water-logo

Journal Browser

Journal Browser

Advances in Groundwater Resource Development: Innovative Methods and Technologies

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Hydrogeology".

Deadline for manuscript submissions: 20 September 2025 | Viewed by 1108

Special Issue Editors


E-Mail Website
Guest Editor
Tianjin Center (North China Center for Geoscience Innovation), China Geological Survey (CGS), Tianjin 300170, China
Interests: arsenic; fluoride; iodine; isotope geochemistry; machine learning; coastal plain

E-Mail Website
Guest Editor
School of Water Resources and Environment Engineering, East China University of Technology, Nanchang, China
Interests: hydrogeology; hydrogeochemistry; groundwater quality and pollution; health risk assessment; heavy metal pollution
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Groundwater provides drinking water for up to 50% of the global population and remains a critical resource for sustainable development. The quantity and quality of groundwater resources face significant challenges due to climate change, human activities, and natural geological processes. Understanding the complex interactions between groundwater, sediments, and various contaminants is crucial for effective resource management and protection.

Recent advances in hydrogeological research have led to innovative approaches in studying groundwater quantity and quality dynamics. Researchers are employing state-of-the-art technologies, including environmental tracers, isotope techniques, and artificial intelligence, to help us to better understand groundwater–sediment interactions, contaminant transport mechanisms, and aquifer recharge processes. These methods provide valuable insights into both the quantitative aspects of groundwater resources and the qualitative changes influenced by sediment–water interactions.

The role of sediments in groundwater systems is particularly significant, as they can act as both sources and sinks for various contaminants, affecting water quality while also influencing aquifer storage capacity and groundwater flow patterns. Advanced numerical modeling approaches, coupled with high-resolution monitoring systems, are enabling researchers to better understand these complex relationships and predict changes in both water quantity and quality under various environmental conditions.

This Special Issue of Water aims to focus on innovative methods and technologies in groundwater research, particularly emphasizing the interconnections between water quantity, quality, and sediment interactions. We aim to showcase cutting-edge research that addresses these critical aspects of groundwater resources, providing new perspectives and solutions for sustainable groundwater management and protection.

Dr. Zhuo Zhang
Dr. Adimalla Narsimha
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • groundwater pollution
  • anthropogenic activities
  • heavy metal
  • microbial pollution
  • organic pollution
  • inorganic pollution
  • source apportionment
  • numerical simulation
  • machine learning
  • groundwater pollution remediation
  • health risk assessment

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 11221 KiB  
Article
A Mass Abatement Scalable System Through Managed Aquifer Recharge: Increased Efficiency in Extracting Mass from Polluted Aquifers
by Mario Alberto Garcia Torres, Alexandra Suhogusoff and Luiz Carlos Ferrari
Water 2025, 17(15), 2237; https://doi.org/10.3390/w17152237 - 27 Jul 2025
Viewed by 163
Abstract
A mass abatement scalable system through managed aquifer recharge (MAR-MASS) improves mass extraction from groundwater with a variable-density flow. This method is superior to conventional injection systems because it promotes uniform mass displacement, reduces density gradients, and increases mass extraction efficiency over time. [...] Read more.
A mass abatement scalable system through managed aquifer recharge (MAR-MASS) improves mass extraction from groundwater with a variable-density flow. This method is superior to conventional injection systems because it promotes uniform mass displacement, reduces density gradients, and increases mass extraction efficiency over time. Simulations of various scenarios involving hydrogeologic variables, including hydraulic conductivity, vertical anisotropy, specific yield, mechanical dispersion, molecular diffusion, and mass concentration in aquifers, have identified critical variables and parameters influencing mass transport interactions to optimize the system. MAR-MASS is adaptable across hydrogeologic conditions in aquifers that are 25–75 m thick, comprising unconsolidated materials with hydraulic conductivities between 5 and 100 m/d. It is effective in scenarios near coastal areas or in aquifers with variable-density flows within the continent, with mass concentrations of salts or solutes ranging from 3.5 to 35 kg/m3. This system employs a modular approach that offers scalable and adaptable solutions for mass extraction at specific locations. The integration of programming tools, such as Python 3.13.2, along with technological strategies utilizing parallelization techniques and high-performance computing, has facilitated the development and validation of MAR-MASS in mass extraction with remarkable efficiency. This study confirmed the utility of these tools for performing calculations, analyzing information, and managing databases in hydrogeologic models. Combining these technologies is critical for achieving precise and efficient results that would not be achievable without them, emphasizing the importance of an advanced technological approach in high-level hydrogeologic research. By enhancing groundwater quality within a comparatively short time frame, expanding freshwater availability, and supporting sustainable aquifer recharge practices, MAR-MASS is essential for improving water resource management. Full article
Show Figures

Figure 1

22 pages, 7529 KiB  
Article
Analysis of Human Health Risk Related to the Exposure of Arsenic Concentrations and Temporal Variation in Groundwater of a Semi-Arid Region in Mexico
by Jennifer Ortiz Letechipia, Miguel Eduardo Pinedo Vega, Julián González Trinidad, Hugo Enrique Júnez-Ferreira, Ana Isabel Veyna Gómez, Ada Rebeca Contreras Rodríguez, Cruz Octavio Robles Rovelo and Sandra Dávila Hernández
Water 2025, 17(14), 2143; https://doi.org/10.3390/w17142143 - 18 Jul 2025
Viewed by 207
Abstract
This study evaluates the human health risks associated with exposure to arsenic in groundwater from a semi-arid region of Mexico, focusing on concentration levels and their temporal variation. Arsenic concentrations were analyzed using ordinary kriging for spatial interpolation, along with descriptive and inferential [...] Read more.
This study evaluates the human health risks associated with exposure to arsenic in groundwater from a semi-arid region of Mexico, focusing on concentration levels and their temporal variation. Arsenic concentrations were analyzed using ordinary kriging for spatial interpolation, along with descriptive and inferential statistical methods. Human health risk was assessed through the following two key indicators: the Hazard Quotient (HQ), which estimates non-carcinogenic risk by comparing exposure levels to reference doses and carcinogenic risk (CR), which represents the estimated lifetime probability of developing cancer due to arsenic exposure. The mean arsenic concentration across both study years was 0.0200 mg/L, with median values of 0.0151 mg/L in 2015 and 0.0200 mg/L in 2020. The average HQ was 2.13 in 2015 and 2.17 in 2020, both exceeding the safety threshold of one. Mean CR values were 0.00096 and 0.00097 for 2015 and 2020, respectively, with a consistent median of 0.00072 across both years. A t-test was applied to compare the distributions between years. Both HQ and CR values significantly exceeded the recommended safety limits (p < 0.05), indicating that groundwater in the study area poses a potential carcinogenic and non-carcinogenic health risk. These findings underscore the urgent need for water quality monitoring and the implementation of mitigation measures to safeguard public health in the region. Full article
Show Figures

Figure 1

15 pages, 1884 KiB  
Article
A Procedure to Estimate Global Natural Recharge in Karst Aquifers
by Eugenio Sanz Pérez, Juan Carlos Mosquera-Feijóo, Joaquín Sanz de Ojeda and Ignacio Menéndez-Pidal
Water 2025, 17(12), 1779; https://doi.org/10.3390/w17121779 - 13 Jun 2025
Viewed by 476
Abstract
Natural recharge in karst aquifers is a key component of global water resources, yet its estimation remains challenging due to the complexity of karst hydrogeological processes. The recharge assessment deserves special consideration, especially in the current global climate and sustainability challenges. This study [...] Read more.
Natural recharge in karst aquifers is a key component of global water resources, yet its estimation remains challenging due to the complexity of karst hydrogeological processes. The recharge assessment deserves special consideration, especially in the current global climate and sustainability challenges. This study poses a methodology to appraise natural recharge rates in karst aquifers worldwide, drawing on climatic and geological data. In this regard, this study applies a methodology previously developed by two of the authors, in which natural recharge over large areas is considered a fixed fraction of precipitation, which varies according to different lithologies of similar hydrogeological behavior (hydro-lithological units). Given that carbonate rocks are known to have the highest recharge rate relative to precipitation (34.3%), the method builds on existing karst and average precipitation maps to calculate worldwide recharge in karst aquifers. Recharge is appraised at 4,381,063.7 hm3/yr, which represents 34.5% of the global groundwater resources, a percentage that indicates the importance of karst in this regard. Based on maps of recharge values worldwide, this study highlights the importance of carbonate aquifers when compared with assessments of the world’s groundwater resources made by international institutions or other types of aquifers. The method is contrasted with other ways of assessing groundwater resources used in diverse regions of Europe. The impact of different climate change scenarios on the natural recharge of these karst aquifers has also been analyzed. Thus, under a climate change scenario in 2050, it is estimated that natural recharge will be reduced by about 10%. Full article
Show Figures

Figure 1

Back to TopTop