Advancements in Mars Habitation Technologies and Terrestrial Simulation Projects: A Comprehensive Review
Abstract
1. Introduction
2. Development for Living on Mars
2.1. Biosphere 2
2.2. Lunar Palace 1
2.3. Space Analog for the Moon and Mars, SAM
- Develop a plant-based ECLSS to replace current physicochemical systems.
- Simulate the transformation of weathered basalt into plantable soil.
- Test pressurized suits and extravehicular activities, including tool use, construction, maintenance, data collection, and communication.
- Study the evolution of microbial communities in a simulated Martian environment.
- Develop computer models for long-term, composite ECLSS simulations.
2.4. MAn-Moon Base Analog (MaMBA)
- Life Support Systems: Investigating self-sustaining technologies for air, water, and food production in closed-loop ecosystems.
- In Situ Resource Utilization (ISRU): Developing technologies to utilize local resources on the Moon and Mars, such as water ice and building materials, to reduce dependency on Earth-based supplies.
- Psychological and Physiological Impacts: Studying the effects of isolation, confinement, and teamwork on astronauts’ well-being during extended missions.
2.5. Crew Health and Performance Exploration Analog (CHAPEA)
2.6. Flashline Mars Arctic Research Station (MARS)
2.7. Mars Desert Research Station (MDRS)
- (1)
- Crew dynamics in confined, isolated environments;
- (2)
- Field science operations under simulated planetary conditions;
- (3)
- Habitat system performance requirements for future Mars missions.
2.8. Concordia Research Station
- (1)
- Extreme low temperatures reaching −80 °C in winter.
- (2)
- Prolonged polar night with complete darkness for 4 months.
- (3)
- Hypobaric hypoxia (oxygen levels equivalent to 3800 m altitude).
- (1)
- Human adaptation in isolated, confined environments.
- (2)
- Psychophysiological responses to prolonged isolation.
- (3)
- Neurological changes under extreme conditions.
- (4)
- Team dynamics and performance under stress.
2.9. Mars-500
- (1)
- Progressive decline in group cohesion after 8 months.
- (2)
- A 40% reduction in communication efficiency during final mission phase.
- (3)
- The development of effective stress management protocols is necessary and efficient for long-term human exterresial missions.
2.10. HI-SEAS Mars Environment Simulation Research Station
2.11. International Space Station (ISS)
3. Technology and Development Focus
3.1. ISRU Technology
3.2. Extraterrestrial Construction
- (1)
- Thermal Variability: The Martian regolith exhibits low thermal conductivity [78,79,80], which significantly limits its capacity to store and redistribute heat. Consequently, surface temperatures on Mars are highly responsive to solar radiation, leading to pronounced diurnal temperature fluctuations. During daylight hours, solar-exposed regions can experience rapid warming, whereas the absence of insolation at night results in swift cooling. This severe thermal cycling imposes mechanical stress on habitat materials, accelerates material fatigue, and may induce deformation of the regolith foundation. These conditions present serious challenges for maintaining structural stability and thermal regulation within habitats. As such, future Martian construction efforts must incorporate advanced thermal insulation, resilient structural materials, and adaptive architectural strategies to ensure habitat integrity over extended durations.
- (2)
3.3. Automation Technology
3.4. ECLSS
3.5. Extraterrestrial Human Physical and Mental Health Care
3.6. Potentials of Public–Private Partnerships (PPPs) and Commercializations
3.7. Influences of National Policies and International Corporations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ECLSS | Environmental Control and Life Support System |
EVA | Extravehicular activity |
ISRU | In situ resource utilization |
References
- Valantinas, A.; Mustard, J.F.; Chevrier, V.; Mangold, N.; Bishop, J.L.; Pommerol, A.; Beck, P.; Poch, O.; Applin, D.M.; Cloutis, E.A.; et al. Detection of Ferrihydrite in Martian Red Dust Records Ancient Cold and Wet Conditions on Mars. Nat. Commun. 2025, 16, 1712. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.; Scheucher, M.; Hu, R.; Ehlmann, B.L.; Thomas, T.B.; Wordsworth, R.; Scheller, E.; Lillis, R.; Smith, K.; Rauer, H.; et al. Episodic Warm Climates on Early Mars Primed by Crustal Hydration. Nat. Geosci. 2025, 18, 133–139. [Google Scholar] [CrossRef]
- Starr, S.O.; Muscatello, A.C. Mars in Situ Resource Utilization: A Review. Planet. Space Sci. 2020, 182, 104824. [Google Scholar] [CrossRef]
- Muscatello, A.; Santiago-Maldonado, E. Mars in Situ Resource Utilization Technology Evaluation. In Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 2012, Nashville, TN, USA, 9–12 January 2012; p. 360. [Google Scholar]
- Shishko, R.; Fradet, R.; Do, S.; Saydam, S.; Tapia-Cortez, C.; Dempster, A.G.; Coulton, J. Mars Colony in Situ Resource Utilization: An Integrated Architecture and Economics Model. Acta Astronaut. 2017, 138, 53–67. [Google Scholar] [CrossRef]
- Sacksteder, K.; Sanders, G. In-Situ Resource Utilization for Lunar and Mars Exploration. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2007; p. 345. [Google Scholar]
- Golombek, M.P.; Grant, J.A.; Parker, T.J.; Kass, D.M.; Crisp, J.A.; Squyres, S.W.; Haldemann, A.F.C.; Adler, M.; Lee, W.J.; Bridges, N.T. Selection of the Mars Exploration Rover Landing Sites. J. Geophys. Res. Planets 2003, 108, 8072. [Google Scholar] [CrossRef]
- Crisp, J.A.; Adler, M.; Matijevic, J.R.; Squyres, S.W.; Arvidson, R.E.; Kass, D.M. Mars Exploration Rover Mission. J. Geophys. Res. Planets 2003, 108, 8061. [Google Scholar] [CrossRef]
- Sheehan, W. The Planet Mars: A History of Observation & Discovery; University of Arizona Press: Tucson, AZ, USA, 1996; ISBN 0816516413. [Google Scholar]
- Shayler, D.J.; Salmon, A.; Shayler, M.D. History of Mars Exploration. In Marswalk One: First Steps on a New Planet; Springer: London, UK, 2005; pp. 19–42. [Google Scholar]
- Williams, G.; Crusan, J. Pioneering Space—The Evolvable Mars Campaign; NASA Headquarters: Washington, DC, USA, 2015. Available online: https://www.nasa.gov/wp-content/uploads/2016/12/20150408-nac-crusan-emc-v7a_tagged.pdf (accessed on 30 May 2025).
- Craig, D.A.; Herrmann, N.B.; Troutman, P.A. The Evolvable Mars Campaign-Study Status. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015; pp. 1–14. [Google Scholar]
- Mueller, R.P.; Sibille, L.; Mantovani, J.; Sanders, G.B.; Jones, C.A. Opportunities and Strategies for Testing and Infusion of ISRU in the Evolvable Mars Campaign. In Proceedings of the AIAA SPACE 2015 Conference and Exposition, Pasadena, CA, USA, 31 August–2 September 2015; p. 4459. [Google Scholar]
- Davé, A.; Thompson, S.J.; McKay, C.P.; Stoker, C.R.; Zacny, K.; Paulsen, G.; Mellerowicz, B.; Glass, B.J.; Willson, D.; Bonaccorsi, R. The Sample Handling System for the Mars Icebreaker Life Mission: From Dirt to Data. Astrobiology 2013, 13, 354–369. [Google Scholar] [CrossRef]
- Haltigin, T.; Davis, R.; Kelley, M.; Mugnuolo, R.; Usui, T.; Ammannito, E.; Baker, D.; Plourde, P.; Viotti, M. International Mars Ice Mapper: Overview and Development Status. In Proceedings of the 44th COSPAR Scientific Assembly, Athens, Greece, 16–24 July 2022; Volume 44, p. 425. [Google Scholar]
- Davis, R.M.; Collom, B.; Viotti, M.; Kelley, M. International Mars Ice Mapper Mission: A Reconnaissance Mission for the Human Exploration of Mars. In Proceedings of the Low-Cost Science Mission Concepts for Mars Exploration, Pasadena, CA, USA, 29–31 March 2022; Volume 2655, p. 5071. [Google Scholar]
- Nealson, K.H. The Limits of Life on Earth and Searching for Life on Mars. J. Geophys. Res. Planets 1997, 102, 23675–23686. [Google Scholar] [CrossRef]
- McKay, C.P.; Stoker, C.R. The Early Environment and Its Evolution on Mars: Implication for Life. Rev. Geophys. 1989, 27, 189–214. [Google Scholar] [CrossRef]
- Farley, K.A.; Williford, K.H.; Stack, K.M.; Bhartia, R.; Chen, A.; de la Torre, M.; Hand, K.; Goreva, Y.; Herd, C.D.K.; Hueso, R. Mars 2020 Mission Overview. Space Sci. Rev. 2020, 216, 142. [Google Scholar] [CrossRef]
- HandWiki List of Missions to Mars. Available online: https://handwiki.org/wiki/Astronomy:List_of_missions_to_Mars (accessed on 30 May 2025).
- Williford, K.H.; Farley, K.A.; Stack, K.M.; Allwood, A.C.; Beaty, D.; Beegle, L.W.; Bhartia, R.; Brown, A.J.; de la Torre Juarez, M.; Hamran, S.-E. The NASA Mars 2020 Rover Mission and the Search for Extraterrestrial Life. In From Habitability to Life on Mars; Elsevier: Amsterdam, The Netherlands, 2018; pp. 275–308. [Google Scholar]
- Simon, M.A.; Wald, S.I.; Howe, A.S.; Toups, L. Evolvable Mars Campaign Long Duration Habitation Strategies: Architectural Approaches to Enable Human Exploration Missions. In Proceedings of the AIAA SPACE 2015 Conference and Exposition, Pasadena, CA, USA, 31 August–2 September 2015; p. 4514. [Google Scholar]
- Craig, D.A.; Troutman, P.; Herrmann, N. Pioneering Space through the Evolvable Mars Campaign. In Proceedings of the AIAA Space 2015 Conference and Exposition, Pasadena, CA, USA, 31 August–2 September 2015; p. 4409. [Google Scholar]
- McKay, C.P.; Stoker, C.R.; Glass, B.J.; Davé, A.I.; Davila, A.F.; Heldmann, J.L.; Marinova, M.M.; Fairen, A.G.; Quinn, R.C.; Zacny, K.A. The Icebreaker Life Mission to Mars: A Search for Biomolecular Evidence for Life. Astrobiology 2013, 13, 334–353. [Google Scholar] [CrossRef] [PubMed]
- Ammannito, E.; Viotti, M.A.; Amoroso, M.; Haltigin, T.; Usui, T.; Kelley, M.; Mugnuolo, R.; Davis, R. Mapping Martian Ice & Implications for Astrobiology: Contributions of the International Mars Ice Mapper Mission. In Proceedings of the 23rd European Astrobiology Conference, Madrid, Spain, 19–22 September 2023; p. E1. [Google Scholar]
- Vago, J.; Gardini, B.; Kminek, G.; Baglioni, P.; Gianfiglio, G.; Santovincenzo, A.; Bayon, S.; van Winnendael, M. ExoMars-Searching for Life on the Red Planet. ESA Bull. 2006, 126, 16–23. [Google Scholar]
- Boeder, P.A.; Soares, C.E. Mars 2020: Mission, Science Objectives and Build. In Proceedings of the Systems Contamination: Prediction, Control, and Performance 2020, San Diego, CA, USA, 24 August–4 September 2020; Volume 11489, p. 1148903. [Google Scholar]
- Hanel, R.; Conrath, B.; Hovis, W.; Kunde, V.; Lowman, P.; Maguire, W.; Pearl, J.; Pirraglia, J.; Prabhakara, C.; Schlachman, B. Investigation of the Martian Environment by Infrared Spectroscopy on Mariner 9. Icarus 1972, 17, 423–442. [Google Scholar] [CrossRef]
- Segura, T.L.; Toon, O.B.; Colaprete, A.; Zahnle, K. Environmental Effects of Large Impacts on Mars. Science 2002, 298, 1977–1980. [Google Scholar] [CrossRef]
- Horneck, G.; Facius, R.; Reitz, G.; Rettberg, P.; Baumstark-Khan, C.; Gerzer, R. Critical Issues in Connection with Human Missions to Mars: Protection of and from the Martian Environment. Adv. Space Res. 2003, 31, 87–95. [Google Scholar] [CrossRef]
- Dong, C.; Shao, L.; Fu, Y.; Wang, M.; Xie, B.; Yu, J.; Liu, H. Evaluation of Wheat Growth, Morphological Characteristics, Biomass Yield and Quality in Lunar Palace-1, Plant Factory, Green House and Field Systems. Acta Astronaut. 2015, 111, 102–109. [Google Scholar] [CrossRef]
- Hawkins, G.; Melotti, E.; Staats, K.; Meszaros, A.; Giacomelli, G. Ecosystem Modeling and Validation Using Empirical Data from NASA CELSS and Biosphere 2. In Proceedings of the 2023 International Conference on Environmental Systems, Calgary, AB, Canada, 16–20 July 2023. [Google Scholar]
- Fu, Y.; Liu, H.; Liu, D.; Hu, D.; Xie, B.; Liu, G.; Yi, Z.; Liu, H. A Case for Supporting Human Long-Term Survival on the Moon:“Lunar Palace 365” Mission. Acta Astronaut. 2025, 228, 131–140. [Google Scholar] [CrossRef]
- Marino, B.D.V.; Odum, H.T. Biosphere 2. Introduction and Research Progress. Ecol. Eng. 1999, 13, 3–14. [Google Scholar]
- Allen, J.; Nelson, M. Overview and Design Biospherics and Biosphere 2, Mission One (1991–1993). Ecol. Eng. 1999, 13, 15–29. [Google Scholar] [CrossRef]
- Dempster, W.F. Biosphere 2 Engineering Design. Ecol. Eng. 1999, 13, 31–42. [Google Scholar] [CrossRef]
- Nelson, M.; Burgess, T.L.; Alling, A.; Alvarez-Romo, N.; Dempster, W.F.; Walford, R.L.; Allen, J.P. Using a Closed Ecological System to Study Earth’s Biosphere: Initial Results from Biosphere 2. Bioscience 1993, 43, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M. Biosphere 2’s Lessons about Living on Earth and in Space. Space Sci. Technol. 2021, 2021, 8067539. [Google Scholar] [CrossRef]
- Cohen, J.E.; Tilman, D. Biosphere 2 and Biodiversity—The Lessons So Far. Science 1996, 274, 1150–1151. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yao, Z.; Liu, H. Human Lunar Base: “Lunar Palace 1” Team of Beihang University Unveils China’s “Lunar Palace” Plan. Innovation 2024, 5, 100592. [Google Scholar] [CrossRef]
- Hao, Z.; Zhu, Y.; Feng, S.; Meng, C.; Hu, D.; Liu, H.; Liu, H. Effects of Long Term Isolation on the Emotion Change of “Lunar Palace 365” Crewmembers. Sci. Bull. 2019, 64, 881–884. [Google Scholar] [CrossRef]
- Wu, R.; Wang, Y. Psychosocial Interaction during a 105-Day Isolated Mission in Lunar Palace 1. Acta Astronaut. 2015, 113, 1–7. [Google Scholar] [CrossRef]
- Heinicke, C.; Foing, B. MaMBA-a Functional Moon and Mars Base Analog. In Proceedings of the European Planetary Science Congress, Riga, Latvia, 17–22 September 2017; p. EPSC2017-814. [Google Scholar]
- Heinicke, C. From Simulations towards a Functional Base: The Moon and Mars Base Analog (MaMBA). In Proceedings of the 49th International Conference on Environmental Systems, Boston, MA, USA, 7–11 July 2019. [Google Scholar]
- Heinicke, C.; Orzechowski, L.; Abdullah, R.; von Einem, M.; Arnhof, M. Updated Design Concepts of the Moon and Mars Base Analog (MaMBA). In Proceedings of the European Planetary Science Congress 2018, Berlin, Germany, 16–21 September 2018; Volume 12. [Google Scholar]
- Heinicke, C.; Avila, M. Lessons from the First Simulations at the Moon and Mars Base Analog (MaMBA). In Proceedings of the 50th International Conference on Environmental Systems, Online, 12–14 July 2021. [Google Scholar]
- Momose, K.; Heinicke, C. Medical Bay Design Considerations for the Moon and Mars Base Analog (MaMBA). In Proceedings of the 50th International Conference on Environmental Systems, Online, 12–14 July 2021. [Google Scholar]
- Gellenbeck, S.; Cuello, J.L.; Pryor, B.; Gerba, C.; Staats, K. Integration and Validation of Mushroom and Algae into an Agent-Based Model of a Physico-Chemical and Bioregenerative ECLSS. In Proceedings of the 2023 International Conference on Environmental Systems, Calgary, AB, Canada, 16–20 July 2023. [Google Scholar]
- Heinicke, C. Preparing Human Exploration on the Moon and Mars: First Test Runs at the MaMBA Laboratory. In Proceedings of the EPSC-DPS Joint Meeting 2019, Geneva, Switzerland, 15–20 September 2019; Volume 2019, p. EPSC-DPS2019. [Google Scholar]
- Meier, A.; Fisher, J.; Bolado, N.; Crow, A.; Arnold, C.; Rios, J.; Best, H.; Smith, J. Thermal Degradation and Rapid Composting of Inedible Biomass and Logistical Waste for Crop Production and Resource Recovery in Space Applications. In Proceedings of the 53rd International Conference on Environmental Systems, Louisville, KY, USA, 21–25 July 2024. [Google Scholar]
- Yashar, M.; Glasgow, C.; Mehlomakulu, B.; Ballard, J.; Salazar, J.; Mauer, S.; Covey, S. Mars Dune Alpha: A 3D-Printed Habitat by ICON/BIG for NASA’s Crew Health and Performance Exploration Analog (CHAPEA). In Proceedings of the Earth and Space 2022, Denver, CO, USA, 25–28 April 2022. [Google Scholar]
- Cusack, S.; Ferrone, K.; Kramer, W.; Garvin, C.; Palaia, J.; Shiro, B. Flashline Mars Arctic Research Station (FMARS) 2009 Expedition Crew Perspectives. In Proceedings of the SpaceOps 2010 Conference, Huntsville, AL, USA, 25–30 April 2010; ISBN 978-1-62410-164-9. [Google Scholar]
- Society, M. Mars160 FMARS Final Mission Report; Flashline Mars Arctic Research Station, Mars Society: Devon Island, NU, Canada, 2017. [Google Scholar]
- Bamsey, M.; Berinstain, A.; Auclair, S.; Battler, M.; Binsted, K.; Bywaters, K.; Harris, J.; Kobrick, R.; McKay, C. Four-Month Moon and Mars Crew Water Utilization Study Conducted at the Flashline Mars Arctic Research Station, Devon Island, Nunavut. Adv. Space Res. 2009, 43, 1256–1274. [Google Scholar] [CrossRef]
- Hargitai, H.I.; Gregory, H.S.; Osburg, J.; Hands, D. Development of a Local Toponym System at the Mars Desert Research Station. Cartogr. Int. J. Geogr. Inf. Geovis. 2007, 42, 179–187. [Google Scholar] [CrossRef]
- Poulet, L.; Doule, O. Greenhouse Automation, Illumination and Expansion Study for Mars Desert Research Station. In Proceedings of the IAC 2014, Toronto, ON, Canada, 29 September–3 October 2014. [Google Scholar]
- Black, A.D. Wor (l) D-building: Simulation and Metaphor at the Mars Desert Research Station. J. Linguist. Anthropol. 2018, 28, 137–155. [Google Scholar] [CrossRef]
- Martins, Z.; Sephton, M.A.; Foing, B.H.; Ehrenfreund, P. Extraction of Amino Acids from Soils Close to the Mars Desert Research Station (MDRS), Utah. Int. J. Astrobiol. 2011, 10, 231–238. [Google Scholar] [CrossRef]
- Roman-Gonzalez, A.; Saab, B.; Berger, J.; Hoyt, J.; Urquhart, J.; Guined, J. Mars Desert Research Station: Crew 138. In Proceedings of the 66th International Astronautical Congress-IAC 2015, Jerusalem, Israel, 12–16 October 2015; p. 7. [Google Scholar]
- Ricaud, P.; Sonneville, A. Concordia: Une Station Scientifique Dans Le Froid Extrême de l’Antarctique. La Météorologie 2023, 123, 59. [Google Scholar] [CrossRef]
- Van Ombergen, A.; Rossiter, A.; Ngo-Anh, T.J. ‘White Mars’–Nearly Two Decades of Biomedical Research at the Antarctic Concordia Station. Exp. Physiol. 2021, 106, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Feichtinger, E.; Charles, R.; Urbina, D.; Sundblad, P.; Fuglesang, C.; Zell, M. Mars-500—A Testbed for Psychological Crew Support during Future Human Exploration Missions. In Proceedings of the 2012 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2012; pp. 1–17. [Google Scholar]
- Tafforin, C. The Mars-500 Crew in Daily Life Activities: An Ethological Study. Acta Astronaut. 2013, 91, 69–76. [Google Scholar] [CrossRef]
- Tafforin, C.; Vinokhodova, A.; Chekalina, A.; Gushin, V. Correlation of Etho-Social and Psycho-Social Data from “Mars-500” Interplanetary Simulation. Acta Astronaut. 2015, 111, 19–28. [Google Scholar] [CrossRef]
- Ushakov, I.B.; Vladimirovich, M.B.; Bubeev, Y.A.; Gushin, V.I.; Vasil’eva, G.Y.; Vinokhodova, A.G.; Shved, D.M. Main Findings of Psychophysiological Studies in the Mars 500 Exceperiment. Her. Russ. Acad. Sci. 2014, 84, 106–114. [Google Scholar] [CrossRef]
- Musilova, M.; Foing, B.; Beniest, A.; Rogers, H. EuroMoonMars IMA at HI-SEAS Campaigns in 2019: An Overview of the Analog Missions, Upgrades to the Mission Operations and Protocols. In Proceedings of the 51st Lunar and Planetary Science Conference, The Woodlands, TX, USA, 16–20 March 2020. [Google Scholar]
- Anderson, A.P.; Fellows, A.M.; Binsted, K.A.; Hegel, M.T.; Buckey, J.C. Autonomous, Computer-Based Behavioral Health Countermeasure Evaluation at HI-SEAS Mars Analog. Aerosp. Med. Hum. Perform. 2016, 87, 912–920. [Google Scholar] [CrossRef]
- Mahnert, A.; Verseux, C.; Schwendner, P.; Koskinen, K.; Kumpitsch, C.; Blohs, M.; Wink, L.; Brunner, D.; Goessler, T.; Billi, D. Microbiome Dynamics during the HI-SEAS IV Mission, and Implications for Future Crewed Missions beyond Earth. Microbiome 2021, 9, 27. [Google Scholar] [CrossRef]
- Goemaere, S.; Van Caelenberg, T.; Beyers, W.; Binsted, K.; Vansteenkiste, M. Life on Mars from a Self-Determination Theory Perspective: How Astronauts’ Needs for Autonomy, Competence and Relatedness Go Hand in Hand with Crew Health and Mission Success-Results from HI-SEAS IV. Acta Astronaut. 2019, 159, 273–285. [Google Scholar] [CrossRef]
- Tatara, J.D.; Roman, M.C. An Overview of ISS ECLSS Life Testing at NASA, MSFC. Life Support. Biosph. Sci. 1998, 5, 13–21. [Google Scholar]
- Carrasquillo, R. ISS ECLSS Technology Evolution for Exploration. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005; p. 337. [Google Scholar]
- Balistreri, S.F., Jr.; Van Keuren, S.; Robinson, K.; Santoyo, J.; Koerber, O.; Caldwell, A.; Luong, H.H.; Davis, M.; Cover, J.M. International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events 2023. In Proceedings of the 53rd International Conference on Environmental Systems (ICES), Louisville, KY, USA, 21–25 July 2024. [Google Scholar]
- Rucker, M.A.; Craig, D.A.; Burke, L.M.; Chai, P.R.; Chappell, M.B.; Drake, B.G.; Edwards, S.J.; Hoffman, S.; McCrea, A.C.; Trent, D.J. NASA’s Strategic Analysis Cycle 2021 (SAC21) Human Mars Architecture. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–13 March 2022; pp. 1–10. [Google Scholar]
- Clark, B.C. Geochemical Components in Martian Soil. Geochim. Cosmochim. Acta 1993, 57, 4575–4581. [Google Scholar] [CrossRef]
- Morgan, G.A.; Putzig, N.E.; Perry, M.R.; Sizemore, H.G.; Bramson, A.M.; Petersen, E.I.; Bain, Z.M.; Baker, D.M.H.; Mastrogiuseppe, M.; Hoover, R.H.; et al. Availability of Subsurface Water-Ice Resources in the Northern Mid-Latitudes of Mars. Nat. Astron. 2021, 5, 230–236. [Google Scholar] [CrossRef]
- Bish, D.L.; William Carey, J.; Vaniman, D.T.; Chipera, S.J. Stability of Hydrous Minerals on the Martian Surface. Icarus 2003, 164, 96–103. [Google Scholar] [CrossRef]
- Oze, C.; Beisel, J.; Dabsys, E.; Dall, J.; North, G.; Scott, A.; Lopez, A.M.; Holmes, R.; Fendorf, S. Perchlorate and Agriculture on Mars. Soil Syst. 2021, 5, 37. [Google Scholar] [CrossRef]
- Grott, M.; Spohn, T.; Knollenberg, J.; Krause, C.; Hudson, T.L.; Piqueux, S.; Müller, N.; Golombek, M.; Vrettos, C.; Marteau, E. Thermal Conductivity of the Martian Soil at the InSight Landing Site from HP3 Active Heating Experiments. J. Geophys. Res. Planets 2021, 126, e2021JE006861. [Google Scholar] [CrossRef]
- Siegler, M.; Aharonson, O.; Carey, E.; Choukroun, M.; Hudson, T.; Schorghofer, N.; Xu, S. Measurements of Thermal Properties of Icy Mars Regolith Analogs. J. Geophys. Res. Planets 2012, 117, E03001. [Google Scholar] [CrossRef]
- Nagihara, S.; Ngo, P.; Grott, M. Thermal Properties of the Mojave Mars Regolith Simulant in Mars-like Atmospheric Conditions. Int. J. Thermophys. 2022, 43, 98. [Google Scholar] [CrossRef]
- Cucinotta, F.A.; Schimmerling, W.; Wilson, J.W.; Peterson, L.E.; Badhwar, G.D.; Saganti, P.B.; Dicello, J.F. Space Radiation Cancer Risks and Uncertainties for Mars Missions. Radiat. Res. 2001, 156, 682–688. [Google Scholar] [CrossRef]
- Simonsen, L.C.; Nealy, J.E.; Townsend, L.W.; Wilson, J.W. Space Radiation Dose Estimates on the Surface of Mars. J. Spacecr. Rocket. 1990, 27, 353–354. [Google Scholar] [CrossRef]
- Cucinotta, F.A. Review of NASA Approach to Space Radiation Risk Assessments for Mars Exploration. Health Phys. 2015, 108, 131–142. [Google Scholar] [CrossRef]
- Hassler, D.M.; Zeitlin, C.; Wimmer-Schweingruber, R.F.; Ehresmann, B.; Rafkin, S.; Eigenbrode, J.L.; Brinza, D.E.; Weigle, G.; Böttcher, S.; Böhm, E.; et al. Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover. Science 2014, 343, 1244797. [Google Scholar] [CrossRef]
- Li, C.; Zheng, Y.; Wang, X.; Zhang, J.; Wang, Y.; Chen, L.; Zhang, L.; Zhao, P.; Liu, Y.; Lv, W.; et al. Layered Subsurface in Utopia Basin of Mars Revealed by Zhurong Rover Radar. Nature 2022, 610, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Viola, D.; McEwen, A.S.; Dundas, C.M.; Byrne, S. Expanded Secondary Craters in the Arcadia Planitia Region, Mars: Evidence for Tens of Myr-Old Shallow Subsurface Ice. Icarus 2015, 248, 190–204. [Google Scholar] [CrossRef]
- Gillmann, C.; Lognonné, P.; Chassefière, E.; Moreira, M. The Present-Day Atmosphere of Mars: Where Does It Come From? Earth Planet. Sci. Lett. 2009, 277, 384–393. [Google Scholar] [CrossRef]
- Mintus, A.; Orzechowski, L.; Ćwilichowska, N. LunAres Analog Research Station—Overview of Updated Design and Research Potential. Acta Astronaut. 2022, 193, 785–794. [Google Scholar] [CrossRef]
- Aquinoa, R.C.D. Mars Cave Research Station: Principia Mission. In Proceedings of the 75th International Astronautical Congress (IAC), Milan, Italy, 14–18 October 2024. [Google Scholar]
- Homnick, M. INTERSPACE Mars Analog Based on Proposed Settlement Level Criteria. In Proceedings of the 2nd International Conference and Exhibition on Mechanical & Aerospace Engineering, Philadelphia, PA, USA, 8–10 September 2014. [Google Scholar]
- Undseth, M.; Jolly, C.; Olivari, M. Evolving Public-Private Relations in the Space Sector; OECD Science, Technology and Industry Policy Papers; OECD: Paris, France, 2021. [Google Scholar]
- Parishanmahjuri, H. Development of the Global Value Chains in the Space Industry. Master’s Thesis, Ca’ Foscari University of Venice, Venice, Italy, 2022. [Google Scholar]
- Rausser, G.; Choi, E.; Bayen, A. Public–Private Partnerships in Fostering Outer Space Innovations. Proc. Natl. Acad. Sci. USA 2023, 120, e2222013120. [Google Scholar] [CrossRef]
- Papadimitriou, A.; Adriaensen, M.; Antoni, N.; Giannopapa, C. Perspective on Space and Security Policy, Programmes and Governance in Europe. Acta Astronaut. 2019, 161, 183–191. [Google Scholar] [CrossRef]
- Wu, X. The International Lunar Research Station: China’s New Era of Space Cooperation and Its New Role in the Space Legal Order. Space Policy 2023, 65, 101537. [Google Scholar] [CrossRef]
- Jakhu, R.S.; Pelton, J.N.; Nyampong, Y.O.M. Space Mining and Its Regulation; Springer: Cham, Switzerland, 2017; Volume 106. [Google Scholar]
- Zhao, Y. Space Commercialization and the Development of Space Law. In Oxford Research Encyclopedia of Planetary Science; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
Missions | Objectives Relative to Mars Habitation/Life on Mars |
---|---|
ExoMars 2022 (Rosalind Franklin) | Search for signs of life on Mars. |
Tianwen-3 | Demonstrate ISRU technology. |
International Mars Ice Mapper (I-MIM) | Map and characterize accessible near-surface water ice (to depths of 10 m or less) and its overburden at mid- to low-latitude regions. |
Icebreaker Life |
|
Evolvable Mars Campaign (EMC) | Manned exploration on Mars. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Y.; Wu, T.; Han, Y.; Wang, F.; Zhao, D.; Fang, Z.; Pan, L.; Tang, C. Advancements in Mars Habitation Technologies and Terrestrial Simulation Projects: A Comprehensive Review. Aerospace 2025, 12, 510. https://doi.org/10.3390/aerospace12060510
Zhong Y, Wu T, Han Y, Wang F, Zhao D, Fang Z, Pan L, Tang C. Advancements in Mars Habitation Technologies and Terrestrial Simulation Projects: A Comprehensive Review. Aerospace. 2025; 12(6):510. https://doi.org/10.3390/aerospace12060510
Chicago/Turabian StyleZhong, Yubin, Tao Wu, Yan Han, Feiyang Wang, Dan Zhao, Zhen Fang, Linxin Pan, and Chen Tang. 2025. "Advancements in Mars Habitation Technologies and Terrestrial Simulation Projects: A Comprehensive Review" Aerospace 12, no. 6: 510. https://doi.org/10.3390/aerospace12060510
APA StyleZhong, Y., Wu, T., Han, Y., Wang, F., Zhao, D., Fang, Z., Pan, L., & Tang, C. (2025). Advancements in Mars Habitation Technologies and Terrestrial Simulation Projects: A Comprehensive Review. Aerospace, 12(6), 510. https://doi.org/10.3390/aerospace12060510