Agronomic Evaluation of Compost Formulations Based on Mining Tailings and Microbial Mats from Geothermal Sources
Abstract
1. Introduction
2. Results
2.1. Physicochemical Properties of Composting Matrix (M1 to M5)
2.2. Macronutrient and Micronutrient Composition of Composting Matrix (M1 to M5)
2.3. Physicochemical Properties of Compost Formulations (BFS1, BFS2, BFS3)
2.4. Macronutrient Composition of Compost Formulations (BFS1, BFS2, BFS3)
2.5. Micronutrients and Environmental Considerations
2.6. Comparative Evaluation and Application Potential
2.7. Compost Quality Index (CQI)
2.8. Analysis of Variance (ANOVA)
2.9. Nutrient Profile Visualization
2.10. Interpretation and Agronomic Relevance
3. Discussion
3.1. Physicochemical Properties of Composting Matrix (M1 to M5)
3.2. Macronutrient and Micronutrient Composition of Composting Matrix (M1 to M5)
3.3. Physicochemical Properties of Compost Formulations (BFS1, BFS2, BFS3)
3.4. Macronutrient Composition of Compost Formulations (BFS1, BFS2, BFS3)
3.5. Micronutrients and Environmental Considerations
3.6. Comparative Evaluation and Application Potential
3.7. Compost Quality Index (CQI)
3.8. Analysis of Variance (ANOVA)
3.9. Nutrient Profile Visualization
3.10. Interpretation and Agronomic Relevance
4. Material and Methods
4.1. Characteristics of Mining Tailings
4.2. Characteristics of the Microbial Mats
4.3. Composting Matrix (M1 to M5)
4.4. Compost Formulation
- -
- BFS1: 60% M3 + 20% M1 + 20% M2;
- -
- BFS2: 50% M3 + 30% M2 + 20% M4;
- -
- BFS3: 40% M2 + 30% M1 + 30% M3.
4.5. Compost Characterization
4.6. Nutrient Content Analysis
4.7. Statistical and Comparative Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moreno-Tovar, R.; Barbanson, L.; Coreño-Alonso, O. Mineralogical Neoformation in Mining Waste (Tailings) of the Zimapán Mining District, State of Hidalgo, Mexico. Min. Geol. 2009, 25, 2–31. [Google Scholar]
- Zhang, X.; Fang, Q.; Zhang, T.; Ma, W.; Velthof, G.L.; Hou, Y.; Zhang, F. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis. Glob. Change Biol. 2020, 26, 888–900. [Google Scholar] [CrossRef]
- Adhikari, D.; Flohr, G.; Gorre, N.; Shen, Y.; Yang, H.; Lundin, E.; Liu, K. Disruption of Tsc2 in oocytes leads to over activation of the entire pool of primordial follicles. Mol. Hum. Reprod. 2009, 15, 765–770. [Google Scholar] [CrossRef]
- Ramírez-Bautista, A.; Stephenson, B.P.; Lozano, A.; Uribe-Rodríguez, H.; Leyte Manrique, A. Atypical reproductive cycles in a population of Sceloporus grammicus (S quamata: P hrynosomatidae) from the Mexican Plateau. Ecol. Evol. 2012, 2, 1903–1913. [Google Scholar] [CrossRef]
- Alloway, B.J. Micronutrients and crop production: An introduction. In Micronutrient Deficiencies in Global Crop Production; Springer: Dordrecht, The Netherlands, 2008; pp. 1–39. [Google Scholar]
- Choi, H.; Park, J. Genetic regulation of nutrient uptake transporters in response to variable soil chemistry. Plant Physiol. 2021, 185, 1112–1128. [Google Scholar] [CrossRef]
- Galjak, A.; Jovanović, D.; Milović, M.; Pecić, S. Assessment of pollution and distribution of heavy metals in the soil near the flotation tailings Gornje Polje. Pol. J. Environ. Stud. 2022, 31, 1485–1493. [Google Scholar] [CrossRef]
- Sarkar, S.; Dey, S.; Dhar, A.; Banerjee, H. Boron nutrition in tuber crops: An inclusive insight. J. Plant Nutr. 2024, 47, 1893–1907. [Google Scholar] [CrossRef]
- Mahapatra, S.; Hibzur, A.; Samal, K. Assessment of compost maturity-stability indices and recent development of composting bin. Energy Nexus 2022, 6, 100062. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef]
- Alexis Valentín-Vargas, A.; Root, R.A.; Neilson, J.W.; Chorover, J.; Maier, R.M. Environmental factors influencing the structural dynamics of soil microbial communities during assisted phytostabilization of acid-generating mine tailings: A mesocosm experiment. Sci. Total Environ. 2014, 314–324. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef]
- Adewole, M.T.; Adefemi, O.S. Techno-economic assessment of biochar production from mining tailings and its agronomic benefits. J. Environ. Manag. 2021, 285, 112168. [Google Scholar]
- U.S. Environmental Protection Agency (EPA). Technical Guide for the Beneficial Use of Mine Waste Materials; EPA Publication: Washington, DC, USA, 2021; No. 560-F-21-001.
- Smith, A.J.; Brown, P. Advances in plant nutrition: Transporters, signaling, and nutrient use efficiency. Plant Soil 2024, 489, 159–175. [Google Scholar]
- Hasanuzzaman, M.; Borhannuddin Bhuyan, M.H.M.; Nahar, K.; Shahadat Hossain, M.d.; Mahmud, J.A.; Shahadat Hossen, M.d.; Chowdhury Masud, A.A.; Moumita; Fujita, M. Potassium: A vital regulator of plant growth and stress tolerance. Plants 2023, 8, 31. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Wang, J. Calcium in plants: An important element of cell physiology and environmental stress management. Acta Physiol. Plant. 2024, 46, 108. [Google Scholar] [CrossRef]
- Qiao, P.; Wang, S.; Li, J.; Zhao, Q.; Wei, Y. Process, influencing factors, and simulation of the lateral transport of heavy metals in surface runoff in a mining area driven by rainfall: A review. Sci. Total Environ. 2023, 857 Pt 1, 159119. [Google Scholar] [CrossRef] [PubMed]
- Puy-Alquiza, M.J.; Gonzalez, M.C.; Miranda-Avilés, R.; Palmerin, J.M.; Salazar-Hernandez, M.M.; Sanchez, C.D.M. Reuse of Mine Tailings as an Alternative for the Manufacture of Refractory Bricks: Sustainable Remediation for Mining Waste Management. Remediat. J. 2024, 35, e70004. [Google Scholar] [CrossRef]
- Guo, Y.; Qu, F.; Li, W. Advancing circular economy and construction sustainability: Transforming mine tailings into high-value cementitious and al-kali-activated concrete. npj Mater. Sustain. 2025, 3, 8. [Google Scholar] [CrossRef]
- Puy-Alquiza, M.J.; Berenice Noriega Luna, B.; Miranda-Aviles, R.; Salazar Hernández, M.M.; Carreño Aguilera, G. Diatom of the Bacillariophyceae Class in Thermophilic MicrobialMats Present in Sulphurous Hot Springs and their Possible Biotechnological Application. Glob. J. Earth Sci. Eng. 2021, 8, 80–96. [Google Scholar] [CrossRef]
- Noriega-Luna, B.; Puy-Alquiza, M.J.; Vazquez-Lara, A.Y.; Salazar-Hernandez, M.M.; Serafin-Munoz, A.H.; Miranda-Aviles, R.; Carreno-Aguilera, G. Isolation Characterization of Thermophilic Bacteria from Microbial Mats Present Carpet Comanjilla Geothermal Hot Spring México. Hydrobiol. J. 2021, 57. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Zhi, X. Assessment of soil organic carbon: Comparing dry combustion, Walkley–Black, and spectroscopic methods. Agriculture 2021, 11, 567. [Google Scholar]
- Capaz, J.; Martínez, F. Comparative evaluation of Kjeldahl and Dumas methods for nitrogen determination in agricultural soils. J. Soil Sci. Plant Nutr. 2023, 23, 1125–1139. [Google Scholar]
Parameter | M1 | M2 | M3 | M4 | M5 |
---|---|---|---|---|---|
pH | 8.45 | 8.36 | 7.79 | 8.30 | 8.28 |
Electrical Conductivity (EC) (dS/m) | 1.61 | 1.82 | 2.82 | 0.76 | 1.33 |
Organic Matter (OM) (%) | 40.9 | 31.8 | 67.5 | 21.4 | 1.47 |
C/N Ratio | 36.1 | 33.2 | 11.1 | 164. | 24.1 |
Total Nitrogen (kg·t−1) | 4.8 | 6.3 | 33 | 0.2 | 0.4 |
Phosphorus (P2O5, kg·t−1) | 1.4 | 1.8 | 2.0 | 1.6 | 1.5 |
Potassium (K2O, kg·t−1) | 3.0 | 4.0 | 4.0 | 1.4 | 1.6 |
Calcium (Ca, kg·t−1) | 6.8 | 6.4 | 5.2 | 47 | 46 |
Magnesium (Mg, kg·t−1) | 2.6 | 3.4 | 2.2 | 8.2 | 8.1 |
Sulfur (S, kg·t−1) | 2.2 | 3.2 | 6.7 | 1.4 | 2.4 |
Sodium (Na, kg·t−1) | 3.2 | 4.3 | 7.4 | 1.9 | 2.8 |
Iron (Fe, g·t−1) | 11,285 | 13,442 | 11,492 | 14,400 | 13,352 |
Zinc (Zn, g·t−1) | 36 | 44 | 41 | 36 | 37 |
Boron (B, g·t−1) | 170 | 221 | 381 | 171 | 179 |
Parameter | BFS1 | BFS2 | BFS3 |
---|---|---|---|
pH | 7.52 | 7.38 | 7.39 |
Electrical Conductivity (EC) (dS/m) | 3.47 | 3.66 | 3.43 |
Moisture (%) | 3.11 | 2.65 | 3.17 |
Organic Matter (OM) (%) | 39.3 | 38.5 | 48.4 |
Organic Carbon (OC) (%) | 22.8 | 22.3 | 28.1 |
C/N Ratio | 11.8 | 10.5 | 13.9 |
Total Nitrogen (kg·t−1) | 19 | 21 | 20 |
Phosphorus (P2O5) (kg·t−1) | 2 | 2 | 2 |
Potassium (K2O) (kg·t−1) | 4 | 4 | 5 |
Calcium (Ca) (kg·t−1) | 12 | 13 | 14 |
Magnesium (Mg) (kg·t−1) | 2 | 6 | 8 |
Sulfur (S) (kg·t−1 | 6 | 3 | 1 |
Sodium (Na) (kg·t−1) | 7 | 2 | 0 |
Iron (Fe) (g·t−1)) | 17,125 | 18,682 | 19,542 |
Zinc (Zn) (g·t−1) | 69 | 54 | 56 |
Boron (B) (g·t−1) | 162 | 205 | 211 |
Macronurients | |||
---|---|---|---|
Elements | BFS1 | BFS2 | BFS3 |
Nitrogen (kg·t−1) | 19 | 21 | 20 |
Phosphorus (P2O5) (kg·t−1) | 2 | 2 | 2 |
Potassium (K2O) (kg·t−1) | 4 | 4 | 5 |
Calcium (Ca) (kg·t−1) | 12 | 13 | 14 |
Magnesium (Mg) (kg·t−1) | 2 | 6 | 8 |
Sulfur (S,) (kg·t−1) | 6 | 3 | 1 |
Sodium (Na) (kg·t−1) | 7 | 2 | 0 |
Micronutrients | |||
Iron (Fe) (kg·t−1) | 9873 | 6276 | 6336 |
Zinc (Zn) (kg·t−1) | 38 | 36 | 26 |
Boron (B) (kg·t−1) | 211 | 359 | 275 |
Copper (Cu) (kg·t−1) | 11 | 6 | 8 |
Manganese (Mn) (kg·t−1) | 320 | 260 | 180 |
Molybdenum (Mo) (kg·t−1) | 1 | 1 | 1 |
Nickel (Ni) (kg·t−1) | 14 | 12 | 8 |
Formulation | Key Nutrient Strengths | Agronomic Advantages | Limitations | Recommended Uses | Suggested Crops | References |
---|---|---|---|---|---|---|
BFS1 | Moderate N, high Ca, Fe, Mn | Balanced profile; improves soil structure and micronutrient supply | Moderately high Na and EC | General field crops; iron-deficient or calcareous soils | Corn, sorghum, lettuce, spinach | [5,6] |
BFS2 | Highest N, high B, Mg | Supports N-demanding crops; promotes microbial activity | High B; caution in boron-sensitive crops and saline soils | Leafy vegetables, cereals; avoid in B-sensitive crops | Cabbage, broccoli, maize, alfalfa | [7,8] |
BFS3 | Highest K, OM, Mg; lowest Na and S | Enhances fruiting; suitable for degraded soils and seedbeds | Moderate B and EC; may require dilution in nurseries | Fruiting crops, nursery substrates (mixed with inert media) | Tomato, chili, watermelon, strawberries, ornamental plants | [9,10] |
Sample | Water Absorption (%) | Porosity (%) | Granulometry | |||
---|---|---|---|---|---|---|
Gravel (%) | Sand (%) | Silt-Clay (%) | Classification (USCS) | |||
La Cooperativa Mining Tailings (MTs) | 21.04 | 0.86 | 22.66 | 48.14 | 29.19 | GP: Poorly graded gravels, mixtures of sand and gravel with few or no fines. SM Silty sands, poorly graded sand and silt mixture. ML: Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, or clayey silts with slight plasticity. |
Microbial Mat (MM) | 176.61 | 58.95 | 0.00 | 39.25 | 27.31 | OS-H: Organic material with high plasticity sand. |
Elements | Sample | Elements | Sample |
---|---|---|---|
Mining Tailings (MTs) | Microbial Mat (MM) | ||
Al (ppm) | 32,766 | Al (ppm) | 31,700 |
K (ppm) | 14,933 | K (ppm) | 10,800 |
Na (ppm) | 5200 | Na (ppm) | 24,000 |
Si (ppm) | 278,666 | Si (ppm) | 225,000 |
P (ppm) | 0 | P (ppm) | 173 |
Ca (ppm) | 29,933 | Ca (ppm) | 21,400 |
Fe (ppm) | 16,833 | Fe (ppm) | 15,100 |
Zn (ppm) | 49.46 | Zn (ppm) | 112 |
Mg (ppm) | 4578 | Mg (ppm) | 3200 |
Mn (ppm) | 965 | Mn (ppm) | 596 |
Mo (ppm) | ND | Mo (ppm) | ND |
Ni (ppm) | 19 | Ni (ppm) | 29.7 |
S (ppm) | 4620 | S (ppm) | 5990 |
Cu (ppm) | 34 | Cu (ppm) | 40 |
Sn (ppm) | 15 | Sn (ppm) | 12.2 |
Zn (ppm) | 45.2 | Zn (ppm) | 112 |
SiO2 (%) | 77.18 | SiO2 (%) | 69.5 |
Al2O3 (%) | 8.02 | Al2O3 (%) | 5.03 |
MgO (%) | 0.711 | MgO (%) | 0.73 |
Na2O (%) | 8.2 | Na2O (%) | 14.8 |
CaO (%) | 7.15 | CaO (%) | 3.74 |
Fe2O3 (%) | 2.67 | Fe2O3 (%) | 2.64 |
TiO2 (%) | 0.76 | TiO2 (%) | 0.39 |
Composting Matrix | Microbial Mat (MM) | Mining Tailings (MTs) (La Cooperativa Guanajuato) |
---|---|---|
M1 | 50% | 50% |
M2 | 75% | 25% |
M3 | 100% | 0% |
M4 | 25% | 75% |
M5 | 0% | 100% |
Compost Formulations | Base Composting matrix | |
BFS1 | 60% M3 + 20% M1 + 20% M2 50% M3 + 30% M2 + 20% M4 40% M2 + 30% M1 + 30% M3 | |
BFS2 | ||
BFS3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puy-Alquiza, M.J.; Puy, M.Y.M.; Miranda-Avilés, R.; Kshirsagar, P.V.; Sanchez, C.D.M. Agronomic Evaluation of Compost Formulations Based on Mining Tailings and Microbial Mats from Geothermal Sources. Recycling 2025, 10, 156. https://doi.org/10.3390/recycling10040156
Puy-Alquiza MJ, Puy MYM, Miranda-Avilés R, Kshirsagar PV, Sanchez CDM. Agronomic Evaluation of Compost Formulations Based on Mining Tailings and Microbial Mats from Geothermal Sources. Recycling. 2025; 10(4):156. https://doi.org/10.3390/recycling10040156
Chicago/Turabian StylePuy-Alquiza, María Jesús, Miren Yosune Miranda Puy, Raúl Miranda-Avilés, Pooja Vinod Kshirsagar, and Cristina Daniela Moncada Sanchez. 2025. "Agronomic Evaluation of Compost Formulations Based on Mining Tailings and Microbial Mats from Geothermal Sources" Recycling 10, no. 4: 156. https://doi.org/10.3390/recycling10040156
APA StylePuy-Alquiza, M. J., Puy, M. Y. M., Miranda-Avilés, R., Kshirsagar, P. V., & Sanchez, C. D. M. (2025). Agronomic Evaluation of Compost Formulations Based on Mining Tailings and Microbial Mats from Geothermal Sources. Recycling, 10(4), 156. https://doi.org/10.3390/recycling10040156