The Impact of Hydrogeological Properties on Mass Displacement in Aquifers: Insights from Implementing a Mass-Abatement Scalable System Using Managed Aquifer Recharge (MAR-MASS)
Abstract
1. Introduction
2. Materials and Methods
2.1. Conceptual Model
2.1.1. Numerical Model Structural Characteristics
2.1.2. Numerical Model Boundary Conditions and Characteristics
2.1.3. Initial Configuration of Aquifer Hydrodynamic Parameters
2.2. Numerical Model
2.2.1. Number of Scenarios and Simulations
2.2.2. Temporal Discretization
2.2.3. Software Selection, Application Programming Interface (API), and Processors
2.2.4. Workflow
2.2.5. Spearman Correlation and Significance Tests
3. Results
3.1. Amount of Mass Extracted for a Simulation Period of 3000 Days for the Injection Extraction Scenario
3.2. System Efficiency Period and Mass Extraction Values According to the Parameters Analyzed
3.3. Propagation of Fresh Water Injected Within the Proposed Method’s Efficiency Period
3.4. System Operation Time to Purify Salinized Areas Until Reaching Safe Levels for Drinking Water Consumption
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gorelick, S.M.; Zheng, C. Global change and the groundwater management challenge. Water Resour. Res. 2015, 51, 3031–3051. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–42. [Google Scholar]
- Watson, R.T.; Zinyowera, M.C.; Moss, R.H.; Dokkeng, D.J. The Regional Impacts of Climate Change: An Assessment of Vulnerability: A Special Report of IPCC Working Group II; Published for Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 1998; Available online: https://www.ipcc.ch/site/assets/uploads/2020/11/The-Regional-Impact.pdf (accessed on 15 July 2025).
- Ferguson, G.; Gleeson, T. Vulnerability of coastal aquifers to groundwater use and climate change. Nat. Clim. Change 2012, 2, 342–345. [Google Scholar] [CrossRef]
- Richardson, C.M.; Davis, K.L.; Ruiz-González, C.; Guimond, J.A.; Michael, H.A.; Paldor, A.; Moosdorf, N.; Paytan, A. The impacts of climate change on coastal groundwater. Nat. Rev. Earth Environ. 2024, 5, 100–119. [Google Scholar] [CrossRef]
- Stefan, C.; Ansems, N. Web-based global inventory of managed aquifer recharge applications. Sustain. Water Resour. Manag. 2018, 4, 153–162. [Google Scholar] [CrossRef]
- Levintal, E.; Kniffin, M.L.; Ganot, Y.; Marwaha, N.; Murphy, N.P.; Dahlke, H.E. Agricultural managed aquifer recharge (Ag-MAR)—A method for sustainable groundwater management: A review. Crit. Rev. Environ. Sci. Technol. 2023, 53, 291–314. [Google Scholar] [CrossRef]
- Dillon, P.J. (Ed.) Management of Aquifer Recharge for Sustainability, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Pool, M.; Carrera, J. Dynamics of negative hydraulic barriers to prevent seawater intrusion. Hydrogeol. J. 2010, 18, 95–105. [Google Scholar] [CrossRef]
- Ward, J.D.; Simmons, C.T.; Dillon, P.J. Variable-density modelling of multiple-cycle aquifer storage and recovery (ASR): Importance of anisotropy and layered heterogeneity in brackish aquifers. J. Hydrol. 2008, 356, 93–105. [Google Scholar] [CrossRef]
- Yu, X.; Michael, H.A. Mechanisms, configuration typology, and vulnerability of pumping-induced seawater intrusion in heterogeneous aquifers. Adv. Water Resour. 2019, 128, 117–128. [Google Scholar] [CrossRef]
- Todd, D.K. Salt-Water Intrusion and Its Control. J. Am. Water Work. Assoc. 1974, 66, 180–187. Available online: https://awwa.onlinelibrary.wiley.com/doi/abs/10.1002/j.1551-8833.1974.tb01999.x (accessed on 12 July 2025). [CrossRef]
- Maliva, R.G. Anthropogenic Aquifer Recharge: Wsp Methods in Water Resources Evaluation Series No. 5; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Available online: http://link.springer.com/10.1007/978-3-030-11084-0 (accessed on 10 October 2024).
- Lu, C.; Werner, A.D.; Simmons, C.T.; Robinson, N.I.; Luo, J. Maximizing Net Extraction Using an Injection-Extraction Well Pair in a Coastal Aquifer. Groundwater 2012, 51, 219–228. [Google Scholar] [CrossRef]
- Abarca, E.; Carrera, J.; Sánchez-Vila, X.; Dentz, M. Anisotropic dispersive Henry problem. Adv. Water Resour. 2007, 30, 913–926. [Google Scholar] [CrossRef]
- Guo, Z.; Brusseau, M.L.; Fogg, G.E. Determining the Long-Term Operational Performance of Pump and Treat and the Possibility of Closure for a Large TCE Plume. J. Hazard. Mater. 2019, 365, 796–803. [Google Scholar] [CrossRef]
- Gelhar, L.W.; Welty, C.; Rehfeldt, K.R. A critical review of data on field-scale dispersion in aquifers. Water Resour. Res. 1992, 28, 1955–1974. [Google Scholar] [CrossRef]
- Lu, C.; Xin, P.; Kong, J.; Li, L.; Luo, J. Analytical solutions of seawater intrusion in sloping confined and unconfined coastal aquifers. Water Resour. Res. 2016, 52, 6989–7004. [Google Scholar] [CrossRef]
- Kalakan, C.; Motz, L. Saltwater Intrusion and Recirculation of Seawater in Isotropic and Anisotropic Coastal Aquifers. J. Hydrol. Eng. 2018, 23, 04018049. [Google Scholar] [CrossRef]
- Qu, W.; Li, H.; Wan, L.; Wang, X.; Jiang, X. Numerical simulations of steady-state salinity distribution and submarine groundwater discharges in homogeneous anisotropic coastal aquifers. Adv. Water Resour. 2014, 74, 318–328. [Google Scholar] [CrossRef]
- Abd-Elhamid, H. A Simulation-Optimization Model to Study the Control of Seawater Intrusion in Coastal Aquifers Using ADR Methodology. Ph.D. Thesis, University of Exeter, Exeter, UK, 2010. Available online: https://ore.exeter.ac.uk/repository/handle/10036/3054 (accessed on 12 July 2025).
- Kruseman, G.P.; de Ridder, N.A.; Verweij, J.M. Analysis and Evaluation of Pumping Test Data; ILRI: Nairobi, Kenya, 1994; Available online: https://books.google.com.br/books?id=7vNstgAACAAJ (accessed on 15 July 2025).
- Zheng, T.; Li, M.; Xia, L.; Li, X.; Fang, Y.; Zheng, X. Influence of pH on bioclogging in porous media during managed aquifer recharge (MAR): Effectiveness and mechanism. J. Contam. Hydrol. 2023, 252, 104119. [Google Scholar] [CrossRef]
- Kuang, X.; Jiao, J.J.; Zheng, C.; Cherry, J.A.; Li, H. A review of specific storage in aquifers. J. Hydrol. 2020, 581, 124383. [Google Scholar] [CrossRef]
- Johnson, A.I. Specific Yield: Compilation of Specific Yields for Various Materials; Número 1662; US Government Printing Office: Washington, DC, USA, 1967. [Google Scholar]
- Henry, H.R. Effects of dispersion on salt encroachment in coastal aquifers, in “Seawater in Coastal Aquifers”. US Geol. Surv. Water-Supply Pap. 1964, 1613, C70–C80. Available online: https://pubs.usgs.gov/wsp/1613c/report.pdf (accessed on 15 July 2025).
- Voss, C.; Souza, W. Variable Density Flow and Solute Transport Simulation of Regional Aquifer Containing a Narrow Freshwater-Saltwater Transition Zone. Water Resour. Res. 1987, 23, 1851–1866. [Google Scholar] [CrossRef]
- Xu, M.; Eckstein, Y. Use of weighted least-squares method in evaluation of the relationship between dispersivity and field scale. Groundwater 1995, 33, 905–908. [Google Scholar] [CrossRef]
- Gravetter, F.J.; Wallnau, L.B.; Forzano, L.-A.B.; Witnauer, J.E. Essentials of Statistics for the Behavioral Sciences, 10th ed.; Cengage: Boston, MA, USA, 2021. [Google Scholar]
- Howell, D.C. Statistical Methods for Psychology; Thomson Wadsworth: Belmont, CA, USA, 2007; Available online: https://books.google.com.br/books?id=-bmMPwAACAAJ (accessed on 12 July 2025).
- Kendall Maurice, G. The Advanced Theory Of Statistics; Charles Griffin And Company Limited: London, UK, 1946; Section 21.41; Volume 2, Available online: http://archive.org/details/in.ernet.dli.2015.233840 (accessed on 12 July 2025).
- Walpole, R.E.; Myers, R.H.; DeShannon, J.; Ye, K. Probability & Statistics for Engineers & Scientists, 9th ed.; Global Edition; Pearson Education Limited: London, UK, 2016. [Google Scholar]
- USEPA; USEP. Secondary Drinking Water Standards: Guidance for Nuisance Chemicals (NSDWRs). 2023. Available online: https://www.epa.gov/sdwa/secondary-drinking-water-standards-guidance-nuisance-chemicals (accessed on 12 July 2025).
- Song, Z.; Wang, Y.; Wang, J.; Huan, H.; Li, H. Design of Pump-and-Treat Strategies for Contaminated Groundwater Remediation Using Numerical Modeling: A Case Study. Water 2024, 16, 3665. [Google Scholar] [CrossRef]
Parameter | Unit | Set of Selected Values | Justification |
---|---|---|---|
Horizontal conductivity (Kh) | m/d | 5, 10, 20, 40, 60, 80, 100 | Varies from 5 to 100 m/d depending on the geological material [22]. |
Vertical anisotropy (Kh/Kv) | Dimensionless | 1, 10, 20, 30 | 1 for isotropic aquifers, and other values based on the saltwater intrusion simulation studies [20,23]. |
Specific storage (Ss) | 1/m | 1 × 10–5 | This value is representative of unconfined aquifers composed of unconsolidated materials, with Kh between 1 and 100 m/d, porosity ranging from 5% to 35%, and thickness varying from 25 to 75 m [24]. |
Specific yield (Sy) | Dimensionless (%) | 15, 20, 25, 30, 35 | Sy varies according to the effective porosity—dependent on the type of geological material [25]—and the hydraulic conductivity (see Table 2). |
Initial concentration (C) | kg/m3 | 35, 17.5, 10.5, 7, 3.5 | This method considers maximum 35 kg/m3, which is the reference value of seawater, as the initial concentration. |
Molecular diffusion coefficient (Dm) | m2/d | 0, 0.5702, 1.269 | A value of 0 was used for scenarios without molecular diffusion, while the other two values were taken from [26,27]. |
Longitudinal dispersivity in the horizontal direction (αL) | m | 0, 10, 20, 40 | This study employs these values to encompass scenarios of average and extreme dispersion within a 7 km domain—interpreted as the diameter in a cylindrical model or the length in a cubic model—based on the equation [28]. |
Transverse dispersivity in the horizontal direction (αTH) | m | 0, 1, 2, 4 | αTH is considered 10% of the αL, a typical ratio for this parameter [15,17]. |
Transverse dispersivity in the vertical direction (αTV) | m | 0, 0.1, 0.2, 0.4 | This study considers αTV values of 1% of the αL [17]. |
Material | K (m/d) | Sy | ||||||
---|---|---|---|---|---|---|---|---|
0.15 | 0.20 | 0.25 | 0.30 | 0.35 | ||||
Sand and gravel | Medium sand | 5 | • | • | • | • | ||
10 | • | • | • | • | ||||
Coarse Sand | 20 | • | • | • | • | • | ||
40 | • | • | • | • | ||||
60 | • | • | • | • | ||||
80 | • | • | • | • | ||||
100 | • | • | • | • |
Parameter | All Data | Initial Concentration (kg/m3) | ||||
---|---|---|---|---|---|---|
35.0 | 17.5 | 10.5 | 7.0 | 3.5 | ||
Initial concentration | 0.95 | |||||
K | 0.21 | 0.86 | 0.79 | 0.71 | 0.64 | 0.58 |
Sy | 0.25 | 0.61 | 0.72 | 0.80 | 0.86 | 0.91 |
Mechanical Dispersion | 0.03 | 0.04 | 0.06 | 0.07 | 0.08 | 0.08 |
Molecular Diffusion | 0.02 | −0.14 | −0.04 | 0.04 | 0.1 | 0.16 |
Anisotropy | −0.04 | −0.18 | −0.19 | −0.19 | −0.16 | −0.07 |
Parameter | All Data | Initial Concentration (kg/m3) | ||||
---|---|---|---|---|---|---|
35.0 | 17.5 | 10.5 | 7.0 | 3.5 | ||
Initial concentration | 0 | |||||
K | 4 × 10−70 | 0 | 0 | 0 | 0 | 0 |
Sy | 1 × 10−99 | 0 | 0 | 0 | 0 | 0 |
Mechanical Dispersion | 0.012 | 0.14 ** | 0.025 | 0.009 | 0.003 | 0.003 |
Molecular Diffusion | 0.095 ** | 2 × 10−7 | 0.14 ** | 0.14 ** | 2 × 10−4 | 2 × 10−9 |
Anisotropy | 8 × 10−4 | 1 × 10−11 | 9 × 10−13 | 9 × 10−13 | 2 × 10−9 | 0.009 |
Parameter | All Data | Initial Concentration (kg/m3) | ||||
---|---|---|---|---|---|---|
35.0 | 17.5 | 10.5 | 7.0 | 3.5 | ||
Initial concentration | 0.95 | |||||
K | 0.18 | 0.80 | 0.65 | 0.59 | 0.57 | 0.57 |
Sy | 0.27 | 0.73 | 0.87 | 0.91 | 0.92 | 0.93 |
Mechanical Dispersion | −0.04 | −0.15 | −0.14 | −0.15 | −0.15 | −0.15 |
Molecular Diffusion | −0.01 | 0.00 | 0.03 | 0.03 | 0.03 | 0.03 |
Anisotropy | −0.01 | −0.13 | −0.12 | −0.08 | −0.04 | 0.00 |
Parameter | All Data | Initial Concentration (kg/m3) | ||||
---|---|---|---|---|---|---|
35.0 | 17.5 | 10.5 | 7.0 | 3.5 | ||
Initial concentration | 0 | |||||
K | 1 × 10−51 | 0 | 0 | 0 | 0 | 0 |
Sy | 0 | 0 | 0 | 0 | 0 | 0 |
Mechanical Dispersion | 8 × 10−4 | 2 × 10−8 | 2 × 10−7 | 2 × 10−8 | 2 × 10−8 | 2 × 10−8 |
Molecular Diffusion | 0.4 ** | 1 ** | 0.26 ** | 0.26 ** | 0.26 ** | 0.26 ** |
Anisotropy | 0.4 ** | 1 × 10−6 | 7 × 10−6 | 0.003 | 0.14 ** | 1 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia Torres, M.A.; Suhogusoff, A.; Ferrari, L.C. The Impact of Hydrogeological Properties on Mass Displacement in Aquifers: Insights from Implementing a Mass-Abatement Scalable System Using Managed Aquifer Recharge (MAR-MASS). Water 2025, 17, 2239. https://doi.org/10.3390/w17152239
Garcia Torres MA, Suhogusoff A, Ferrari LC. The Impact of Hydrogeological Properties on Mass Displacement in Aquifers: Insights from Implementing a Mass-Abatement Scalable System Using Managed Aquifer Recharge (MAR-MASS). Water. 2025; 17(15):2239. https://doi.org/10.3390/w17152239
Chicago/Turabian StyleGarcia Torres, Mario Alberto, Alexandra Suhogusoff, and Luiz Carlos Ferrari. 2025. "The Impact of Hydrogeological Properties on Mass Displacement in Aquifers: Insights from Implementing a Mass-Abatement Scalable System Using Managed Aquifer Recharge (MAR-MASS)" Water 17, no. 15: 2239. https://doi.org/10.3390/w17152239
APA StyleGarcia Torres, M. A., Suhogusoff, A., & Ferrari, L. C. (2025). The Impact of Hydrogeological Properties on Mass Displacement in Aquifers: Insights from Implementing a Mass-Abatement Scalable System Using Managed Aquifer Recharge (MAR-MASS). Water, 17(15), 2239. https://doi.org/10.3390/w17152239