm, and an amorphous graphitic structure. FT-IR characterization revealed the presence of amide bonds and oxygenated functional groups. At the same time, optical analysis showed excitation at 320 nm and emission between 360 and 400 nm, with fluorescent stability maintained for one month. Furthermore, the CQDs demonstrated good thermal stability and photothermal efficiency, reaching temperatures above 41 °C within 15 min under NIR irradiation, with a mass loss of less than 1%. Their stability was evaluated in media with different pH levels, simulating physiological and tumor environments. While their behavior was affected under acidic conditions, their excellent photothermal conversion capacity and overall stability in triple-distilled water positioned them as promising candidates for theranostic applications in cancer, effectively combining diagnostic imaging and thermal therapy. Full article
(This article belongs to the Special Issue Carbon Nanohybrids for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

16 pages, 2268 KB  
Article
Epichloë Endophyte Alters Bacterial Nitrogen-Cycling Gene Abundance in the Rhizosphere Soil of Perennial Ryegrass
by Munire Maimaitiyiming, Yanxiang Huang, Letian Jia, Mofan Wu and Zhenjiang Chen
Biology 2025, 14(7), 879; https://doi.org/10.3390/biology14070879 - 18 Jul 2025
Viewed by 466
Abstract
Perennial ryegrass (Lolium perenne), an important forage and turfgrass species, can establish a mutualistic symbiosis with the fungal endophyte Epichloë festucae var. lolii. Although the physiological and ecological impacts of endophyte infection on ryegrass have been extensively investigated, the response of [...] Read more.
Perennial ryegrass (Lolium perenne), an important forage and turfgrass species, can establish a mutualistic symbiosis with the fungal endophyte Epichloë festucae var. lolii. Although the physiological and ecological impacts of endophyte infection on ryegrass have been extensively investigated, the response of the soil microbial community and nitrogen-cycling gene to this relationship has received much less attention. The present study emphasized abundance and diversity variation in the AOB-amoA, nirK and nosZ functional genes in the rhizosphere soil of the endophyte–ryegrass symbiosis following litter addition. We sampled four times: at T0 (prior to first litter addition), T1 (post 120 d of 1st litter addition), T2 (post 120 d of 2nd litter addition) and T3 (post 120 d of 3rd litter addition) times. Real-time fluorescence quantitative PCR (qPCR) and PCR amplification and sequencing were used to characterize the abundance and diversity of the AOB-amoA, nirK and nosZ genes in rhizosphere soils of endophyte-infected (E+) plants and endophyte-free (E−) plants. A significant enhancement of total Phosphorus (P), Soil Organic Carbon (SOC), Ammonium ion (NH4+) and Nitrate ion (NO3) contents in the rhizosphere soil was recorded in endophyte-infected plants at different sampling times compared to endophyte-free plants (p ≤ 0.05). The absolute abundance of the AOB-amoA gene at T0 and T1 times was higher, as was the absolute abundance of the nosZ gene at T0, T1 and T3 times in the E+ plant rhizophere soils relative to E− plant rhizosphere soils. A significant change in relative abundance of the AOB-amoA and nosZ genes in the host rhizophere soils of endophyte-infected plants at T1 and T3 times was observed. The experiment failed to show any significant alteration in abundance and diversity of the nirK gene, and diversity of the AOB-amoA and nosZ genes. Analysis of the abundance and diversity of the nirK gene indicated that changes in soil properties accounted for approximately 70.38% of the variation along the first axis and 16.69% along the second axis, and soil NH4+ (p = 0.002, 50.4%) and soil C/P ratio (p = 0.012, 15.8%) had a strong effect. The changes in community abundance and diversity of the AOB-amoA and nosZ genes were mainly related to soil pH, N/P ratio and NH4+ content. The results demonstrate that the existence of tripartite interactions among the foliar endophyte E. festucae var. Lolii, L. perenne and soil nitrogen-cycling gene has important implications for reducing soil losses on N. Full article
(This article belongs to the Collection Plant Growth-Promoting Bacteria: Mechanisms and Applications)
Show Figures

Figure 1

36 pages, 1925 KB  
Review
Deep Learning-Enhanced Spectroscopic Technologies for Food Quality Assessment: Convergence and Emerging Frontiers
by Zhichen Lun, Xiaohong Wu, Jiajun Dong and Bin Wu
Foods 2025, 14(13), 2350; https://doi.org/10.3390/foods14132350 - 2 Jul 2025
Cited by 4 | Viewed by 3206
Abstract
Nowadays, the development of the food industry and economic recovery have driven escalating consumer demands for high-quality, nutritious, and safe food products, and spectroscopic technologies are increasingly prominent as essential tools for food quality inspection. Concurrently, the rapid rise of artificial intelligence (AI) [...] Read more.
Nowadays, the development of the food industry and economic recovery have driven escalating consumer demands for high-quality, nutritious, and safe food products, and spectroscopic technologies are increasingly prominent as essential tools for food quality inspection. Concurrently, the rapid rise of artificial intelligence (AI) has created new opportunities for food quality detection. As a critical branch of AI, deep learning synergizes with spectroscopic technologies to enhance spectral data processing accuracy, enable real-time decision making, and address challenges from complex matrices and spectral noise. This review summarizes six cutting-edge nondestructive spectroscopic and imaging technologies, near-infrared/mid-infrared spectroscopy, Raman spectroscopy, fluorescence spectroscopy, hyperspectral imaging (spanning the UV, visible, and NIR regions, to simultaneously capture both spatial distribution and spectral signatures of sample constituents), terahertz spectroscopy, and nuclear magnetic resonance (NMR), along with their transformative applications. We systematically elucidate the fundamental principles and distinctive merits of each technological approach, with a particular focus on their deep learning-based integration with spectral fusion techniques and hybrid spectral-heterogeneous fusion methodologies. Our analysis reveals that the synergy between spectroscopic technologies and deep learning demonstrates unparalleled superiority in speed, precision, and non-invasiveness. Future research should prioritize three directions: multimodal integration of spectroscopic technologies, edge computing in portable devices, and AI-driven applications, ultimately establishing a high-precision and sustainable food quality inspection system spanning from production to consumption. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

12 pages, 1481 KB  
Article
Mucin4 (MUC4) Antibody Labeled with an NIR Dye Brightly Targets Pancreatic Cancer Liver Metastases and Peritoneal Carcinomatosis
by Sunidhi Jaiswal, Siamak Amirfakhri, Javier Bravo, Keita Kobayashi, Abhijit Aithal, Sumbal Talib, Kavita Mallya, Maneesh Jain, Aaron M. Mohs, Robert M. Hoffman, Surinder K. Batra and Michael Bouvet
Cancers 2025, 17(12), 2031; https://doi.org/10.3390/cancers17122031 - 18 Jun 2025
Viewed by 982
Abstract
Background/Objectives: Pancreatic cancer is the fourth leading cause of deaths related to cancer. It is a highly aggressive malignancy and often metastasizes quickly to other parts of the body and organs. The most effective cure is surgical resection, which also is limited by [...] Read more.
Background/Objectives: Pancreatic cancer is the fourth leading cause of deaths related to cancer. It is a highly aggressive malignancy and often metastasizes quickly to other parts of the body and organs. The most effective cure is surgical resection, which also is limited by tumor identification and clear tumor margin visualization. Previously, we used MUC4 antibodies labeled with IRDye800CW (anti-MUC4-IR800) to target primary human pancreatic cancer in orthotopic cell line mouse models. Methods: In the present study, we established a pancreatic cancer liver metastasis mouse model by implanting a tumor fragment in the liver and a peritoneal carcinomatosis mouse model by injecting pancreatic cancer cells interperitoneally. Once the tumors were established, anti-MUC4-IR800 was administered to the mice by tail vein injection. Laparotomy was performed and tumors were imaged under white-light and near-infrared (NIR) fluorescence with the Pearl Small Animal Imaging System. Results: NIR imaging after 72 h shows the bright targeting of pancreatic cancer metastasis in both mouse models with high tumor-to-background ratios. Conclusions: Anti-MUC4-IR800 was able to successfully target and brightly label metastatic pancreatic cancer as small as 1 mm. Future clinical applications of the results of the present study are discussed. Full article
(This article belongs to the Special Issue Enhancing Cancer Treatments through Fluorescence-Guided Surgery)
Show Figures

Figure 1

15 pages, 27538 KB  
Article
A Near-Infrared Fluorescent Probe for Specific Imaging of Lymph Node Metastases in Ovarian Cancer via Active Targeting of the Gonadotropin-Releasing Hormone Receptor
by Qiyu Liu, Jiaan Sun, Xiaobo Zhou, Mingxing Zhang, Tao Pu, Xiaolan Gao, Meng Zhang, Congjian Xu and Xiaoyan Zhang
Biomolecules 2025, 15(6), 868; https://doi.org/10.3390/biom15060868 - 14 Jun 2025
Viewed by 943
Abstract
Lymph node metastases are common in advanced ovarian cancer and are associated with poor prognosis. Accurate intraoperative identification of lymph node metastases remains a challenge in ovarian cancer surgery due to the lack of tumor-specific intraoperative imaging tools. Here, we developed a gonadotropin-releasing [...] Read more.
Lymph node metastases are common in advanced ovarian cancer and are associated with poor prognosis. Accurate intraoperative identification of lymph node metastases remains a challenge in ovarian cancer surgery due to the lack of tumor-specific intraoperative imaging tools. Here, we developed a gonadotropin-releasing hormone receptor (GnRHR)-targeted near-infrared (NIR) fluorescent probe, GnRHa-PEG-Rh760, through conjugation of a GnRH analog peptide with the Rh760 fluorophore and polyethylene glycol (PEG). A non-targeted probe (PEG-Rh760) served as control. In mouse models of subcutaneous xenografts, peritoneal and lymph node metastases derived from ovarian cancer cells, GnRHa-PEG-Rh760 showed superior tumor-specific accumulation. NIR fluorescence imaging revealed strong fluorescence signals localized to primary tumors, peritoneal lesions, and metastatic lymph nodes with no off-target signals in normal lymph nodes. The spatial co-localization between the NIR fluorescence of GnRHa-PEG-Rh760 and tumor-derived bioluminescence clearly confirmed the probe’s target specificity. GnRHa-PEG-Rh760 mainly accumulated in the tumor and liver and was gradually cleared at 96 h post-injection. The retention of fluorescence signals in normal ovary tissue further validated GnRHR-mediated binding of the probe. Notably, GnRHa-PEG-Rh760 exhibited excellent biocompatibility with no observed systemic toxicity as evidenced by hematologic and histopathologic analyses. These data demonstrate the potential of GnRHa-PEG-Rh760 as an intraoperative imaging agent, providing real-time fluorescence imaging guidance to optimize surgical precision. This study highlights the value of receptor-targeted molecular imaging probes in precision cancer surgery. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

10 pages, 968 KB  
Article
Computational-Chemistry-Based Prediction of Near-Infrared Rhodamine Fluorescence Peaks with Sub-12 nm Accuracy
by Qinlin Yuan, Hanwei Wang, Pingping Sun, Chaoyuan Zeng and Weijie Chi
Photochem 2025, 5(2), 15; https://doi.org/10.3390/photochem5020015 - 12 Jun 2025
Viewed by 853
Abstract
Near-infrared (NIR) rhodamine dyes are pivotal for bioimaging due to the minimal tissue interference. Yet, their rational design is hindered by unreliable computational methods for excited-state property prediction. We benchmarked the time-dependent density functional theory (TDDFT) with the linear-response (LR) and state-specific (SS) [...] Read more.
Near-infrared (NIR) rhodamine dyes are pivotal for bioimaging due to the minimal tissue interference. Yet, their rational design is hindered by unreliable computational methods for excited-state property prediction. We benchmarked the time-dependent density functional theory (TDDFT) with the linear-response (LR) and state-specific (SS) solvation models across five functionals (CAM-B3LYP, M06-2X, ωB97X-D, B3LYP, MN15) and optimized the ground/excited states for 42 rhodamine derivatives. A robust linear calibration framework was established by connecting the computed and experimental wavelengths, which was rigorously validated through six-fold cross-validation. The key metrics included the mean absolute error (MAE) and R2 to assess the prediction robustness. CAM-B3LYP combined with LR solvation achieved the highest accuracy (absorption: MAE = 6 nm, R2 = 0.94; emission: MAE = 12 nm, R2 = 0.72). By integrating the TDDFT with a calibrated linear-response solvation model, we achieved sub-12 nm accuracy in predicting the NIR fluorescence peaks. This framework enabled the rational design of nine novel rhodamine derivatives with emissions beyond 700 nm, offering a paradigm shift in bioimaging probe development. Full article
Show Figures

Graphical abstract

Back to TopTop