Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,709)

Search Parameters:
Keywords = Motility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1632 KiB  
Article
Meloidogyne incognita Significantly Alters the Cucumber Root Metabolome and Enriches Differential Accumulated Metabolites Regulating Nematode Chemotaxis and Infection
by Naicun Chen, Qianqian Sun, Zhiqun Chen and Xu Zhang
Horticulturae 2025, 11(8), 892; https://doi.org/10.3390/horticulturae11080892 (registering DOI) - 1 Aug 2025
Abstract
Root-knot nematode (Meloidogyne incognita) is a globally destructive plant-parasitic nematode that severely impedes the sustainable production of horticultural crops. Metabolic reprogramming in plant roots represents the host response to M. incognita infection that can also be exploited by the nematode to [...] Read more.
Root-knot nematode (Meloidogyne incognita) is a globally destructive plant-parasitic nematode that severely impedes the sustainable production of horticultural crops. Metabolic reprogramming in plant roots represents the host response to M. incognita infection that can also be exploited by the nematode to facilitate its parasitism. In this study, untargeted metabolomics was employed to analyze metabolic changes in cucumber roots following nematode inoculation, with the goal of identifying differentially accumulated metabolites that may influence M. incognita behavior. Metabolomic analysis revealed that M. incognita significantly altered the cucumber root metabolome, triggering an accumulation of lipids and organic acids and enriching biotic stress-related pathways such as alkaloid biosynthesis and linoleic acid metabolism. Among differentially accumulated metabolites, myristic acid and hexadecanal were selected for further study due to their potential roles in nematode inhibition. In vitro assays demonstrated that both metabolites suppressed egg hatching and reduced infectivity of M. incognita, while pot experiments indicated a correlation between their application and reduced root gall formation. Chemotaxis assays further revealed that both metabolites exerted repellent effects on the chemotactic migration of M. incognita J2 and suppressed the transcriptional expression of two motility-and feeding-related neuropeptides, Mi-flp-1 and Mi-flp-18. In conclusion, this study demonstrates the significant potential of differentially accumulated metabolites induced by M. incognita infection for nematode disease control, achieved by interfering with nematode chemotaxis and subsequent infection. This work also provides deeper insights into the metabolomic mechanisms underlying the cucumber-M. incognita interaction. Full article
(This article belongs to the Special Issue 10th Anniversary of Horticulturae—Recent Outcomes and Perspectives)
Show Figures

Figure 1

11 pages, 487 KiB  
Perspective
Constipation in Ulcerative Colitis: An Underestimated Problem
by Gabrio Bassotti, Sara Bologna and Elisabetta Antonelli
J. Clin. Med. 2025, 14(15), 5428; https://doi.org/10.3390/jcm14155428 (registering DOI) - 1 Aug 2025
Abstract
Ulcerative colitis is a chronic intestinal disorder that belongs to the category of inflammatory bowel diseases, and is usually characterized by the presence of bloody diarrhea and abdominal pain, due to an accelerated transit and intestinal sensibilization following inflammation of the colonic mucosa. [...] Read more.
Ulcerative colitis is a chronic intestinal disorder that belongs to the category of inflammatory bowel diseases, and is usually characterized by the presence of bloody diarrhea and abdominal pain, due to an accelerated transit and intestinal sensibilization following inflammation of the colonic mucosa. However, the literature reports that ulcerative colitis may sometimes feature fecal stasis with constipation. This apparent paradox may be partially explained by the motor abnormalities of the large bowel following inflammation, damage to the enteric innervation, and the onset of parietal fibrosis over time. Moreover, some anorectal abnormalities such pelvic floor dyssynergia may explain the symptoms of constipation reported in subsets of patients. Since these abnormalities may be responsible for diagnostic delays and non- or partial responses to therapy, it is important to recognize them as early as possible to avoid incorrect clinical and therapeutic approaches to these patients. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

19 pages, 9488 KiB  
Article
Proteus mirabilis from Captive Giant Pandas and Red Pandas Carries Diverse Antimicrobial Resistance Genes and Virulence Genes Associated with Mobile Genetic Elements
by Yizhou Yang, Yan Liu, Jiali Wang, Caiwu Li, Ruihu Wu, Jialiang Xin, Xue Yang, Haohong Zheng, Zhijun Zhong, Hualin Fu, Ziyao Zhou, Haifeng Liu and Guangneng Peng
Microorganisms 2025, 13(8), 1802; https://doi.org/10.3390/microorganisms13081802 (registering DOI) - 1 Aug 2025
Abstract
Proteus mirabilis is a zoonotic pathogen that poses a growing threat to both animal and human health due to rising antimicrobial resistance (AMR). It is widely found in animals, including China’s nationally protected captive giant and red pandas. This study isolated Proteus mirabilis [...] Read more.
Proteus mirabilis is a zoonotic pathogen that poses a growing threat to both animal and human health due to rising antimicrobial resistance (AMR). It is widely found in animals, including China’s nationally protected captive giant and red pandas. This study isolated Proteus mirabilis from panda feces to assess AMR and virulence traits, and used whole-genome sequencing (WGS) to evaluate the spread of resistance genes (ARGs) and virulence genes (VAGs). In this study, 37 isolates were obtained, 20 from red pandas and 17 from giant pandas. Multidrug-resistant (MDR) strains were present in both hosts. Giant panda isolates showed the highest resistance to ampicillin and cefazolin (58.8%), while red panda isolates were most resistant to trimethoprim/sulfamethoxazole (65%) and imipenem (55%). Giant panda-derived strains also exhibited stronger biofilm formation and swarming motility. WGS identified 31 ARGs and 73 VAGs, many linked to mobile genetic elements (MGEs) such as plasmids, integrons, and ICEs. In addition, we found frequent co-localization of drug resistance genes/VAGs with MGEs, indicating a high possibility of horizontal gene transfer (HGT). This study provides crucial insights into AMR and virulence risks in P. mirabilis from captive pandas, supporting targeted surveillance and control strategies. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and the Use of Antibiotics in Animals)
Show Figures

Figure 1

12 pages, 745 KiB  
Article
Effect of Recombinant NGF Encapsulated in Chitosan on Rabbit Sperm Traits and Main Metabolic Pathways
by Luigia Bosa, Simona Mattioli, Anna Maria Stabile, Desirée Bartolini, Alessia Tognoloni, Alessandra Pistilli, Mariangela Ruggirello, Mario Rende, Silvia Gimeno-Martos, Daniela Jordán-Rodríguez, Maria Arias-Álvarez, Pilar García Rebollar, Rosa M. García-García and Cesare Castellini
Biology 2025, 14(8), 974; https://doi.org/10.3390/biology14080974 (registering DOI) - 1 Aug 2025
Abstract
The aim of this study was to analyze how recombinant rabbit NGF (Nerve Growth Factor) encapsulated in chitosan (rrβNGFch) affects sperm viability, motility, capacitation, acrosome reaction (AR), kinetic traits, and apoptosis after 30 min and 2 h of storage. Specific intracellular signaling pathways [...] Read more.
The aim of this study was to analyze how recombinant rabbit NGF (Nerve Growth Factor) encapsulated in chitosan (rrβNGFch) affects sperm viability, motility, capacitation, acrosome reaction (AR), kinetic traits, and apoptosis after 30 min and 2 h of storage. Specific intracellular signaling pathways associated with either cell survival, such as protein kinase B (AKT) and extracellular signal-regulated kinases 1/2 (ERK1/2), or programmed cell death, such as c-Jun N-terminal kinase (JNK), were also analyzed. The results confirmed the effect of rrβNGFch on capacitation and AR, whereas a longer storage time (2 h) decreased all qualitative sperm traits. AKT and JNK did not show treatment-dependent activation and lacked a correlation with functional traits, as shown by ERK1/2. These findings suggest that rrβNGFch may promote the functional activation of sperm cells, particularly during early incubation. The increase in capacitation and AR was not linked to significant changes in pathways related to cell survival or death, indicating a specific action of the treatment. In contrast, prolonged storage negatively affected all sperm parameters. ERK1/2 activation correlated with capacitation, AR, and apoptosis, supporting its role as an NGF downstream mediator. Further studies should analyze other molecular mechanisms of sperm and the potential applications of NGF in assisted reproduction. Full article
(This article belongs to the Section Developmental and Reproductive Biology)
Show Figures

Graphical abstract

17 pages, 6016 KiB  
Article
Role of Kindlin-2 in Cutaneous Squamous Carcinoma Cell Migration and Proliferation: Implications for Tumour Progression
by Anamika Dutta, Michele Calder and Lina Dagnino
Int. J. Mol. Sci. 2025, 26(15), 7426; https://doi.org/10.3390/ijms26157426 (registering DOI) - 1 Aug 2025
Abstract
The Kindlin family of scaffold proteins plays key roles in integrin-mediated processes. Kindlin-1 and -2, encoded by the FERMT1 and FERMT2 genes, respectively, are expressed in the epidermis. Kindlin-1 plays protective roles against the development of cutaneous squamous cell carcinomas (cSCCs) in epidermal [...] Read more.
The Kindlin family of scaffold proteins plays key roles in integrin-mediated processes. Kindlin-1 and -2, encoded by the FERMT1 and FERMT2 genes, respectively, are expressed in the epidermis. Kindlin-1 plays protective roles against the development of cutaneous squamous cell carcinomas (cSCCs) in epidermal keratinocytes. However, the role of Kindlin-2 in transformed epidermal keratinocytes has remained virtually unexplored. In this study, we used siRNA approaches to generate Kindlin-2-depleted cells in three isogenic transformed keratinocyte lines. PM1, MET1, and MET4 cells model, respectively, a precancerous lesion, a primary cSCC, and a metastatic lesion of the latter. MET1 cells express both Kindlin-1 and -2. However, Kindlin-1 was not detectable in PM1 and MET4 cells. FERMT2 silencing in PM1 and MET4, but not in MET1 cells, reduced proliferation and the ability to adhere to culture surfaces and spreading. Furthermore, Kindlin-2-depleted PM1 and MET4, but not MET1 cells, exhibited decreased numbers of focal adhesions, as well as an altered F-actin and microtubule cytoskeletal organization. Significantly, FERMT2 silencing reduced the directional migration in all three cell types. These findings are consistent with the concept that, in the absence of other Kindlin orthologues, Kindlin-2 plays a prominent role in the modulation of the proliferation, spreading, focal adhesion assembly, and motility of transformed keratinocytes, as exemplified by PM1 and MET4 cells. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

10 pages, 738 KiB  
Article
Preliminary Pharmacokinetics and Appetite Stimulant Efficacy of Oral Mirtazapine in Guinea Pigs (Cavia porcellus)
by Jessica Ayers, Elizabeth Stietzle, Megan Ellis, Jeffrey Kim and Lonnie V. Kendall
Animals 2025, 15(15), 2256; https://doi.org/10.3390/ani15152256 - 31 Jul 2025
Abstract
Guinea pigs used in research may experience inappetence or decreased intestinal motility, which can significantly compromise their welfare. This study evaluates the use of mirtazapine on appetite and intestinal motility in guinea pigs. An initial pharmacokinetics and efficacy study was performed using healthy [...] Read more.
Guinea pigs used in research may experience inappetence or decreased intestinal motility, which can significantly compromise their welfare. This study evaluates the use of mirtazapine on appetite and intestinal motility in guinea pigs. An initial pharmacokinetics and efficacy study was performed using healthy male guinea pigs administered mirtazapine at 1.88, 3.75, or 7.5 mg orally once daily for four days (n = 6), in a crossover design where all animals received all doses. Body, feed, and fecal weights were taken daily for 4 days. There were no significant differences in weight gains, feed intake, or fecal output as compared to guinea pigs given saline only (n = 3). Blood was collected under anesthesia at 0, 0.5, 1, 2, 8, 12, and 24 h post-administration. Pharmacokinetic analysis completed after the first dose showed peak plasma levels at 30 min, then falling below the limit of detection between 8 h and 12 h at all doses. Based on the pharmacokinetic profile, a follow-up study was performed in another set of healthy male guinea pigs with every 8 h dosing at 1.88 mg orally for 5 days (n = 6). There was a significant increase in feed intake during mirtazapine administration as compared to baseline intake, but no significant difference in weight gains. This study shows that mirtazapine can be used as an appetite stimulant in guinea pigs but must be dosed at least every eight hours to be effective. Full article
(This article belongs to the Section Mammals)
Show Figures

Figure 1

22 pages, 602 KiB  
Review
Mitochondrial Regulation of Spermatozoa Function: Metabolism, Oxidative Stress and Therapeutic Insights
by Zhiqian Xu, Qi Yan, Ke Zhang, Ying Lei, Chen Zhou, Tuanhui Ren, Ning Gao, Fengyun Wen and Xiaoxia Li
Animals 2025, 15(15), 2246; https://doi.org/10.3390/ani15152246 - 31 Jul 2025
Viewed by 53
Abstract
Mitochondria are central to energy production and redox regulation in spermatozoa, supporting key functions such as progressive motility, capacitation, and the acrosome reaction. These processes are essential for successful fertilization and embryo development. However, species-specific differences exist in the reliance on oxidative phosphorylation [...] Read more.
Mitochondria are central to energy production and redox regulation in spermatozoa, supporting key functions such as progressive motility, capacitation, and the acrosome reaction. These processes are essential for successful fertilization and embryo development. However, species-specific differences exist in the reliance on oxidative phosphorylation versus glycolysis. Mitochondria also generate reactive oxygen species, which at physiological levels aid in sperm function but can cause oxidative stress and damage when overproduced. Mitochondrial dysfunction and excessive ROS can impair membrane potential, induce apoptosis, and damage nuclear and mitochondrial DNA, ultimately compromising sperm quality. Sperm mitochondrial DNA is highly susceptible to mutations and deletions, contributing to reduced motility and fertility. Targeted antioxidant strategies have emerged as promising therapeutic interventions to mitigate oxidative damage. This article provides a comprehensive overview of mitochondrial regulation in spermatozoa, the consequences of redox imbalance, and the potential of mitochondria-targeted antioxidants to improve sperm function and male fertility outcomes. The paper aims to deepen our understanding of mitochondrial roles in sperm physiology and contribute to the advancement of strategies for addressing male infertility. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Graphical abstract

21 pages, 6921 KiB  
Article
Transcriptomic Analysis Identifies Oxidative Stress-Related Hub Genes and Key Pathways in Sperm Maturation
by Ali Shakeri Abroudi, Hossein Azizi, Vyan A. Qadir, Melika Djamali, Marwa Fadhil Alsaffar and Thomas Skutella
Antioxidants 2025, 14(8), 936; https://doi.org/10.3390/antiox14080936 - 30 Jul 2025
Viewed by 220
Abstract
Background: Oxidative stress is a critical factor contributing to male infertility, impairing spermatogonial stem cells (SSCs) and disrupting normal spermatogenesis. This study aimed to isolate and characterize human SSCs and to investigate oxidative stress-related gene expression, protein interaction networks, and developmental trajectories involved [...] Read more.
Background: Oxidative stress is a critical factor contributing to male infertility, impairing spermatogonial stem cells (SSCs) and disrupting normal spermatogenesis. This study aimed to isolate and characterize human SSCs and to investigate oxidative stress-related gene expression, protein interaction networks, and developmental trajectories involved in SSC function. Methods: SSCs were enriched from human orchiectomy samples using CD49f-based magnetic-activated cell sorting (MACS) and laminin-binding matrix selection. Enriched cultures were assessed through morphological criteria and immunocytochemistry using VASA and SSEA4. Transcriptomic profiling was performed using microarray and single-cell RNA sequencing (scRNA-seq) to identify oxidative stress-related genes. Bioinformatic analyses included STRING-based protein–protein interaction (PPI) networks, FunRich enrichment, weighted gene co-expression network analysis (WGCNA), and predictive modeling using machine learning algorithms. Results: The enriched SSC populations displayed characteristic morphology, positive germline marker expression, and minimal fibroblast contamination. Microarray analysis revealed six significantly upregulated oxidative stress-related genes in SSCs—including CYB5R3 and NDUFA10—and three downregulated genes, such as TXN and SQLE, compared to fibroblasts. PPI and functional enrichment analyses highlighted tightly clustered gene networks involved in mitochondrial function, redox balance, and spermatogenesis. scRNA-seq data further confirmed stage-specific expression of antioxidant genes during spermatogenic differentiation, particularly in late germ cell stages. Among the machine learning models tested, logistic regression demonstrated the highest predictive accuracy for antioxidant gene expression, with an area under the curve (AUC) of 0.741. Protein oxidation was implicated as a major mechanism of oxidative damage, affecting sperm motility, metabolism, and acrosome integrity. Conclusion: This study identifies key oxidative stress-related genes and pathways in human SSCs that may regulate spermatogenesis and impact sperm function. These findings offer potential targets for future functional validation and therapeutic interventions, including antioxidant-based strategies to improve male fertility outcomes. Full article
(This article belongs to the Special Issue Oxidative Stress and Male Reproductive Health)
Show Figures

Figure 1

33 pages, 2605 KiB  
Article
Phytochemical Profile, Vasodilatory and Biphasic Effects on Intestinal Motility, and Toxicological Evaluation of the Methanol and Dichloromethane Extracts from the Aerial Parts of Ipomoea purpurea Used in Traditional Mexican Medicine
by Valeria Sánchez-Hernández, Francisco J. Luna-Vázquez, María Antonieta Carbajo-Mata, César Ibarra-Alvarado, Alejandra Rojas-Molina, Beatriz Maruri-Aguilar, Pedro A. Vázquez-Landaverde and Isela Rojas-Molina
Pharmaceuticals 2025, 18(8), 1134; https://doi.org/10.3390/ph18081134 - 30 Jul 2025
Viewed by 243
Abstract
Background: Cardiovascular diseases, particularly hypertension, and gastrointestinal disorders represent major public health concerns in Mexico. Although a range of pharmacological treatments exists, their use is associated with adverse effects, highlighting the need for safer therapeutic alternatives. Species of the Ipomoea genus are widely [...] Read more.
Background: Cardiovascular diseases, particularly hypertension, and gastrointestinal disorders represent major public health concerns in Mexico. Although a range of pharmacological treatments exists, their use is associated with adverse effects, highlighting the need for safer therapeutic alternatives. Species of the Ipomoea genus are widely employed in Mexican traditional medicine (MTM) for their purgative, anti-inflammatory, analgesic, and sedative properties. Particularly, Ipomoea purpurea is traditionally used as a diuretic and purgative; its leaves and stems are applied topically for their anti-inflammatory and soothing effects. This study aimed to determine their phytochemical composition and to evaluate the associated vasodilatory activity, modulatory effects on intestinal smooth-muscle motility, and toxicological effects of the methanolic (ME-Ip) and dichloromethane (DE-Ip) extracts obtained from the aerial parts of I. purpurea. Methods: The phytochemical composition of the ME-Ip and DE-Ip extracts of I. purpurea was assessed using UPLC-QTOF-MS and GC-MS, respectively. For both extracts, the vasodilatory activity and effects on intestinal smooth muscle were investigated using ex vivo models incorporating isolated rat aorta and ileum, respectively, whereas acute toxicity was evaluated in vivo. Results: Phytochemical analysis revealed, for the first time, the presence of two glycosylated flavonoids within the Ipomoea genus; likewise, constituents with potential anti-inflammatory activity were detected. The identified compounds in I. purpurea extracts may contribute to the vasodilatory, biphasic, and purgative effects observed in this species. The EC50 values for the vasodilatory effects of the methanolic (ME-Ip) and dichloromethane (DE-Ip) extracts were 0.80 and 0.72 mg/mL, respectively. In the initial phase of the experiments on isolated ileal tissues, both extracts induced a spasmodic (contractile) effect on basal motility, with ME-Ip exhibiting higher potency (EC50 = 27.11 μg/mL) compared to DE-Ip (EC50 = 1765 μg/mL). In contrast, during the final phase of the experiments, both extracts demonstrated a spasmolytic effect, with EC50 values of 0.43 mg/mL for ME-Ip and 0.34 mg/mL for DE-Ip. In addition, both extracts exhibited low levels of acute toxicity. Conclusions: The phytochemical profile and the vasodilatory and biphasic effects of the I. purpurea extracts explain, in part, the use of I. purpurea in MTM. The absence of acute toxic effects constitutes a preliminary step in the toxicological safety assessment of I. purpurea extracts and demonstrates their potential for the development of phytopharmaceutic agents as adjuvants for the treatment of cardiovascular and gastrointestinal disorders. Full article
Show Figures

Graphical abstract

12 pages, 1176 KiB  
Article
Effect of Different Extenders on the Oxidative Status and Fertility of Sarda Ram Liquid Semen Stored at 15 °C
by Pasciu Valeria, Charbel Nassif, Maria Dattena, Sara Succu, Francesca Daniela Sotgiu, Antonello Cannas, Ignazio Cossu, Elena Baralla, Fabrizio Chessa, Fiammetta Berlinguer and Laura Mara
Antioxidants 2025, 14(8), 932; https://doi.org/10.3390/antiox14080932 - 30 Jul 2025
Viewed by 166
Abstract
Liquid storage is an important tool used to prolong fresh semen shelf-life while protecting spermatozoa from damage, conserving their overall functionality, and ensuring better fertility than frozen semen from sheep. The increased production of reactive oxygen species (ROS) during sperm storage leads to [...] Read more.
Liquid storage is an important tool used to prolong fresh semen shelf-life while protecting spermatozoa from damage, conserving their overall functionality, and ensuring better fertility than frozen semen from sheep. The increased production of reactive oxygen species (ROS) during sperm storage leads to a decline in sperm quality, particularly with regard to sperm nuclear DNA damage and mitochondrial membrane potential (MMP). This study evaluated the effect of storing Sarda ram semen at 15 °C for 7 h on its redox status, motility, morphology, acrosome integrity, ATP content, mitochondrial potential membrane, and in vivo fertility after artificial insemination. Two different extenders were compared: a lab-made skimmed milk (SM)-based extender and a commercial extender (OviXcell®, IMV-Technologies, France). Lower ROS levels in the SM (p < 0.001) indicated that its oxidative status was better maintained compared to the commercial extender (CE). Antioxidant defenses (total antioxidant capacity, TEAC; superoxide dismutase, SOD; total thiols) were higher in the SM (p < 0.01) than in the CE. SM also had higher MMP (p < 0.05), acrosome integrity (p < 0.05), ATP content (p < 0.01), and in vivo fertilizing capacity (p < 0.05) compared to the CE, which indicated higher semen quality. In conclusion, the SM extender, while maintaining a better oxidative/antioxidant balance, ensured higher semen quality after 7 h of storage at 15 °C in vitro compared to the CE. Full article
Show Figures

Figure 1

0 pages, 7715 KiB  
Article
Harnessing Nature’s Chemistry: Deciphering Olive Oil Phenolics for the Control of Invasive Breast Carcinoma
by Nehal A. Ahmed, Abu Bakar Siddique, Afsana Tajmim, Judy Ann King and Khalid A. El Sayed
Molecules 2025, 30(15), 3157; https://doi.org/10.3390/molecules30153157 - 28 Jul 2025
Viewed by 266
Abstract
Breast cancer (BC) is the most common malignancy and the second-leading cause of cancer-related mortalities in women. Epidemiological studies suggested the reduced BC incidence in Mediterranean populations due to the daily consumption of diets rich in extra-virgin olive oil (EVOO). EVOO secoiridoid phenolics [...] Read more.
Breast cancer (BC) is the most common malignancy and the second-leading cause of cancer-related mortalities in women. Epidemiological studies suggested the reduced BC incidence in Mediterranean populations due to the daily consumption of diets rich in extra-virgin olive oil (EVOO). EVOO secoiridoid phenolics are widely known for their positive outcomes on multiple cancers, including BC. The current study investigates the suppressive effects of individual and combined EVOO phenolics for BC progression and motility. Screening of a small library of EVOO phenolics at a single dose of 10 µM against the viability of the BC cell lines ZR-75-1 (luminal A) and MDA-MB-231 (triple negative BC, TNBC) identified oleocanthal (OC) and ligstroside aglycone (LA) as the most active hits. Screening of EVOO phenolics for BC cells migration inhibition identified OC, LA, and the EVOO lignans acetoxypinoresinol and pinoresinol as the most active hits. Combination studies of different olive phenolics showed that OC combined with LA had the best synergistic inhibitory effects against the TNBC MDA-MB-231 cells migration. A combination of 5 µM of each of OC and LA potently suppressed the migration and invasion of the MDA-MB-231 cells versus LA and OC individual therapies and vehicle control (VC). Animal studies using the ZR-75-1 BC cells orthotopic xenografting model in female nude mice showed significant tumor progression suppression by the combined OC-LA, 5 mg/kg each, ip, 3X/week treatments compared to individual LA and OC treatments and VC. The BC suppressive effects of the OC-LA combination were associated with the modulation of SMYD2–EZH2–STAT3 signaling pathway. A metastasis–clonogenicity animal study model using female nude mice subjected to tail vein injection of MDA-MB-231-Luc TNBC cells also revealed the effective synergy of the combined OC-LA, 5 mg/kg each, compared to their individual therapies and VC. Thus, EVOO cultivars rich in OC with optimal LA content can be useful nutraceuticals for invasive hormone-dependent BC and TNBC progression and metastasis. Full article
(This article belongs to the Special Issue Bioactive Molecules in Foods: From Sources to Functional Applications)
Show Figures

Graphical abstract

15 pages, 540 KiB  
Review
Achalasia and Gut Microbiota: Is Dysbiosis an Overlooked Factor in Postoperative Surgical Outcomes?
by Agostino Fernicola, Giuseppe Palomba, Armando Calogero, Antonella Sciarra, Annachiara Cavaliere, Felice Crocetto, Caterina Sagnelli, Antonio Alvigi, Raffaele Basile, Domenica Pignatelli, Andrea Paolillo, Federico Maria D’Alessio, Giacomo Benassai, Gennaro Quarto and Michele Santangelo
Surgeries 2025, 6(3), 63; https://doi.org/10.3390/surgeries6030063 - 28 Jul 2025
Viewed by 219
Abstract
Background: Esophageal achalasia is a rare motility disorder characterized by impaired lower esophageal sphincter (LES) relaxation and food stasis. Surgical interventions, including Heller myotomy with fundoplication or peroral endoscopic myotomy (POEM), effectively alleviate symptoms but induce significant anatomical and functional alterations. In [...] Read more.
Background: Esophageal achalasia is a rare motility disorder characterized by impaired lower esophageal sphincter (LES) relaxation and food stasis. Surgical interventions, including Heller myotomy with fundoplication or peroral endoscopic myotomy (POEM), effectively alleviate symptoms but induce significant anatomical and functional alterations. In various gastrointestinal surgeries, microbiota have been implicated in modulating clinical outcomes; however, their role in achalasia surgery remains unexplored. Methods: We performed a narrative literature search of various databases to identify studies exploring potential interactions between the gastroesophageal microbiota, achalasia pathophysiology, and surgical treatment, proposing clinical implications and future research avenues. Results: Chronic esophageal stasis in achalasia promotes local dysbiosis by facilitating aberrant bacterial colonization. Surgical restoration of esophageal motility and gastroesophageal transit induces substantial shifts in the microbial ecosystem. Analogous microbiota alterations following procedures such as fundoplication, gastrectomy, and bariatric surgery underscore the significant impact of mechanical modifications on microbial composition. Comprehensive microbiota profiling in patients with achalasia may enable the identification of dysbiotic phenotypes predisposed to complications, thereby providing personalized therapeutic interventions including probiotics, prebiotics, dietary modulation, or targeted antibiotic therapy. These insights hold promise for clinical benefits, including the mitigation of inflammation and infection, monitoring of surgical efficacy through microbial biomarkers, and optimization of postoperative nutritional strategies to reestablish microbial homeostasis, ultimately enhancing patient outcomes beyond conventional treatment paradigms. Conclusions: The gastroesophageal microbiota is a compelling mediator of surgical outcomes in achalasia. Future investigations integrating microbiological and inflammatory profiling are warranted to elucidate the functional role of the gastroesophageal microbiota and assess its potential as a biomarker and therapeutic target. Full article
Show Figures

Figure 1

17 pages, 5549 KiB  
Article
The Effects of Limonin, Myo-Inositol, and L-Proline on the Cryopreservation of Debao Boar Semen
by Qianhui Feng, Yanyan Yang, Bing Zhang, Wen Shi, Yizhen Fang, Chunrong Xu, Zhuxin Deng, Wanyou Feng and Deshun Shi
Animals 2025, 15(15), 2204; https://doi.org/10.3390/ani15152204 - 27 Jul 2025
Viewed by 254
Abstract
Semen cryopreservation is associated with sperm vulnerability to oxidative stress and ice crystal-induced damage, adversely affecting in vitro fertilization (IVF) success. This study aimed to investigate the effects of freezing diluent supplemented with antioxidant limonin (Lim), myo-inositol (MYO), and the ice crystal formation [...] Read more.
Semen cryopreservation is associated with sperm vulnerability to oxidative stress and ice crystal-induced damage, adversely affecting in vitro fertilization (IVF) success. This study aimed to investigate the effects of freezing diluent supplemented with antioxidant limonin (Lim), myo-inositol (MYO), and the ice crystal formation inhibitor L-proline (LP) through sperm motility, morphological integrity, and antioxidant capacity. The Lim (150 mM), MYO (90 mM), and LP (100 mM) significantly ameliorated the quality of post-thaw sperm in Debao boar, and combined treatment of these agents significantly enhanced sperm motility, structural integrity, and antioxidant capacity compared with individual agents (p < 0.05). Notably, the combined use of these agents reduced glycerol concentration in the freezing diluent from 3% to 2%. Meanwhile, the integrity of the sperm plasma membrane, acrosome membrane, and mitochondrial membrane potential was significantly improved (p < 0.05), and the result of IVF revealed the total cell count of the blastocysts was also greater in the 2% glycerol group (p < 0.05). In conclusion, the newly developed freezing diluent for semen, by adding Lim (150 mM), MYO (90 mM), and LP (100 mM), can enhance the quality of frozen–thawed Debao boar sperm and reduce the concentration of glycerol from 3% to 2% as high concentrations of glycerol can impair the quality of thawed sperm and affect in vitro fertilization outcomes. In conclusion, the improved dilution solution formulated demonstrated efficacy in enhancing the quality of porcine spermatozoa following cryopreservation and subsequent thawing. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

23 pages, 954 KiB  
Review
The Role of Cobalt Ions in Angiogenesis—A Review
by Wiktor Gregorowicz and Lukasz Pajchel
Int. J. Mol. Sci. 2025, 26(15), 7236; https://doi.org/10.3390/ijms26157236 - 26 Jul 2025
Viewed by 307
Abstract
Cobalt is an essential trace element involved in key biological processes. It serves most notably as a component of vitamin B12 (cobalamin) and a regulator of erythropoiesis. While cobalt deficiency can lead to disorders such as megaloblastic anemia, excess cobalt poses toxicological [...] Read more.
Cobalt is an essential trace element involved in key biological processes. It serves most notably as a component of vitamin B12 (cobalamin) and a regulator of erythropoiesis. While cobalt deficiency can lead to disorders such as megaloblastic anemia, excess cobalt poses toxicological risks to the thyroid, cardiovascular, and hematopoietic systems. In recent years, cobalt ions (Co2+) have gained attention for their ability to mimic hypoxia and promote angiogenesis. This represents a crucial mechanism for tissue regeneration. Cobalt mediates this effect mainly by stabilizing hypoxia-inducible factor 1α (HIF-1α) under normoxic conditions, thereby upregulating angiogenic genes, including VEGF, FGF, and EPO. Experimental studies—from cell culture to animal models—have demonstrated cobalt-induced enhancement of endothelial proliferation, migration, and microvascular formation. Emerging evidence also indicates that Co2+-stimulated macrophages secrete integrin-β1-rich exosomes. These exosomes enhance endothelial motility and tubulogenesis independently of VEGF. Furthermore, cobalt-modified biomaterials have been developed to deliver cobalt ions in a controlled manner. Examples include cobalt-doped β-tricalcium phosphate or bioactive glasses. These materials support both angiogenesis and osteogenesis.This review summarizes current findings on cobalt’s role in angiogenesis. The emphasis is on its potential in cobalt-based biomaterials for tissue engineering and regenerative medicine. Full article
Show Figures

Graphical abstract

11 pages, 769 KiB  
Article
Sperm Motility Is Modulated by F4-Neuroprostane via the Involvement of Ryanodine Receptors
by Cinzia Signorini, Elena Moretti, Laura Liguori, Caterina Marcucci, Thierry Durand, Jean-Marie Galano, Camille Oger and Giulia Collodel
Int. J. Mol. Sci. 2025, 26(15), 7231; https://doi.org/10.3390/ijms26157231 - 26 Jul 2025
Viewed by 202
Abstract
F4-Neuroprostanes (F4-NeuroPs), oxidative metabolites of docosahexaenoic acid, act as bioactive lipid mediators enhancing sperm motility and induce capacitation-like changes in vitro. Their biological action is proposed to involve sperm ion channels, in particular ryanodine receptors (RyRs), which regulate intracellular [...] Read more.
F4-Neuroprostanes (F4-NeuroPs), oxidative metabolites of docosahexaenoic acid, act as bioactive lipid mediators enhancing sperm motility and induce capacitation-like changes in vitro. Their biological action is proposed to involve sperm ion channels, in particular ryanodine receptors (RyRs), which regulate intracellular calcium homeostasis. We evaluated the effects of dantrolene, a RyR inhibitor, on motility and vitality of a selected spermatozoa at different concentrations (10, 30, 50, 100 μM). Then sperm motility, acrosome integrity, and RyR localization following co-incubation with dantrolene (D50 or D100 μM) and 4-/10-F4t-NeuroPs (7 ng) were investigated. Acrosomal status was assessed using Pisum sativum agglutinin (PSA) staining and RyR localization by immunofluorescence. D50 was identified as the minimum effective dose to induce significant reductions in sperm motility. F4-NeuroPs significantly increased rapid progressive motility versus controls. Co-incubation with F4-NeuroPs + D50 reduced rapid motility and increased in situ and circular movement. The acrosome staining appeared altered or absent to different percentages, and RyR localization was also seen in the midpiece. These findings suggested that F4-NeuroPs enhance sperm motility via RyR-mediated pathways, as confirmed by dantrolene inhibition. Accordingly, our results underscore the physiological relevance of RyRs in sperm function and suggest new insights into lipid-based mechanisms regulating sperm motility. Full article
Show Figures

Figure 1

Back to TopTop