Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (766)

Search Parameters:
Keywords = Mg2NiH4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5921 KiB  
Article
Adsorption Capacity, Reaction Kinetics and Thermodynamic Studies on Ni(II) Removal with GO@Fe3O4@Pluronic-F68 Nanocomposite
by Ali Çiçekçi, Fatih Sevim, Melike Sevim and Erbil Kavcı
Polymers 2025, 17(15), 2141; https://doi.org/10.3390/polym17152141 - 5 Aug 2025
Abstract
In recent years, industrial wastewater discharge containing heavy metals has increased significantly and has adversely affected both human health and the aquatic ecosystem. The increasing demand for metals in industry has prompted researchers to focus on developing effective and economical methods for removal [...] Read more.
In recent years, industrial wastewater discharge containing heavy metals has increased significantly and has adversely affected both human health and the aquatic ecosystem. The increasing demand for metals in industry has prompted researchers to focus on developing effective and economical methods for removal of these metals. In this study, the removal of Ni(II) from wastewater using the Graphene oxide@Fe3O4@Pluronic-F68 (GO@Fe3O4@Pluronic-F68) nano composite as an adsorbent was investigated. The nanocomposite was characterised using a series of analytical methods, including Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis. The effects of contact time, pH, adsorbent amount, and temperature parameters on adsorption were investigated. Various adsorption isotherm models were applied to interpret the equilibrium data in aqueous solutions; the compatibility of the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models with experimental data was examined. For a kinetic model consistent with experimental data, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion models were examined. The maximum adsorption capacity was calculated as 151.5 mg·g−1 in the Langmuir isotherm model. The most suitable isotherm and kinetic models were the Freundlich and pseudo-second-order kinetic models, respectively. These results demonstrate the potential of the GO@Fe3O4@Pluronic-F68 nanocomposite as an adsorbent offering a sustainable solution for Ni(II) removal. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 7363 KiB  
Article
Agronomic Evaluation of Compost Formulations Based on Mining Tailings and Microbial Mats from Geothermal Sources
by María Jesús Puy-Alquiza, Miren Yosune Miranda Puy, Raúl Miranda-Avilés, Pooja Vinod Kshirsagar and Cristina Daniela Moncada Sanchez
Recycling 2025, 10(4), 156; https://doi.org/10.3390/recycling10040156 - 5 Aug 2025
Abstract
This study, conducted in Mexico, evaluates the agricultural potential of three compost formulations BFS1, BFS2, and BFS3 produced from mining tailings and thermophilic microbial mats and collected from geothermal environments. The physicochemical characterization included pH, electrical conductivity (EC), macronutrients (N, P, K, Ca, [...] Read more.
This study, conducted in Mexico, evaluates the agricultural potential of three compost formulations BFS1, BFS2, and BFS3 produced from mining tailings and thermophilic microbial mats and collected from geothermal environments. The physicochemical characterization included pH, electrical conductivity (EC), macronutrients (N, P, K, Ca, Mg, and S), micronutrients (Fe, Zn, B, Cu, Mn, Mo, and Ni), organic matter (OM), and the carbon-to-nitrogen (C/N) ratio. All composts exhibited neutral pH values (7.38–7.52), high OM content (38.5–48.4%), and optimal C/N ratios (10.5–13.9), indicating maturity and chemical stability. Nitrogen ranged from 19 to 21 kg·t−1, while potassium and calcium were present in concentrations beneficial for crop development. However, EC values (3.43–3.66 dS/m) and boron levels (>160 ppm) were moderately high, requiring caution in saline soils or with boron-sensitive crops. A semi-quantitative Compost Quality Index (CQI) ranked BFS3 highest due to elevated OM and potassium content, followed by BFS1. BFS2, while rich in nitrogen, scored lower due to excessive boron. One-way ANOVA revealed no significant difference in nitrogen (p > 0.05), but it did reveal significant differences in potassium (p < 0.01) and boron (p < 0.001) among formulations. These results confirm the potential of mining tailings—microbial mat composts are low-cost, nutrient-rich biofertilizers. They are suitable for field crops or as components in nursery substrates, particularly when EC and boron are managed through dilution. This study promotes the circular reuse of geothermal and industrial residues and contributes to sustainable soil restoration practices in mining-affected regions through innovative composting strategies. Full article
Show Figures

Figure 1

19 pages, 993 KiB  
Article
Antibacterial Properties of Submerged Cultivated Fomitopsis pinicola, Targeting Gram-Negative Pathogens, Including Borrelia burgdorferi
by Olga Bragina, Maria Kuhtinskaja, Vladimir Elisashvili, Mikheil Asatiani and Maria Kulp
Sci 2025, 7(3), 104; https://doi.org/10.3390/sci7030104 - 2 Aug 2025
Viewed by 119
Abstract
The rise in multidrug-resistant bacterial strains and persistent infections such as Lyme disease caused by Borrelia burgdorferi highlights the need for novel antimicrobial agents. The present study explores the antioxidant, antibacterial, and cytotoxic properties of extracts from submerged mycelial biomass of Fomitopsis pinicola [...] Read more.
The rise in multidrug-resistant bacterial strains and persistent infections such as Lyme disease caused by Borrelia burgdorferi highlights the need for novel antimicrobial agents. The present study explores the antioxidant, antibacterial, and cytotoxic properties of extracts from submerged mycelial biomass of Fomitopsis pinicola, cultivated in synthetic and lignocellulosic media. Four extracts were obtained using hot water and 80% ethanol. The provided analysis of extracts confirmed the presence of various bioactive compounds, including flavonoids, alkaloids, and polyphenols. All extracts showed dose-dependent antioxidant activity (IC50: 1.9–6.7 mg/mL). Antibacterial tests revealed that Klebsiella pneumoniae was most sensitive, with the L2 extract producing the largest inhibition zone (15.33 ± 0.47 mm), while the strongest bactericidal effect was observed against Acinetobacter baumannii (MBC as low as 0.5 mg/mL for L1). Notably, all extracts significantly reduced the viability of stationary-phase B. burgdorferi cells, with L2 reducing viability to 42 ± 2% at 5 mg/mL, and decreased biofilm mass, especially with S2. Cytotoxicity assays showed minimal effects on NIH 3T3 cells, with slight toxicity in HEK 293 cells for S2 and L1. These results suggest that F. pinicola extracts, particularly ethanolic L2 and S2, may offer promising natural antimicrobial and antioxidant agents for managing resistant infections. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

25 pages, 3387 KiB  
Article
Efficiency of Spirulina sp. in the Treatment of Model Wastewater Containing Ni(II) and Pb(II)
by Eleonora Sočo, Andżelika Domoń, Mostafa Azizi, Dariusz Pająk, Bogumił Cieniek, Magdalena M. Michel and Dorota Papciak
Materials 2025, 18(15), 3639; https://doi.org/10.3390/ma18153639 - 1 Aug 2025
Viewed by 290
Abstract
In this work, the biosorption potential of Spirulina sp. as an effective and eco-friendly biosorbent for the removal of Ni(II) and Pb(II) ions from aqueous solutions was investigated. Detailed characterization of the biosorbent was carried out, including surface morphology, chemical composition, particle size, [...] Read more.
In this work, the biosorption potential of Spirulina sp. as an effective and eco-friendly biosorbent for the removal of Ni(II) and Pb(II) ions from aqueous solutions was investigated. Detailed characterization of the biosorbent was carried out, including surface morphology, chemical composition, particle size, zeta potential, crystallinity, zero-point charge, and functional group analysis. Batch tests were performed to determine the kinetic constants and adsorption equilibrium of the studied ions. The adsorption behavior of Spirulina sp. was described using six adsorption isotherms. The best fit was obtained for the Redlich-Peterson and Langmuir isotherms, indicating that monolayer adsorption occurred. The maximum biosorption capacities for Ni(II) and Pb(II) were 20.8 mg·g−1 and 93.5 mg·g−1, respectively, using a biosorbent dose of 10 g·L−1, initial metal concentrations ranging from 50 to 5000 mg·L−1, at pH 6, 20 °C, and a contact time of 120 min. Low values of the mean free energy of adsorption (E) in the Dubinin–Radushkevich and Temkin model (0.3 and 0.1 kJ·mol−1 for Pb(II) and 0.35 and 0.23 kJ·mol−1 for Ni(II)) indicate the dominance of physical processes in the ion binding mechanism. The adsorption of Pb(II) ions was more effective than that of Ni(II) ions across the entire range of tested concentrations. At low initial concentrations, the removal of Pb(II) reached 94%, while for Ni(II) it was 80%. Full article
Show Figures

Graphical abstract

16 pages, 2902 KiB  
Article
Heavy Metal Accumulation and Potential Risk Assessment in a Soil–Plant System Treated with Carbonated Argon Oxygen Decarburization Slag
by Liangjin Zhang, Zihao Yang, Yuzhu Zhang, Bao Liu and Shuang Cai
Sustainability 2025, 17(15), 6979; https://doi.org/10.3390/su17156979 - 31 Jul 2025
Viewed by 279
Abstract
The high pH and heavy metal leaching of argon oxygen decarburization (AOD) slag limit its application in agriculture. Slag carbonation can aid in decreasing slag alkalinity and inhibit heavy metal release; the environmental safety of utilizing carbonated AOD slag (CAS) as a fertilizer [...] Read more.
The high pH and heavy metal leaching of argon oxygen decarburization (AOD) slag limit its application in agriculture. Slag carbonation can aid in decreasing slag alkalinity and inhibit heavy metal release; the environmental safety of utilizing carbonated AOD slag (CAS) as a fertilizer remains a topic of significant debate, however. In this work, pakchoi (Brassica chinensis L.) was planted in CAS-fertilized soil to investigate the accumulation and migration behavior of heavy metals in the soil–plant system and perform an associated risk assessment. Our results demonstrated that CAS addition increases Ca, Si, and Cr concentrations but decreases Mg and Fe concentrations in soil leachates. Low rates (0.25–1%) of CAS fertilization facilitate the growth of pakchoi, resulting in the absence of soil contamination and posing no threat to human health. At the optimal slag addition rate of 0.25%, the pakchoi leaf biomass, stem biomass, leaf area, and seedling height increased by 34.2%, 17.2%, 26.3%, and 8.7%, respectively. The accumulation of heavy metals results in diverging characteristics in pakchoi. Cr primarily accumulates in the roots; in comparison, Pb, Cd, Ni, and Hg preferentially accumulate in the leaves. The migration rate of the investigated heavy metals from the soil to pakchoi follows the order of Cr > Cd > Hg > Ni > Pb; in comparison, that from the roots to the leaves follows the order Cd > Ni > Hg > Cr > Pb. Appropriate utilization of CAS as a mineral fertilizer can aid in improving pakchoi yield, achieving sustainable economic benefits, and preventing environmental pollution. Full article
Show Figures

Figure 1

23 pages, 9108 KiB  
Article
COx-Free Hydrogen Production via CH4 Decomposition on Alkali-Incorporated (Mg, La, Ca, Li) Ni-Al Catalysts
by Morgana Rosset, Yan Resing Dias, Liliana Amaral Féris and Oscar William Perez-Lopez
Nanoenergy Adv. 2025, 5(3), 10; https://doi.org/10.3390/nanoenergyadv5030010 - 30 Jul 2025
Viewed by 174
Abstract
The catalytic decomposition of CH4 is a promising method for producing high-purity COx-free hydrogen. A Ni-Al-LDH catalyst synthesized via coprecipitation was modified with alkali metals (Mg, La, Ca, or Li) through reconstruction to enhance catalytic activity and resistance to deactivation [...] Read more.
The catalytic decomposition of CH4 is a promising method for producing high-purity COx-free hydrogen. A Ni-Al-LDH catalyst synthesized via coprecipitation was modified with alkali metals (Mg, La, Ca, or Li) through reconstruction to enhance catalytic activity and resistance to deactivation during catalytic methane decomposition (CMD). The catalysts were evaluated by two activation methods: H2 reduction and direct heating with CH4. The MgNA-R catalyst achieved the highest CH4 conversion (65%) at 600 °C when reduced with H2, attributed to a stronger Ni-Al interaction. Under CH4 activation, LaNA-C achieved a 55% conversion at the same temperature, associated with a smaller crystallite size and higher reducibility due to La incorporation. Although all catalysts deactivated due to carbon deposition and/or sintering, LaNA-C was the only sample that could resist deactivation for a longer period, as La appears to have a protective effect on the active phase. Post-reaction characterizations revealed the formation of graphitic and filamentous carbon. Raman spectroscopy exhibited a higher degree of graphitization and structural order in LaNA-C, whereas SEM showed a more uniform distribution of carbon filaments. TEM confirmed the presence of multi-walled carbon nanotubes with encapsulated Ni particles in La-promoted samples. These results demonstrate that La addition improves the catalytic performance under CH4 activation and carbon structure. This finding offers a practical advantage for CMD processes, as it reduces or eliminates the need to use hydrogen during catalyst activation. Full article
(This article belongs to the Special Issue Novel Energy Materials)
Show Figures

Graphical abstract

11 pages, 4704 KiB  
Article
The Effect of Low-ΣCSL Grain Boundary Proportion on Molten Salt-Induced Hot Corrosion Behavior in Nickel-Based Alloy Welds
by Tingxi Chai, Youjun Yu, Hongtong Xu, Jing Han and Liqin Yan
Coatings 2025, 15(8), 882; https://doi.org/10.3390/coatings15080882 - 28 Jul 2025
Viewed by 328
Abstract
To enhance the molten salt corrosion resistance of Ni200 alloy plasma arc welds, the welds were subjected to tensile deformation followed by heat treatment. The grain boundary character distribution (GBCD) was analyzed using electron backscatter diffraction (EBSD) in conjunction with orientation imaging microscopy [...] Read more.
To enhance the molten salt corrosion resistance of Ni200 alloy plasma arc welds, the welds were subjected to tensile deformation followed by heat treatment. The grain boundary character distribution (GBCD) was analyzed using electron backscatter diffraction (EBSD) in conjunction with orientation imaging microscopy (OIM). A constant-temperature corrosion test at 900 °C was conducted to evaluate the impact of GBCD on the corrosion resistance of the welds. Results demonstrated that after processing with 6% tensile deformation, and annealing at 950 °C for 30 min, the fraction of low-ΣCSL grain boundaries increased from 1.2% in the as-welded condition to 57.3%, and large grain clusters exhibiting Σ3n orientation relationships were formed. During the heat treatment, an increased number of recrystallization nucleation sites led to a reduction in average grain size from 323.35 μm to 171.38 μm. When exposed to a high-temperature environment of 75% Na2SO4-25% NaCl mixed molten salt, the corrosion behavior was characterized by intergranular attack, with oxidation and sulfidation reactions resulting in the formation of NiO and Ni3S2. The corrosion resistance of Grain boundary engineering (GBE)-treated samples was significantly superior to that of Non-GBE samples, with respective corrosion rates of 0.3397 mg/cm2·h and 0.8484 mg/cm2·h. These findings indicate that grain boundary engineering can effectively modulate the grain boundary character distribution in Ni200 alloy welds, thereby enhancing their resistance to molten salt corrosion. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

20 pages, 2411 KiB  
Article
Influencing Factors of Hexavalent Chromium Speciation Transformation in Soil from a Northern China Chromium Slag Site
by Shuai Zhu, Junru Chen, Yun Zhu, Baoke Zhang, Jing Jia, Meng Pan, Zhipeng Yang, Jianhua Cao and Yating Shen
Molecules 2025, 30(15), 3076; https://doi.org/10.3390/molecules30153076 - 23 Jul 2025
Viewed by 264
Abstract
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led [...] Read more.
Chromium slag sites pose severe environmental risks due to hexavalent chromium (Cr(VI)) contamination, characterized by high mobility and toxicity. This study focused on chromium-contaminated soil from a historical chromium slag site in North China, where long-term accumulation of chromate production residues has led to serious Cr(VI) pollution, with Cr(VI) accounting for 13–22% of total chromium and far exceeding national soil risk control standards. To elucidate Cr(VI) transformation mechanisms and elemental linkages, a combined approach of macro-scale condition experiments and micro-scale analysis was employed. Results showed that acidic conditions (pH < 7) significantly enhanced Cr(VI) reduction efficiency by promoting the conversion of CrO42− to HCrO4/Cr2O72−. Among reducing agents, FeSO4 exhibited the strongest effect (reduction efficiency >30%), followed by citric acid and fulvic acid. Temperature variations (−20 °C to 30 °C) had minimal impact on Cr(VI) transformation in the 45-day experiment, while soil moisture (20–25%) indirectly facilitated Cr(VI) reduction by enhancing the reduction of agent diffusion and microbial activity, though its effect was weaker than chemical interventions. Soil grain-size composition influenced Cr(VI) distribution unevenly: larger particles (>0.2 mm) in BC-35 and BC-36-4 acted as main Cr(VI) reservoirs due to accumulated Fe-Mn oxides, whereas BC-36-3 showed increased Cr(VI) in smaller particles (<0.074 mm). μ-XRF and correlation analysis revealed strong positive correlations between Cr and Ca, Fe, Mn, Ni (Pearson coefficient > 0.7, p < 0.01), attributed to adsorption–reduction coupling on iron-manganese oxide surfaces. In contrast, Cr showed weak correlations with Mg, Al, Si, and K. This study clarifies the complex factors governing Cr(VI) behavior in chromium slag soils, providing a scientific basis for remediation strategies such as pH adjustment (4–6) combined with FeSO4 addition to enhance Cr(VI) reduction efficiency. Full article
Show Figures

Graphical abstract

17 pages, 16101 KiB  
Article
A Poly(Acrylic Acid)-Based Hydrogel Crosslinked with Hydroxypropylcellulose as a Clarifying Agent in Nickel(II) Solutions
by Rubén Octavio Muñoz-García, Cesar Alexis Ruiz-Casillas, Diego Alberto Lomelí-Rosales, Jorge Alberto Cortés-Ortega, Juan Carlos Sánchez-Díaz and Luis Emilio Cruz-Barba
Gels 2025, 11(7), 560; https://doi.org/10.3390/gels11070560 - 21 Jul 2025
Viewed by 293
Abstract
Poly(acrylic acid) (PAA) and hydroxypropylcellulose (HPC) hydrogels were synthesized in the absence of a crosslinker. Chemical crosslinking between PAA and HPC was demonstrated through free radical polymerization by a precipitation reaction in acetone as the solvent. These hydrogels exhibited smaller swelling ratios (1 [...] Read more.
Poly(acrylic acid) (PAA) and hydroxypropylcellulose (HPC) hydrogels were synthesized in the absence of a crosslinker. Chemical crosslinking between PAA and HPC was demonstrated through free radical polymerization by a precipitation reaction in acetone as the solvent. These hydrogels exhibited smaller swelling ratios (1 to 5 g H2O/g) than homo PAA hydrogels synthesized in water as the solvent. They were swollen in a 0.1 M NaOH solution and subsequently used to remove Ni2+ ions from aqueous solutions with concentrations ranging from 1000 to 4000 ppm. The absorption capacity of these hydrogels ranged from 91 to 340 mg of Ni2+/g in a rapid 1 h process, and from 122 to 435 mg of Ni2+/g in a 24 h process, demonstrating an improvement in Ni2+ absorption compared to previously reported hydrogels. The colored 1000 and 2000 ppm Ni2+ solutions became clear after treatment, while the PAA-HPC hydrogels turned green due to the uptake of Ni2+ ions, which were partially chelated by carboxylate groups as nickel polyacrylate and partially precipitated as Ni(OH)2, resulting in an average absorption efficiency of 80%. The hydrogel was able to release the absorbed Ni2+ upon immersion in an HCl solution, with an average release percentage of 76.4%, indicating its potential for reuse. These findings support the use of PAA-HPC hydrogels for cleaning Ni2+-polluted water. The cost of producing 1 g of these hydrogels in laboratory conditions is approximately 0.2 USD. Full article
(This article belongs to the Special Issue Cellulose-Based Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

18 pages, 3500 KiB  
Article
Cellulose Acetate–PHB Biocomposite from Saccharum officinarum for Ni (II) Adsorption: Equilibrium and Kinetics
by Candelaria Tejada-Tovar, Ángel Villabona-Ortíz, Oscar Toro-Madrid, Rodrigo Ortega-Toro and Humberto Bonilla Mancilla
J. Compos. Sci. 2025, 9(7), 376; https://doi.org/10.3390/jcs9070376 - 18 Jul 2025
Viewed by 574
Abstract
This research work focused on the development of an adsorbent biocomposite material based on polyhydroxybutyrate (PHB) and cellulose acetate derived from sugarcane (Saccharum officinarum) fibre, through cellulose acetylation. The resulting material represents both an accessible and effective alternative for the treatment [...] Read more.
This research work focused on the development of an adsorbent biocomposite material based on polyhydroxybutyrate (PHB) and cellulose acetate derived from sugarcane (Saccharum officinarum) fibre, through cellulose acetylation. The resulting material represents both an accessible and effective alternative for the treatment and remediation of water contaminated with heavy metals, such as Ni (II). The biocomposite was prepared by blending cellulose acetate (CA) with the biopolymer PHB using the solvent-casting method. The resulting biocomposite exhibited a point of zero charge (pHpzc) of 5.6. The material was characterised by FTIR, TGA-DSC, and SEM analyses. The results revealed that the interaction between Ni (II) ions and the biocomposite is favoured by the presence of functional groups, such as –OH, C=O, and N–H, which act as active adsorption sites on the material’s surface, enabling efficient interaction with the metal ions. Adsorption kinetics studies revealed that the biocomposite achieved an optimal adsorption capacity of 5.042 mg/g at pH 6 and an initial Ni (II) concentration of 35 mg/L, corresponding to a removal efficiency of 86.44%. Finally, an analysis of the kinetic and isotherm models indicated that the experimental data best fit the pseudo-second-order kinetic model and the Freundlich isotherm. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

19 pages, 4090 KiB  
Article
The Behavior of Divalent Metals in Double-Layered Hydroxides as a Fenton Bimetallic Catalyst for Dye Decoloration: Kinetics and Experimental Design
by Edgar Oswaldo Leyva Cruz, Diana Negrete Godínez, Deyanira Angeles-Beltrán and Refugio Rodríguez-Vázquez
Catalysts 2025, 15(7), 687; https://doi.org/10.3390/catal15070687 - 16 Jul 2025
Viewed by 545
Abstract
This study investigates the influence of divalent metals—(Mg(II), Co(II), and Ni(II)) in layered double hydroxides (LDHs), with a constant trivalent Fe(III) component—on the decoloration of crystal violet and methyl blue dyes via a Fenton-type oxidation reaction. The catalysts, synthesized by co-precipitation and hydrothermal [...] Read more.
This study investigates the influence of divalent metals—(Mg(II), Co(II), and Ni(II)) in layered double hydroxides (LDHs), with a constant trivalent Fe(III) component—on the decoloration of crystal violet and methyl blue dyes via a Fenton-type oxidation reaction. The catalysts, synthesized by co-precipitation and hydrothermal treatment, were tested in both hydroxide and oxide forms under varying agitation conditions (0 and 280 rpm). A 22 × 3 factorial design was used to analyze the effect of the divalent metal type, catalyst phase, and stirring. The Mg/Fe oxide, with the highest BET surface area (144 m2/g) and crystallite size (59.7 nm), showed superior performance—achieving up to 98% decoloration of crystal violet and 97% of methyl blue within 1 h. The kinetic analysis revealed pseudo-second-order and pseudo-first-order fits for crystal violet and methyl blue, respectively. These findings suggest that LDH-based catalysts provide a fast, low-cost, and effective option for dye removal in aqueous systems. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

23 pages, 9320 KiB  
Article
Evaluation of the Cytotoxicity, Genotoxicity and Acute Oral Toxicity of Thymus longicaulis subsp. chaubardii (Rchb.f.) Jalas
by Ayfer Beceren, Ayse Nur Hazar-Yavuz, Ozlem Bingol Ozakpinar, Duygu Taskin, Ismail Senkardes, Turgut Taskin, Ozlem Tugçe Cilingir-Kaya, Ahmad Kado, Elif Caliskan Salihi and Hatice Kubra Elcioglu
Pharmaceuticals 2025, 18(7), 1037; https://doi.org/10.3390/ph18071037 - 12 Jul 2025
Viewed by 400
Abstract
Background/Objectives: Thymus longicaulis subsp. chaubardii (TL) (Rchb.f.) Jalas is widely used in traditional Turkish medicine for respiratory, digestive and uro-genital disorders. The aim of this study was to determine its phytochemical profile and to evaluate its cytotoxic, genotoxic and acute oral toxicity [...] Read more.
Background/Objectives: Thymus longicaulis subsp. chaubardii (TL) (Rchb.f.) Jalas is widely used in traditional Turkish medicine for respiratory, digestive and uro-genital disorders. The aim of this study was to determine its phytochemical profile and to evaluate its cytotoxic, genotoxic and acute oral toxicity effects. Methods: The phenolic composition of the methanolic extract was determined by HPLC-DAD. Cytotoxicity and genotoxicity were evaluated in NIH3T3 cells using MTT, comet and micronucleus assays. Acute toxicity was evaluated in rats at doses of 300 and 2000 mg/kg body weight according to the OECD Guideline 420. Results: Rosmarinic acid (87.37 ± 5.39 µg/mg) was the major phenolic compound. TL extract showed >90% cell viability at 50–200 µg/mL, indicating no cytotoxicity. Comet assay revealed a slight increase in DNA damage at 100–200 µg/mL (p < 0.001), though significantly lower than the H2O2 group (p < 0.001). No significant (p > 0.05) effect was observed in the micronucleus assay between the treated groups. In rats, TL extract caused no mortality or behavioral changes over 14 days. No significant differences were observed in body or organ weights. Hematologically, platelet count increased (p < 0.001) and eosinophils decreased (p < 0.01 and p < 0.001). Biochemical tests showed lower ALT and AST levels (p < 0.01 and p < 0.05, respectively) and significantly decreased triglycerides in the high-dose group (p < 0.001). Histopathological examination showed no organ damage. Conclusions: The results of this study indicate that TL methanol extract is non-toxic up to 2000 mg/kg and exhibits no significant cytotoxic or genotoxic effects. These findings support its safe use and traditional medicinal value. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

18 pages, 3259 KiB  
Article
Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers
by Xia Yang, Xuan Xu, Jianguo Ni, Qun Zhang, Gexiang Chen, Ying Liu, Wei Hong, Qiming Liao and Xiongbo Chen
Sustainability 2025, 17(14), 6343; https://doi.org/10.3390/su17146343 - 10 Jul 2025
Viewed by 438
Abstract
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, [...] Read more.
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, HCl, and HF, revealed distinct physicochemical and emission profiles. Bagasse exhibited lower C, H, and S content but higher moisture (47~53%) and O (24~30%) levels compared to coal, reducing the calorific values (8.93~11.89 MJ/kg). Particulate matter removal efficiency exceeded 98% (water film dust collector) and 95% (bag filter), while NOx removal varied (10~56%) due to water solubility differences. Heavy metals (Cu, Cr, Ni, Pb) in fuel migrated to fly ash and flue gas, with Hg and Mn showing notable volatility. VOC speciation identified oxygenated compounds (OVOCs, 87%) as dominant in small boilers, while aromatics (60%) and alkenes (34%) prevailed in larger systems. Ozone formation potential (OFP: 3.34~4.39 mg/m3) and secondary organic aerosol formation potential (SOAFP: 0.33~1.9 mg/m3) highlighted aromatic hydrocarbons (e.g., benzene, xylene) as critical contributors to secondary pollution. Despite compliance with current emission standards (e.g., PM < 20 mg/m3), elevated CO (>1000 mg/m3) in large boilers indicated incomplete combustion. This work underscores the necessity of tailored control strategies for OVOCs, aromatics, and heavy metals, advocating for stricter fuel quality and clear emission standards to align biomass energy utilization with environmental sustainability goals. Full article
Show Figures

Figure 1

21 pages, 4492 KiB  
Article
IrO2-Decorated Titania Nanotubes as Oxygen Evolution Anodes
by Aikaterini Touni, Effrosyni Mitrousi, Patricia Carvalho, Maria Nikopoulou, Eleni Pavlidou, Dimitra A. Lambropoulou and Sotiris Sotiropoulos
Molecules 2025, 30(14), 2921; https://doi.org/10.3390/molecules30142921 - 10 Jul 2025
Viewed by 319
Abstract
In this work, we have used both plain titania nanotubes, TNTs, and their reduced black analogues, bTNTs, that bear metallic conductivity (prepared by solid state reaction of TNTs with CaH2 at 500 °C for 2 h), as catalyst supports for the oxygen [...] Read more.
In this work, we have used both plain titania nanotubes, TNTs, and their reduced black analogues, bTNTs, that bear metallic conductivity (prepared by solid state reaction of TNTs with CaH2 at 500 °C for 2 h), as catalyst supports for the oxygen evolution reaction (OER). Ir was subsequently been deposited on them by the galvanic replacement of electrodeposited Ni by Ir(IV) chloro-complexes; this was followed by Ir electrochemical anodization to IrO2. By carrying out the preparation of the TNTs in either two or one anodization steps, we were able to produce close-packed or open-structure nanotubes, respectively. In the former case, larger than 100 nm Ir aggregates were finally formed on the top face of the nanotubes (leading to partial or full surface coverage); in the latter case, Ir nanoparticles smaller than 100 nm were obtained, with some of them located inside the pores of the nanotubes, which retained a porous surface structure. The electrocatalytic activity of IrO2 supported on open-structure bTNTs towards OER is superior to that supported on close-packed bTNTs and TNTs, and its performance is comparable or better than that of similar electrodes reported in the literature (overpotential of η = 240 mV at 10 mA cm−2; current density of 70 mA cm−2 and mass specific current density of 258 mA mgIr−1 at η = 300 mV). Furthermore, these electrodes demonstrated good medium-term stability, maintaining stable performance for 72 h at 10 mA cm−2 in acid. Full article
(This article belongs to the Special Issue Advances in Water Electrolysis Technology)
Show Figures

Graphical abstract

18 pages, 4443 KiB  
Article
Comparative Study on Ni/MgO-Al2O3 Catalysts for Dry and Combined Steam–CO2 Reforming of Methane
by Tingting Zheng, Yuqi Zhou, Hongjie Cui and Zhiming Zhou
Catalysts 2025, 15(7), 659; https://doi.org/10.3390/catal15070659 - 6 Jul 2025
Viewed by 389
Abstract
The dry reforming of methane (DRM) and the combined steam–CO2 reforming of methane (CSCRM) are promising routes for syngas production while simultaneously utilizing two major greenhouse gases—CO2 and CH4. In this study, a series of Ni/MgO-Al2O3 [...] Read more.
The dry reforming of methane (DRM) and the combined steam–CO2 reforming of methane (CSCRM) are promising routes for syngas production while simultaneously utilizing two major greenhouse gases—CO2 and CH4. In this study, a series of Ni/MgO-Al2O3 catalysts with varying Mg/Al molar ratios (Ni/MgAl(x), x = 0.5–0.9), along with Ni/MgO and Ni/Al2O3, were synthesized, characterized, and evaluated in both the DRM and CSCRM. Ni/MgO and Ni/Al2O3 exhibited a lower activity due to fewer active sites and a poor CH4/CO2 activation balance. In contrast, Ni/MgAl(0.6), Ni/MgAl(0.7), and Ni/MgAl(0.8) showed an enhanced activity, attributed to more abundant active sites and a more balanced activation of CH4 and CO2. Ni/MgAl(0.7) delivered the best DRM performance, whereas Ni/MgAl(0.8) was optimal for the CSCRM, likely due to its greater number of strong basic sites promoting CO2 and H2O adsorption. At 750 °C and 0.1 MPa over 100 h, Ni/MgAl(0.7) maintained a stable DRM performance (77% CH4 and 86% CO2 conversion; H2/CO = 0.9) at 120 L/(gcat·h), while Ni/MgAl(0.8) achieved a stable CSCRM performance (80% CH4 and 62% CO2 conversion; H2/CO = 2.1) at 132 L/(gcat·h). This study provides valuable insights into designing efficient Ni/MgO-Al2O3 catalysts for targeted syngas production. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Figure 1

Back to TopTop