Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (290)

Search Parameters:
Keywords = Mars simulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 549 KB  
Article
Fuzzy Lyapunov-Based Gain-Scheduled Control for Mars Entry Vehicles: A Computational Framework for Robust Non-Linear Trajectory Stabilization
by Hongyang Zhang, Na Min and Shengkun Xie
Computation 2025, 13(9), 205; https://doi.org/10.3390/computation13090205 - 1 Sep 2025
Viewed by 215
Abstract
Accurate trajectory control during atmospheric entry is critical for the success of Mars landing missions, where strong non-linearities and uncertain dynamics pose significant challenges to conventional control strategies. This study develops a computational framework that integrates fuzzy parameter-varying models with Lyapunov-based analysis to [...] Read more.
Accurate trajectory control during atmospheric entry is critical for the success of Mars landing missions, where strong non-linearities and uncertain dynamics pose significant challenges to conventional control strategies. This study develops a computational framework that integrates fuzzy parameter-varying models with Lyapunov-based analysis to achieve robust trajectory stabilization of Mars entry vehicles. The non-linear longitudinal dynamics are reformulated via sector-bounded approximation into a Takagi–Sugeno fuzzy parameter-varying model, enabling systematic gain-scheduled controller synthesis. To reduce the conservatism typically associated with quadratic Lyapunov functions, a fuzzy Lyapunov function approach is adopted, in conjunction with the Full-Block S-procedure, to derive less restrictive stability conditions expressed as linear matrix inequalities. Based on this formulation, several controllers are designed to accommodate the variations in atmospheric density and flight conditions. The proposed methodology is validated through numerical simulations, including Monte Carlo dispersion and parametric sensitivity analyses. The results demonstrate improved stability, faster convergence, and enhanced robustness compared to existing fuzzy control schemes. Overall, this work contributes a systematic and less conservative control design methodology for aerospace applications operating under severe non-linearities and uncertainties. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

54 pages, 22778 KB  
Article
On the Structural Design and Additive Construction Process of Martian Habitat Units Using In-Situ Resources on Mars
by Ehsan Dehghani Janabadi, Kasra Amini and Sana Rastegar
Aerospace 2025, 12(9), 761; https://doi.org/10.3390/aerospace12090761 - 25 Aug 2025
Viewed by 469
Abstract
Taking the leap to the secondary and tertiary generations of the missions to Mars, a comprehensive outline was presented for a cluster of Martian Habitat Units (MHUs) designed for long-term settlements of research crew in Melas Chasma, Valles Marineris, Mars. Unlike initial exploration [...] Read more.
Taking the leap to the secondary and tertiary generations of the missions to Mars, a comprehensive outline was presented for a cluster of Martian Habitat Units (MHUs) designed for long-term settlements of research crew in Melas Chasma, Valles Marineris, Mars. Unlike initial exploration missions, where primary survival is ensured through basic engineering solutions, this concept targets later-stage missions focused on long-term human presence. Accordingly, the MHUs are designed not only for functionality but also to support the social and cultural well-being of scientific personnel, resulting in larger and more complex structures than those typically proposed for early-stage landings. To address the construction and structural integrity of the MHUs, the current work presents a comprehensive analysis of the feasibility of semi-3D-printed structural systems using in situ material to minimize the cost and engineering effort of logistics and construction of the units. Regolith-based additive manufacturing was utilized as the primary material, and the response of the structure, not only to the gravitational loads but also to those applied from the exterior flow field and wind pressure distributions, was simulated, as well as the considerations regarding the contribution of the extreme interior/exterior pressure differences. The full analyses and structural results are presented and discussed in this manuscript, as well as insights on manufacturing and its feasibility on Mars. The analyses demonstrate the feasibility of constructing the complex architectural requirements of the MHUs and their cost-effectiveness through the use of in situ resources. The manuscript presents an iterative structural optimization process, with results detailed at each step. Structural elements were modeled using FEM-based analysis in Karamba-3D to minimize near-yielding effects such as buckling and excessive displacements. The final structural system was integrated with the architectural design to preserve the intended spatial and functional qualities. Full article
(This article belongs to the Special Issue Space System Design)
Show Figures

Figure 1

11 pages, 8468 KB  
Article
Nuclear Thermal Rocket Emulator for a Hardware-in-the-Loop Test Bed
by Brandon A. Wilson, Jono McConnell, Wesley C. Williams, Nick Termini, Craig Gray, Charles E. Taylor and N. Dianne Ezell Bull
Energies 2025, 18(16), 4439; https://doi.org/10.3390/en18164439 - 21 Aug 2025
Viewed by 703
Abstract
To support NASA’s mission to use nuclear thermal rockets for future Mars missions, an instrumentation and control test bed has been built at Oak Ridge National Laboratory. The system is designed as a hardware-in-the-loop test bed for testing control elements and autonomous control [...] Read more.
To support NASA’s mission to use nuclear thermal rockets for future Mars missions, an instrumentation and control test bed has been built at Oak Ridge National Laboratory. The system is designed as a hardware-in-the-loop test bed for testing control elements and autonomous control algorithms for nuclear thermal propulsion rockets. The mock reactor system consists of a modular and scalable framework, using inexpensive components and open-source software. The hardware system consists of a two-phase flow loop and a mock reactor with six control drums. A single-board computer (NVIDIA Jetson) handles reactor core emulation and hosts a message queuing telemetry transport broker that allows user-deployed control algorithms to interact with the system hardware. The reactor emulator receives sensor data from the hardware and provides the simulated performance of the reactor under steady-state, transient, and fault conditions. The emulator uses a reactivity lookup table and the point kinetics equations to solve for the reactor dynamics in real time. Emulated reactor dynamics and sensor input inform the autonomous control algorithm’s decision-making in a closed-loop manner. The current system is capable of operating at 10 Hz, but faster cycle rates are an area of ongoing research. This test bed will enable NASA and other space vendors to rigorously test their autonomous control systems for NTP rockets under transient (reactor startup and shutdown), steady-state, and fault conditions to reduce development time and risk for autonomous control systems in future missions. Full article
Show Figures

Figure 1

24 pages, 7031 KB  
Article
Precision Blank Development for Hydro-Formed Aerospace Components via Inverse Finite Element Analysis
by Vladimir V. Mironenko, Roman V. Kononenko, Alexey S. Govorkov, Evgeniy Y. Remshev, Viktor V. Kondratiev, Yulia I. Karlina, Vitaliy A. Gladkikh and Antonina I. Karlina
Appl. Sci. 2025, 15(16), 9028; https://doi.org/10.3390/app15169028 - 15 Aug 2025
Viewed by 383
Abstract
The present article provides an abstract overview of the issue of optimal blank searching for integral parts utilized in complex engineering projects, including those pertaining to the fabrication of machine, ship, and aircraft components. The manufacturing process for these components is intricate and [...] Read more.
The present article provides an abstract overview of the issue of optimal blank searching for integral parts utilized in complex engineering projects, including those pertaining to the fabrication of machine, ship, and aircraft components. The manufacturing process for these components is intricate and necessitates meticulous precision and strict adherence to the design model. Conventional blank calculation techniques are marred by substantial inaccuracies. The present research proposes and verifies an effective method based on the reverse solution of a mathematical problem. The focal point of this study is the aerodynamic curvature of aluminum alloys belonging to the Al–Mg–Mn family. The formation of the object is achieved through the employment of a hydroelastomer press of the QFC (Quintus Technologies) type. The forming process is simulated using PAM-STAMP software, developed by the French company ESI Group. The objective of the present study is to ascertain the optimal configuration of the blank by optimizing the discrepancy between the dynamic calculations and the design model using sweep contours. The resulting new shape of the part allows for the formation of parts with minimal deviation from their design contours. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

24 pages, 4061 KB  
Article
The Impact of Hydrogeological Properties on Mass Displacement in Aquifers: Insights from Implementing a Mass-Abatement Scalable System Using Managed Aquifer Recharge (MAR-MASS)
by Mario Alberto Garcia Torres, Alexandra Suhogusoff and Luiz Carlos Ferrari
Water 2025, 17(15), 2239; https://doi.org/10.3390/w17152239 - 27 Jul 2025
Viewed by 436
Abstract
This study examines the use of a mass-abatement scalable system with managed aquifer recharge (MAR-MASS) as a sustainable solution for restoring salinized aquifers and improving water quality by removing dissolved salts. It offers a practical remediation approach for aquifers affected by salinization in [...] Read more.
This study examines the use of a mass-abatement scalable system with managed aquifer recharge (MAR-MASS) as a sustainable solution for restoring salinized aquifers and improving water quality by removing dissolved salts. It offers a practical remediation approach for aquifers affected by salinization in coastal regions, agricultural areas, and contaminated sites, where variable-density flow poses a challenge. Numerical simulations assessed hydrogeological properties such as hydraulic conductivity, anisotropy, specific yield, mechanical dispersion, and molecular diffusion. A conceptual model integrated hydraulic conditions with spatial and temporal discretization using the FLOPY API for MODFLOW 6 and the IFM API for FEFLOW 10. Python algorithms were run within the high-performance computing (HPC) server, executing simulations in parallel to efficiently process a large number of scenarios, including both preprocessing input data and post-processing results. The study simulated 6950 scenarios, each modeling flow and transport processes over 3000 days of method implementation and focusing on mass extraction efficiency under different initial salinity conditions (3.5 to 35 kg/m3). The results show that the MAR-MASS effectively removed salts from aquifers, with higher hydraulic conductivity prolonging mass removal efficiency. Of the scenarios, 88% achieved potability (0.5 kg/m3) in under five years; among these, 79% achieved potability within two years, and 92% of cases with initial concentrations of 3.5–17.5 kg/m3 reached potability within 480 days. This study advances scientific knowledge by providing a robust model for optimizing managed aquifer recharge, with practical applications in rehabilitating salinized aquifers and improving water quality. Future research may explore MAR-MASS adaptation for diverse hydrogeological contexts and its long-term performance. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

25 pages, 11221 KB  
Article
A Mass Abatement Scalable System Through Managed Aquifer Recharge: Increased Efficiency in Extracting Mass from Polluted Aquifers
by Mario Alberto Garcia Torres, Alexandra Suhogusoff and Luiz Carlos Ferrari
Water 2025, 17(15), 2237; https://doi.org/10.3390/w17152237 - 27 Jul 2025
Viewed by 406
Abstract
A mass abatement scalable system through managed aquifer recharge (MAR-MASS) improves mass extraction from groundwater with a variable-density flow. This method is superior to conventional injection systems because it promotes uniform mass displacement, reduces density gradients, and increases mass extraction efficiency over time. [...] Read more.
A mass abatement scalable system through managed aquifer recharge (MAR-MASS) improves mass extraction from groundwater with a variable-density flow. This method is superior to conventional injection systems because it promotes uniform mass displacement, reduces density gradients, and increases mass extraction efficiency over time. Simulations of various scenarios involving hydrogeologic variables, including hydraulic conductivity, vertical anisotropy, specific yield, mechanical dispersion, molecular diffusion, and mass concentration in aquifers, have identified critical variables and parameters influencing mass transport interactions to optimize the system. MAR-MASS is adaptable across hydrogeologic conditions in aquifers that are 25–75 m thick, comprising unconsolidated materials with hydraulic conductivities between 5 and 100 m/d. It is effective in scenarios near coastal areas or in aquifers with variable-density flows within the continent, with mass concentrations of salts or solutes ranging from 3.5 to 35 kg/m3. This system employs a modular approach that offers scalable and adaptable solutions for mass extraction at specific locations. The integration of programming tools, such as Python 3.13.2, along with technological strategies utilizing parallelization techniques and high-performance computing, has facilitated the development and validation of MAR-MASS in mass extraction with remarkable efficiency. This study confirmed the utility of these tools for performing calculations, analyzing information, and managing databases in hydrogeologic models. Combining these technologies is critical for achieving precise and efficient results that would not be achievable without them, emphasizing the importance of an advanced technological approach in high-level hydrogeologic research. By enhancing groundwater quality within a comparatively short time frame, expanding freshwater availability, and supporting sustainable aquifer recharge practices, MAR-MASS is essential for improving water resource management. Full article
Show Figures

Figure 1

27 pages, 31172 KB  
Article
Digital Twin for Analog Mars Missions: Investigating Local Positioning Alternatives for GNSS-Denied Environments
by Benjamin Reimeir, Amelie Leininger, Raimund Edlinger, Andreas Nüchter and Gernot Grömer
Sensors 2025, 25(15), 4615; https://doi.org/10.3390/s25154615 - 25 Jul 2025
Viewed by 529
Abstract
Future planetary exploration missions will rely heavily on efficient human–robot interaction to ensure astronaut safety and maximize scientific return. In this context, digital twins offer a promising tool for planning, simulating, and optimizing extravehicular activities. This study presents the development and evaluation of [...] Read more.
Future planetary exploration missions will rely heavily on efficient human–robot interaction to ensure astronaut safety and maximize scientific return. In this context, digital twins offer a promising tool for planning, simulating, and optimizing extravehicular activities. This study presents the development and evaluation of a digital twin for the AMADEE-24 analog Mars mission, organized by the Austrian Space Forum and conducted in Armenia in March 2024. Alternative local positioning methods were evaluated to enhance the system’s utility in Global Navigation Satellite System (GNSS)-denied environments. The digital twin integrates telemetry from the Aouda space suit simulators, inertial measurement unit motion capture (IMU-MoCap), and sensor data from the Intuitive Rover Operation and Collecting Samples (iROCS) rover. All nine experiment runs were reconstructed successfully by the developed digital twin. A comparative analysis of localization methods found that Simultaneous Localization and Mapping (SLAM)-based rover positioning and IMU-MoCap localization of the astronaut matched Global Positioning System (GPS) performance. Adaptive Cluster Detection showed significantly higher deviations compared to the previous GNSS alternatives. However, the IMU-MoCap method was limited by discontinuous segment-wise measurements, which required intermittent GPS recalibration. Despite these limitations, the results highlight the potential of alternative localization techniques for digital twin integration. Full article
Show Figures

Figure 1

31 pages, 7304 KB  
Article
Integrating Groundwater Modelling for Optimized Managed Aquifer Recharge Strategies
by Ghulam Zakir-Hassan, Jehangir F. Punthakey, Catherine Allan and Lee Baumgartner
Water 2025, 17(14), 2159; https://doi.org/10.3390/w17142159 - 20 Jul 2025
Viewed by 867
Abstract
Managed aquifer recharge (MAR) is a complex and hidden process of storing surplus water under the ground surface and extracting it as, when and where needed. Evaluation of the success of any MAR project is challenging due to uncertainty in estimating the hydrogeological [...] Read more.
Managed aquifer recharge (MAR) is a complex and hidden process of storing surplus water under the ground surface and extracting it as, when and where needed. Evaluation of the success of any MAR project is challenging due to uncertainty in estimating the hydrogeological characteristics of the subsurface media. This paper demonstrates the use of a groundwater model (MODFLOW) to evaluate a new, large-scale regional MAR project in the agricultural heartland in Punjab, Pakistan. In this MAR project, flood waters have been diverted to the bed of an abandoned canal, where 144 recharge wells (the wells for accelerating the recharge into the aquifer) have been constructed to accelerate the recharge to the aquifer. The model was calibrated for a period of five years from October 2015 to June 2020 on a monthly stress period and the resulting water levels were simulated till 2035. The water balance components and future response of the aquifer to different scenarios up to 2035 including with and without MAR situations are presented. The model simulations showed that MAR can contribute to the replenishment of the aquifer and its potential for the case study site to contribute significantly to the management of groundwater and to enhance supplies for intensive agriculture. It was further established that MODFLOW can help in the evaluation of effectiveness of a MAR scheme. This study is unique as it evaluates a significantly large MAR project in an area where this practice has not been developed for improving groundwater access for large scale irrigation. The model provides guidelines for decision makers in the region as well as for the global community and livelihood benefits for rural communities. Full article
(This article belongs to the Special Issue Advances in Surface Water and Groundwater Simulation in River Basin)
Show Figures

Figure 1

19 pages, 7940 KB  
Article
High-Salinity Fluid Downslope Flow on Regolith Layer Examined by Laboratory Experiment: Implications for Recurring Slope Lineae on Martian Surfaces
by Yoshiki Tabuchi, Arata Kioka, Takeshi Tsuji and Yasuhiro Yamada
Fluids 2025, 10(7), 183; https://doi.org/10.3390/fluids10070183 - 12 Jul 2025
Viewed by 447
Abstract
Numerous dark linear recurrent features called Recurring Slope Lineae (RSL) are observed on Martian surfaces, hypothesized as footprints of high-salinity liquid flow. This paper experimentally examined this “wet hypothesis” by analyzing the aspect ratios (length/width) of the flow traces on the granular material [...] Read more.
Numerous dark linear recurrent features called Recurring Slope Lineae (RSL) are observed on Martian surfaces, hypothesized as footprints of high-salinity liquid flow. This paper experimentally examined this “wet hypothesis” by analyzing the aspect ratios (length/width) of the flow traces on the granular material column to investigate how they vary with the granular material column, liquid and its flow rate, and inclination. While pure water produced low aspect ratios (<1.0) on the Martian regolith simulant column, high-salinity fluid (CaCl2(aq)) traces exhibited significantly higher aspect ratios (>4.0), suggesting that pure water alone is insufficient to explain RSL formulation. Furthermore, the aspect ratios of high-salinity fluid traces on Martian regolith simulants were among the highest observed across all studied granular materials with similar particle sizes, aligning closely with actual RSL observed on Martian slopes. The results further suggest that variable ARs of actual RSL at the given slope can partly be explained by variable flow rates of high-salinity flow as well as salinity (i.e., viscosity) of flow. The results can be attributed to the unique granular properties of Martian regolith, characterized by the lowest permeability and Beavers–Joseph slip coefficient among the studied granular materials. This distinctive microstructure surface promotes surface flow over Darcy flow within the regolith column, leading to a narrow and long-distance feature with high aspect ratios observed in Martian RSL. Thus, our findings support that high-salinity flows are the primary driver behind RSL formation on Mars. Our study suggests the presence of salts on the Martian surface and paves the way for further investigation into RSL formulation processes. Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

10 pages, 807 KB  
Communication
The Siderophore Phymabactin Facilitates the Growth of the Legume Symbiont Paraburkholderia phymatum in Aluminium-Rich Martian Soil
by Daphné Golaz, Luca Bürgi, Marcel Egli, Laurent Bigler and Gabriella Pessi
Life 2025, 15(7), 1044; https://doi.org/10.3390/life15071044 - 30 Jun 2025
Viewed by 435
Abstract
Beneficial interactions between nitrogen-fixing soil bacteria and legumes offer a solution to increase crop yield on Earth and potentially in future Martian colonies. Paraburkholderia phymatum is a nitrogen-fixing beta-rhizobium, which enters symbiosis with more than 50 legumes and can survive in acidic or [...] Read more.
Beneficial interactions between nitrogen-fixing soil bacteria and legumes offer a solution to increase crop yield on Earth and potentially in future Martian colonies. Paraburkholderia phymatum is a nitrogen-fixing beta-rhizobium, which enters symbiosis with more than 50 legumes and can survive in acidic or aluminium-rich soils. In a previous RNA-sequencing study, we showed that the beta-rhizobium P. phymatum grows well in simulated microgravity and identified phymabactin as the only siderophore produced by this strain. Here, the growth of the beta-rhizobium P. phymatum was assessed in Martian simulant soil using Enhanced Mojave Mars Simulant 2 (MMS-2), which contains a high amount of iron (18.4 percent by weight) and aluminium (13.1 percent by weight). While P. phymatum wild-type’s growth was not affected by exposure to MMS-2, a mutant strain impaired in siderophore biosynthesis (ΔphmJK) grew less than P. phymatum wild-type on gradient plates in the presence of a high concentration of MMS-2 or aluminium. This result suggests that the P. phymatum siderophore phymabactin alleviates aluminium-induced heavy metal stress. Ultra-high performance liquid chromatography–mass spectrometry (UHPLC-MS) showed that phymabactin can bind to aluminium more efficiently than iron. These results not only deepen our understanding of the behaviour of rhizobia in simulated extraterrestrial environments but also provide new insights into the potential use of P. phymatum for bioremediation of aluminium-rich soils and the multiple roles of the siderophore phymabactin. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

18 pages, 1531 KB  
Review
Advancements in Mars Habitation Technologies and Terrestrial Simulation Projects: A Comprehensive Review
by Yubin Zhong, Tao Wu, Yan Han, Feiyang Wang, Dan Zhao, Zhen Fang, Linxin Pan and Chen Tang
Aerospace 2025, 12(6), 510; https://doi.org/10.3390/aerospace12060510 - 5 Jun 2025
Cited by 1 | Viewed by 1827
Abstract
This review examines advancements in Mars habitation technologies, emphasizing Earth-based analog missions and closed-loop life support systems critical for long-duration human presence on the Red Planet. The paper categorizes major simulation projects—including Biosphere 2, Yuegong 1 (Lunar Palace 1), SAM, MaMBA, and CHAPEA—and [...] Read more.
This review examines advancements in Mars habitation technologies, emphasizing Earth-based analog missions and closed-loop life support systems critical for long-duration human presence on the Red Planet. The paper categorizes major simulation projects—including Biosphere 2, Yuegong 1 (Lunar Palace 1), SAM, MaMBA, and CHAPEA—and analyzes their contributions to habitat design, psychological resilience, and environmental control. Technological domains such as in situ resource utilization (ISRU), habitat automation, and extraterrestrial health care are evaluated with respect to current limitations and future scalability. Additionally, the paper explores regulatory, economic, and international cooperation aspects, highlighting their significance in enabling sustainable settlement. By integrating empirical data from terrestrial experiments and recent space initiatives, this review offers a comprehensive assessment of readiness and gaps in Mars habitation strategies. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

16 pages, 2124 KB  
Article
Missing Data in Orthopaedic Clinical Outcomes Research: A Sensitivity Analysis of Imputation Techniques Utilizing a Large Multicenter Total Shoulder Arthroplasty Database
by Kevin A. Hao, Terrie Vasilopoulos, Josie Elwell, Christopher P. Roche, Keegan M. Hones, Jonathan O. Wright, Joseph J. King, Thomas W. Wright, Ryan W. Simovitch and Bradley S. Schoch
J. Clin. Med. 2025, 14(11), 3829; https://doi.org/10.3390/jcm14113829 - 29 May 2025
Cited by 1 | Viewed by 565
Abstract
Background: When missing data are present in clinical outcomes studies, complete-case analysis (CCA) is often performed, whereby patients with missing data are excluded. While simple, CCA analysis may impart selection bias and reduce statistical power, leading to erroneous statistical results in some cases. [...] Read more.
Background: When missing data are present in clinical outcomes studies, complete-case analysis (CCA) is often performed, whereby patients with missing data are excluded. While simple, CCA analysis may impart selection bias and reduce statistical power, leading to erroneous statistical results in some cases. However, there exist more rigorous statistical approaches, such as single and multiple imputation, which approximate the associations that would have been present in a full dataset and preserve the study’s power. The purpose of this study is to evaluate how statistical results differ when performed after CCA analysis versus imputation methods. Methods: This simulation study analyzed a sample dataset consisting of 2204 shoulders, with complete datapoints from a larger multicenter total shoulder arthroplasty database. From the sampled dataset of demographics, surgical characteristics, and clinical outcomes, we created five test datasets, ranging from 100 to 2000 shoulders, and simulated 10–50% missingness in the postoperative American Shoulder and Elbow Surgeons (ASES) score and range of motion in four planes in missing completely at random (MCAR), missing at random (MAR), and not missing at random (NMAR) patterns. Missingness in outcomes was remedied using CCA, three single imputation techniques, and two multiple imputation techniques. The imputation performance was evaluated relative to the native complete dataset using the root mean squared error (RMSE) and the mean absolute percentage error (MAPE). We also compared the mean and standard deviation (SD) of the postoperative ASES score and the results of multivariable linear and logistic regression to understand the effects of imputation on the study results. Results: The average overall RMSE and MAPE were similar for MCAR (22.6 and 27.2%) and MAR (19.2 and 17.7%) missingness patterns, but were substantially poorer for NMAR (37.5 and 79.2%); the sample size and the percentage of data missingness minimally affected RMSE and MAPE. Aggregated mean postoperative ASES scores were within 5% of the true value when missing data were remedied with CCA, and all candidate imputation methods for nearly all ranges of sample size and data missingness when data were MCAR or MAR, but not when data were NMAR. When data were MAR, CCA resulted in overestimates of the SD. When data were MCAR or MAR, the accuracy of the regression estimate (β or OR) and its corresponding 95% CI varied substantially based on the sample size and proportion of missing data for multivariable linear regression, but not logistic regression. When data were MAR, the width of the 95% CI was up to 300% larger when CCA was used, whereas most imputation methods maintained the width of the 95% CI within 50% of the true value. Single imputation with k-nearest neighbor (kNN) method and multiple imputation with predictive mean matching (MICE-PMM) best-reproduced point estimates and intervariable relationships resembling the native dataset. Availability of correlated outcome scores improved the RMSE, MAPE, accuracy of the mean postoperative ASES score, and multivariable linear regression model estimates. Conclusions: Complete-case analysis can introduce selection bias when data are MAR, and it results in loss of statistical power, resulting in loss of precision (i.e., expansion of the 95% CI) and predisposition to false-negative findings. Our data demonstrate that imputation can reliably reproduce missing clinical data and generate accurate population estimates that closely resemble results derived from native primary shoulder arthroplasty datasets (i.e., prior to simulated data missingness). Further study of the use of imputation in clinical database research is critical, as the use of CCA may lead to different conclusions in comparison to more rigorous imputation approaches. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

18 pages, 1392 KB  
Article
A Simulation of Contact Graph Routing for Mars–Earth Data Communication
by Basuki Suhardiman, Kuntjoro Adji Sidarto and Novriana Sumarti
Algorithms 2025, 18(5), 293; https://doi.org/10.3390/a18050293 - 19 May 2025
Viewed by 413
Abstract
In this study, we develop a simulation of Contact Graph Routing (CGR) for data communication between Mars, Earth, and relay satellites. Due to the changing of the satellites’ distances to Mars and Earth, respectively, there are specific contact windows between NASA’s Mars rovers [...] Read more.
In this study, we develop a simulation of Contact Graph Routing (CGR) for data communication between Mars, Earth, and relay satellites. Due to the changing of the satellites’ distances to Mars and Earth, respectively, there are specific contact windows between NASA’s Mars rovers and orbiting relay satellites, and specific contact windows between these relay satellites and NASA’s global system of antennas on Earth. The barrier in communication develops delays caused by link propagation, so it needs a Delay Tolerant Network (DTN) for routing networks among the nodes (satellites and antennas), which is the concept of storing and forwarding data whenever the windows are open. We construct an efficient algorithm for CGR, which puts all objects into a general framework of numbered nodes, so that we can easily develop another application of a network with a larger number of nodes. Simulated data are generated randomly to mimic the unpredicted data volumes that are sent from Mars to Earth. We construct some cases involving delivering data for one Martian day, and the simulation performs well in carrying, storing, and forwarding data from Mars to Earth, even though the relay satellites are not able to contact Earth for a period of time. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

15 pages, 1090 KB  
Article
Exploring Life Detection on Mars: Understanding Challenges in DNA Amplification in Martian Regolith Analogue After Fe Ion Irradiation
by Alessia Cassaro, Claudia Pacelli and Silvano Onofri
Life 2025, 15(5), 716; https://doi.org/10.3390/life15050716 - 29 Apr 2025
Cited by 1 | Viewed by 1156
Abstract
The search for life beyond Earth currently hinges on the detection of biosignatures that are indicative of current or past life, with terrestrial life being the sole known example. Deoxyribonucleic acid (DNA), which acts as the long-term storage of genetic information in all [...] Read more.
The search for life beyond Earth currently hinges on the detection of biosignatures that are indicative of current or past life, with terrestrial life being the sole known example. Deoxyribonucleic acid (DNA), which acts as the long-term storage of genetic information in all known organisms, is considered a biosignature of life. Techniques like the Polymerase Chain Reaction (PCR) are particularly useful as they allow for the amplification of DNA fragments, allowing the detection of even trace amounts of genetic material. This study aimed to detect DNA extracted from colonies of an Antarctic black fungus both when (i) alone and (ii) mixed with a Sulfatic Mars Regolith Simulant (S-MRS), after exposure to increasing doses of Fe ions (up to 1 kGy). PCR-based amplification methods were used for detection. The findings of this study revealed no DNA amplification in samples mixed with Sulfatic Mars Regolith Simulant, providing important insights into the potential application of these techniques for in situ DNA detection during future space exploration missions or for their application on the Mars sample return program; it also gives input in the planetary protection discussions. Full article
(This article belongs to the Section Astrobiology)
Show Figures

Figure 1

14 pages, 3037 KB  
Article
Numerical Study on Particle Accumulation and Its Impact on Rotorcraft Airfoil Performance on Mars
by Enrico Giacomini and Lars-Göran Westerberg
Aerospace 2025, 12(5), 368; https://doi.org/10.3390/aerospace12050368 - 23 Apr 2025
Viewed by 399
Abstract
Unmanned aerial vehicles (UAVs) have emerged as practical and potentially advantageous tools for scientific investigation and reconnaissance of planetary surfaces, such as Mars. Their ability to traverse difficult terrain and provide high-resolution imagery has revolutionized the concept of exploration. However, operating drones in [...] Read more.
Unmanned aerial vehicles (UAVs) have emerged as practical and potentially advantageous tools for scientific investigation and reconnaissance of planetary surfaces, such as Mars. Their ability to traverse difficult terrain and provide high-resolution imagery has revolutionized the concept of exploration. However, operating drones in the Martian environment presents fundamental challenges due to the harsh conditions and the different atmosphere. Aerodynamic challenges include low chord-based Reynolds number flows and the presence of dust particles, which can accumulate on the airfoil surface. This paper investigates the accumulation of dust on cambered plates with 6% and 1% camber, suitable for the type of flow studied. The analysis is conducted for Reynolds numbers of around 20,000 as a result of dimension restrictions, assuming a wind speed ranging from 12 to 14 m/s. Computational simulations are performed using a 2D C-type mesh in ANSYS Fluent, employing the γ-Re SST turbulence model. Dust particle modeling is achieved through the Discrete Phase Model (DPM), with one-way coupling between phases. The accumulation of particles is monitored over a 6-month period with monthly intervals, and the airfoil is set at a 0° angle of attack. A deposition model, developed using user-defined functions in Fluent, considers particle–airfoil interaction and forces acting on particles. Results indicate a decrease in airfoil performance for negative angles of attack due to geometric changes, particularly due to accumulation on the bottom side near the tip. The discussion includes potential model enhancements and future research directions arising from the assumptions made in this study. Full article
(This article belongs to the Special Issue Planetary Exploration)
Show Figures

Figure 1

Back to TopTop