Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,427)

Search Parameters:
Keywords = MYB14

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3801 KiB  
Article
Characteristics and Transcriptome Analysis of Anther Abortion in Male Sterile Celery (Apium graveolens L.)
by Yao Gong, Zhenyue Yang, Huan Li, Kexiao Lu, Chenyang Wang, Aisheng Xiong, Yangxia Zheng, Guofei Tan and Mengyao Li
Horticulturae 2025, 11(8), 901; https://doi.org/10.3390/horticulturae11080901 (registering DOI) - 3 Aug 2025
Abstract
To elucidate the molecular mechanisms underlying anther abortion in celery male sterile lines, this study investigates the morphological differences of floral organs and differential gene expression patterns between two lines at the flowering stage. Using the male sterile line of celery ‘QCBU-001’ and [...] Read more.
To elucidate the molecular mechanisms underlying anther abortion in celery male sterile lines, this study investigates the morphological differences of floral organs and differential gene expression patterns between two lines at the flowering stage. Using the male sterile line of celery ‘QCBU-001’ and the fertile line ‘Jinnan Shiqin’ as materials, anther structure was analyzed by paraffin sections, and related genes were detected using transcriptome sequencing and qRT-PCR. The results indicated that the anther locules were severely shrunken at maturity in the sterile lines. The callose deficiency led to abnormal development of microspores, preventing the formation of mature pollen grains and ultimately leading to complete anther abortion. The transcriptome results revealed that 3246 genes were differentially expressed in sterile and fertile lines, which were significantly enriched in pathways such as starch and sucrose metabolism and phenylpropanoid biosynthesis. Additionally, differential expression patterns of transcription factor families (MYB, bHLH, AP2, GRAS, and others) suggested their potential involvement in regulating anther abortion. Notably, the expression level of callose synthase gene AgGSL2 was significantly downregulated in sterile anthers, which might be an important cause of callose deficiency and pollen sterility. This study not only provides a theoretical basis for elucidating the molecular mechanism underlying male sterility in celery but also lays a foundation for the utilization and improvement of male sterile lines in vegetable hybrid breeding. Full article
Show Figures

Figure 1

16 pages, 4969 KiB  
Article
Duplicated Genes on Homologous Chromosomes Decipher the Dominant Epistasis of the Fiberless Mutant in Cotton
by Yu Le, Xingchen Xiong, Zhiyong Xu, Meilin Chen, Yuanxue Li, Chao Fu, Chunyuan You and Zhongxu Lin
Biology 2025, 14(8), 983; https://doi.org/10.3390/biology14080983 (registering DOI) - 2 Aug 2025
Viewed by 42
Abstract
Cotton fiber initiation determines the fiber yield, yet the genetic basis underlying lint and fuzz initiation has still not been fully uncovered. Here, map-based cloning was carried out to identify the fiberless mutant genes derived from a cross between Gossypium hirsutum acc. WT [...] Read more.
Cotton fiber initiation determines the fiber yield, yet the genetic basis underlying lint and fuzz initiation has still not been fully uncovered. Here, map-based cloning was carried out to identify the fiberless mutant genes derived from a cross between Gossypium hirsutum acc. WT and a natural fiberless mutant, fblSHZ. The 12:3:1 segregation ratio in F2 populations (including 1848 and 3100 individuals that were developed in 2016 and 2018, respectively) revealed dominant epistasis, with the fuzz gene exerting dominance over the lint gene. Genetic linkage analysis revealed that GhMYB25like_A12 controls fuzz fiber initiation, while both GhMYB25like_A12 and GhMYB25like_D12 regulate lint fiber development. Sequencing analyses showed that the fblSHZ mutant exhibited a K104M mutation in the R2R3 domain of GhMYB25like_A12 and a transposable element insertion in GhMYB25like_D12, leading to fiberless seeds. Knockout of GhMYB25like_A12 produced fuzzless seeds, knockout of GhMYB25like_D12 led to no obvious change in seeds, and knockout of both (GhMYB25like_A12&D12) resulted in fiberless seeds. The 12:3:1 ratio reappeared in the F2 population developed from the GhMYB25like_A12&D12 mutated plants as female and Jin668 as the male, which further confirmed the genetic interaction observed in fblSHZ. RNA-seq analysis revealed that GhMYB25like regulates cotton fiber initiation through multiple pathways, especially fatty acid metabolism. This study elucidates the key genes and their genetic interaction mechanisms governing cotton fiber initiation, providing a theoretical foundation for genetic improvement of cotton fiber traits. Full article
(This article belongs to the Special Issue Cotton: Genomics, Biotechnology and Molecular Breeding)
Show Figures

Figure 1

21 pages, 7215 KiB  
Article
Transcriptome Profiling Reveals Mungbean Defense Mechanisms Against Powdery Mildew
by Sukanya Inthaisong, Pakpoom Boonchuen, Akkawat Tharapreuksapong, Panlada Tittabutr, Neung Teaumroong and Piyada Alisha Tantasawat
Agronomy 2025, 15(8), 1871; https://doi.org/10.3390/agronomy15081871 - 1 Aug 2025
Viewed by 141
Abstract
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a [...] Read more.
Powdery mildew (PM), caused by Sphaerotheca phaseoli, severely threatens mungbean (Vigna radiata) productivity and quality, yet the molecular basis of resistance remains poorly defined. This study employed transcriptome profiling to compare defense responses in a resistant genotype, SUPER5, and a susceptible variety, CN84-1, following pathogen infection. A total of 1755 differentially expressed genes (DEGs) were identified, with SUPER5 exhibiting strong upregulation of genes encoding pathogenesis-related (PR) proteins, disease resistance proteins, and key transcription factors. Notably, genes involved in phenylpropanoid and flavonoid biosynthesis, pathways associated with antimicrobial compound and lignin production, were markedly induced in SUPER5. In contrast, CN84-1 showed limited activation of defense genes and downregulation of essential regulators such as MYB14. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses highlighted the involvement of plant–pathogen interaction pathways, MAPK signaling, and reactive oxygen species (ROS) detoxification in the resistant response. Quantitative real-time PCR validated 11 candidate genes, including PAL3, PR2, GSO1, MLO12, and P21, which function in pathogen recognition, signaling, the biosynthesis of antimicrobial metabolites, the production of defense proteins, defense regulation, and the reinforcement of the cell wall. Co-expression network analysis revealed three major gene modules linked to flavonoid metabolism, chitinase activity, and responses to both abiotic and biotic stresses. These findings offer valuable molecular insights for breeding PM-resistant mungbean varieties. Full article
Show Figures

Figure 1

19 pages, 2667 KiB  
Article
VdSOX1 Negatively Regulates Verticillium dahliae Virulence via Enhancing Effector Expression and Suppressing Host Immune Responses
by Di Xu, Xiaoqiang Zhao, Can Xu, Chongbo Zhang and Jiafeng Huang
J. Fungi 2025, 11(8), 576; https://doi.org/10.3390/jof11080576 (registering DOI) - 1 Aug 2025
Viewed by 145
Abstract
The soil-borne fungal pathogen Verticillium dahliae causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that VdSOX1, a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal [...] Read more.
The soil-borne fungal pathogen Verticillium dahliae causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that VdSOX1, a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal physiology and pathogenicity. Functional deletion of VdSOX1 leads to increased fungal virulence, accompanied by enhanced microsclerotia formation, elevated carbon source utilization, and pronounced upregulation of effector genes, including over 50 predicted secreted proteins genes. Moreover, the VdSOX1 knockout strains suppress the expression of key defense-related transcription factors in cotton, such as WRKY, MYB, AP2/ERF, and GRAS families, thereby impairing host immune responses. Transcriptomic analyses confirm that VdSOX1 orchestrates a broad metabolic reprogramming that links nutrient acquisition to immune evasion. Our findings identify VdSOX1 as a central regulator that promotes V. dahliae virulence by upregulating effector gene expression and suppressing host immune responses, offering novel insights into the molecular basis of host–pathogen interactions and highlighting potential targets for disease management. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

33 pages, 2838 KiB  
Article
Daily Profile of miRNAs in the Rat Colon and In Silico Analysis of Their Possible Relationship to Colorectal Cancer
by Iveta Herichová, Denisa Vanátová, Richard Reis, Katarína Stebelová, Lucia Olexová, Martina Morová, Adhideb Ghosh, Miroslav Baláž, Peter Štefánik and Lucia Kršková
Biomedicines 2025, 13(8), 1865; https://doi.org/10.3390/biomedicines13081865 - 31 Jul 2025
Viewed by 267
Abstract
Background: Colorectal cancer (CRC) is strongly influenced by miRNAs as well as the circadian system. Methods: High-throughput sequencing of miRNAs expressed in the rat colon during 24 h light (L)/dark (D) cycle was performed to identify rhythmically expressed miRNAs. The role of miR-150-5p [...] Read more.
Background: Colorectal cancer (CRC) is strongly influenced by miRNAs as well as the circadian system. Methods: High-throughput sequencing of miRNAs expressed in the rat colon during 24 h light (L)/dark (D) cycle was performed to identify rhythmically expressed miRNAs. The role of miR-150-5p in CRC progression was analyzed in DLD1 cell line and human CRC tissues. Results: Nearly 10% of mature miRNAs showed a daily rhythm in expression. A peak of miRNAs’ levels was in most cases observed during the first half of the D phase of the LD cycle. The highest amplitude was detected in expression of miR-150-5p and miR-142-3p. In the L phase of the LD cycle, the maximum in miR-30d-5p expression was detected. Gene ontology enrichment analysis revealed that genes interfering with miRNAs with peak expression during the D phase influence apoptosis, angiogenesis, the immune system, and EGF and TGF-beta signaling. Rhythm in miR-150-5p, miR-142-3p, and miR-30d-5p expression was confirmed by real-time PCR. Oncogenes bcl2 and myb and clock gene cry1 were identified as miR-150-5p targets. miR-150-5p administration promoted camptothecin-induced apoptosis. Expression of myb showed a rhythmic profile in DLD1 cells with inverted acrophase with respect to miR-150-5p. miR-150-5p was decreased in cancer compared to adjacent tissue in CRC patients. Decrease in miR-150-5p was age dependent. Older patients with lower expression of miR-150-5p and higher expression of cry1 showed worse survival in comparison with younger patients. Conclusions: miRNA signaling differs between the L and D phases of the LD cycle. miR-150-5p, targeting myb, bcl2, and cry1, can influence CRC progression in a phase-dependent manner. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Graphical abstract

18 pages, 3824 KiB  
Article
Prognostic Risk Model of Megakaryocyte–Erythroid Progenitor (MEP) Signature Based on AHSP and MYB in Acute Myeloid Leukemia
by Ting Bin, Ying Wang, Jing Tang, Xiao-Jun Xu, Chao Lin and Bo Lu
Biomedicines 2025, 13(8), 1845; https://doi.org/10.3390/biomedicines13081845 - 29 Jul 2025
Viewed by 269
Abstract
Background: Acute myeloid leukemia (AML) is a common and aggressive adults hematological malignancies. This study explored megakaryocyte–erythroid progenitors (MEPs) signature genes and constructed a prognostic model. Methods: Uniform manifold approximation and projection (UMAP) identified distinct cell types, with differential analysis between [...] Read more.
Background: Acute myeloid leukemia (AML) is a common and aggressive adults hematological malignancies. This study explored megakaryocyte–erythroid progenitors (MEPs) signature genes and constructed a prognostic model. Methods: Uniform manifold approximation and projection (UMAP) identified distinct cell types, with differential analysis between AML-MEP and normal MEP groups. Univariate and the least absolute shrinkage and selection operator (LASSO) Cox regression selected biomarkers to build a risk model and nomogram for 1-, 3-, and 5-year survival prediction. Results: Ten differentially expressed genes (DEGs) related to overall survival (OS), six (AHSP, MYB, VCL, PIM1, CDK6, as well as SNHG3) were retained post-LASSO. The model exhibited excellent efficiency (the area under the curve values: 0.788, 0.77, and 0.847). Pseudotime analysis of UMAP-defined subpopulations revealed that MYB and CDK6 exert stage-specific regulatory effects during MEP differentiation, with MYB involved in early commitment and CDK6 in terminal maturation. Finally, although VCL, PIM1, CDK6, and SNHG3 showed significant associations with AML survival and prognosis, they failed to exhibit pathological differential expression in quantitative real-time polymerase chain reaction (qRT-PCR) experimental validations. In contrast, the downregulation of AHSP and upregulation of MYB in AML samples were consistently validated by both qRT-PCR and Western blotting, showing the consistency between the transcriptional level changes and protein expression of these two genes (p < 0.05). Conclusions: In summary, the integration of single-cell/transcriptome analysis with targeted expression validation using clinical samples reveals that the combined AHSP-MYB signature effectively identifies high-risk MEP-AML patients, who may benefit from early intensive therapy or targeted interventions. Full article
Show Figures

Figure 1

15 pages, 1714 KiB  
Article
Establishment of an Efficient Agrobacterium rhizogenes-Mediated Hairy Root Transformation System for Functional Analysis in Passion Fruit
by Jiayi Pan, Yiping Zheng, Tiancai Wang, Pengpeng Xiong, Kaibo Cui, Lihui Zeng and Ting Fang
Plants 2025, 14(15), 2312; https://doi.org/10.3390/plants14152312 - 26 Jul 2025
Viewed by 350
Abstract
Passion fruit (Passiflora edulis Sims), belonging to the Passifloraceae family, is an economically important plant in tropical and subtropical regions. The advances in functional genomics research of passion fruit have been significantly hindered by its recalcitrance to regeneration and stable transformation. This [...] Read more.
Passion fruit (Passiflora edulis Sims), belonging to the Passifloraceae family, is an economically important plant in tropical and subtropical regions. The advances in functional genomics research of passion fruit have been significantly hindered by its recalcitrance to regeneration and stable transformation. This study establishes the first efficient Agrobacterium rhizogenes-mediated hairy root transformation system for passion fruit. Utilizing the eGFP marker gene, transformation efficiencies of 11.3% were initially achieved with strains K599, MSU440, and C58C1, with K599 proving most effective. Key transformation parameters were systematically optimized to achieve the following: OD600 = 0.6, infection duration 30 min, acetosyringone concentration 100 μM, and a dark co-cultivation period of 2 days. The system’s utility was further enhanced by incorporating the red visual marker RUBY, enabling direct, instrument-free identification of transgenic roots via betaxanthin accumulation. Finally, this system was applied for functional analysis using PeMYB123, which may be involved in proanthocyanidin accumulation. Overexpression of PeMYB123 produced a higher content of proanthocyanidin in hairy roots. Additionally, the PeANR gene involved in the proanthocyanidin pathway was strongly activated in the transgenic hairy roots. This rapid and efficient visually simplified hairy root transformation system provides a powerful tool for functional gene studies in passion fruit. Full article
(This article belongs to the Special Issue Fruit Development and Ripening)
Show Figures

Figure 1

31 pages, 2338 KiB  
Review
ROS Regulation and Antioxidant Responses in Plants Under Air Pollution: Molecular Signaling, Metabolic Adaptation, and Biotechnological Solutions
by Muhammad Junaid Rao, Mingzheng Duan, Muhammad Ikram and Bingsong Zheng
Antioxidants 2025, 14(8), 907; https://doi.org/10.3390/antiox14080907 - 24 Jul 2025
Cited by 1 | Viewed by 527
Abstract
Air pollution acts as a pervasive oxidative stressor, disrupting global crop production and ecosystem health through the overproduction of reactive oxygen species (ROS). Hazardous pollutants impair critical physiological processes—photosynthesis, respiration, and nutrient uptake—triggering oxidative damage and yield losses. This review synthesizes current knowledge [...] Read more.
Air pollution acts as a pervasive oxidative stressor, disrupting global crop production and ecosystem health through the overproduction of reactive oxygen species (ROS). Hazardous pollutants impair critical physiological processes—photosynthesis, respiration, and nutrient uptake—triggering oxidative damage and yield losses. This review synthesizes current knowledge on plant defense mechanisms, emphasizing the integration of enzymatic (SOD, POD, CAT, APX, GPX, GR) and non-enzymatic (polyphenols, glutathione, ascorbate, phytochelatins) antioxidant systems to scavenge ROS and maintain redox homeostasis. We highlight the pivotal roles of transcription factors (MYB, WRKY, NAC) in orchestrating stress-responsive gene networks, alongside MAPK and phytohormone signaling (salicylic acid, jasmonic acid, ethylene), in mitigating oxidative stress. Secondary metabolites (flavonoids, lignin, terpenoids) are examined as biochemical shields against ROS and pollutant toxicity, with evidence from transcriptomic and metabolomic studies revealing their biosynthetic regulation. Furthermore, we explore biotechnological strategies to enhance antioxidant capacity, including overexpression of ROS-scavenging genes (e.g., TaCAT3) and engineering of phenolic pathways. By addressing gaps in understanding combined stress responses, this review provides a roadmap for developing resilient crops through antioxidant-focused interventions, ensuring sustainability in polluted environments. Full article
Show Figures

Figure 1

16 pages, 11002 KiB  
Article
Transcriptomic Identification of Key Genes Responding to High Heat Stress in Moso Bamboo (Phyllostachys edulis)
by Qinchao Fu, Xinlan Wen, Man Tang, Xin Zhao and Fang Liu
Genes 2025, 16(8), 855; https://doi.org/10.3390/genes16080855 - 23 Jul 2025
Viewed by 245
Abstract
Background/Objectives: Moso bamboo (Phyllostachys edulis), the most widely distributed bamboo species in China, is valued for both its shoots and timber. This species often faces challenges from high-temperature stress. To cope with this stress, Moso bamboo has evolved various adaptive mechanisms [...] Read more.
Background/Objectives: Moso bamboo (Phyllostachys edulis), the most widely distributed bamboo species in China, is valued for both its shoots and timber. This species often faces challenges from high-temperature stress. To cope with this stress, Moso bamboo has evolved various adaptive mechanisms at the physiological and molecular levels. Although numerous studies have revealed that a large number of transcription factors (TFs) and genes play important roles in the regulatory network of plant heat stress responses, the regulatory network involved in heat responses remains incompletely understood. Methods: In this study, Moso bamboo was placed in a high-temperature environment of 42 °C for 1 h and 24 h, and transcriptome sequencing was carried out to accurately identify key molecules affected by high temperature and their related biological pathways. Results: Through a differential expression analysis, we successfully identified a series of key candidate genes and transcription factors involved in heat stress responses, including members of the ethylene response factor, HSF, WRKY, MYB, and bHLH families. Notably, in addition to traditional heat shock proteins/factors, multiple genes related to lipid metabolism, antioxidant enzymes, dehydration responses, and hormone signal transduction were found to play significant roles in heat stress responses. To further verify the changes in the expression of these genes, we used qRT-PCR technology for detection, and the results strongly supported their key roles in cellular physiological processes and heat stress responses. Conclusions: This study not only deepens our understanding of plant strategies for coping with and defending against extreme abiotic stresses but also provides valuable insights for future research on heat tolerance in Moso bamboo and other plants. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

18 pages, 21045 KiB  
Article
Genome-Wide Characterization of the ABI3 Gene Family in Cotton
by Guoyong Fu, Yanlong Yang, Tahir Mahmood, Xinxin Liu, Zongming Xie, Zengqiang Zhao, Yongmei Dong, Yousheng Tian, Jehanzeb Farooq, Iram Sharif and Youzhong Li
Genes 2025, 16(8), 854; https://doi.org/10.3390/genes16080854 - 23 Jul 2025
Viewed by 229
Abstract
Background: The B3-domain transcription factor ABI3 (ABSCISIC ACID INSENSITIVE 3) is a critical regulator of seed maturation, stress adaptation, and hormonal signaling in plants. However, its evolutionary dynamics and functional roles in cotton (Gossypium spp.) remain poorly characterized. Methods: We conducted [...] Read more.
Background: The B3-domain transcription factor ABI3 (ABSCISIC ACID INSENSITIVE 3) is a critical regulator of seed maturation, stress adaptation, and hormonal signaling in plants. However, its evolutionary dynamics and functional roles in cotton (Gossypium spp.) remain poorly characterized. Methods: We conducted a comprehensive genome-wide investigation of the ABI3 gene family across 26 plant species, with a focus on 8 Gossypium species. Analyses included phylogenetics, chromosomal localization, synteny assessment, gene duplication patterns, protein domain characterization, promoter cis-regulatory element identification, and tissue-specific/spatiotemporal expression profiling under different organizations of Gossypium hirsutum. Results: Phylogenetic and chromosomal analyses revealed conserved ABI3 evolutionary patterns between monocots and dicots, alongside lineage-specific expansion events within Gossypium spp. Syntenic relationships and duplication analysis in G. hirsutum (upland cotton) indicated retention of ancestral synteny blocks and functional diversification driven predominantly by segmental duplication. Structural characterization confirmed the presence of conserved B3 domains in all G. hirsutum ABI3 homologs. Promoter analysis identified key stress-responsive cis-elements, including ABA-responsive (ABRE), drought-responsive (MYB), and low-temperature-responsive (LTRE) motifs, suggesting a role in abiotic stress regulation. Expression profiling demonstrated significant tissue-specific transcriptional activity across roots, stems, leaves, and fiber developmental stages. Conclusions: This study addresses a significant knowledge gap by elucidating the evolution, structure, and stress-responsive expression profiles of the ABI3 gene family in cotton. It establishes a foundational framework for future functional validation and targeted genetic engineering strategies aimed at developing stress-resilient cotton cultivars with enhanced fiber quality. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

15 pages, 5560 KiB  
Article
Integrated Transcriptomic Analysis Reveals Molecular Mechanisms Underlying Albinism in Schima superba Seedlings
by Jie Jia, Mengdi Chen, Yuanheng Feng, Zhangqi Yang and Peidong Yan
Forests 2025, 16(8), 1201; https://doi.org/10.3390/f16081201 - 22 Jul 2025
Viewed by 245
Abstract
The main objective of this study was to reveal the molecular mechanism of the albinism in Schima superba and to identify the related functional genes to provide theoretical support for the optimization of S. superba seedling nursery technology. Combining third-generation SMRT sequencing with [...] Read more.
The main objective of this study was to reveal the molecular mechanism of the albinism in Schima superba and to identify the related functional genes to provide theoretical support for the optimization of S. superba seedling nursery technology. Combining third-generation SMRT sequencing with second-generation high-throughput sequencing technology, the transcriptomes of normal seedlings and albinism seedlings of S. superba were analyzed and the sequencing data were functionally annotated and deeply resolved. The results showed that 270 differentially expressed transcripts were screened by analyzing second-generation sequencing data. KEGG enrichment analysis of the annotation information revealed that, among the photosynthesis-antenna protein-related pathways, the expression of LHCA3 and LHCB6 was found to be down-regulated in S. superba albinism seedlings, suggesting that the down-regulation of photosynthesis-related proteins may affect the development of chloroplasts in leaves. Down-regulated expression of VDE in the carotenoid biosynthesis leads to impaired chlorophyll cycling. In addition, transcription factors (TFs), such as bHLH, MYB, GLK and NAC, were closely associated with chloroplast development in S. superba seedlings. In summary, the present study systematically explored the transcriptomic features of S. superba albinism seedlings, screened out key genes with significant differential expression and provide a reference for further localization and cloning of the key genes for S. superba albinism, in addition to laying an essential theoretical foundation for an in-depth understanding of the molecular mechanism of the S. superba albinism. The genes identified in this study that are associated with S. superba albinism will be important targets for genetic modification or molecular marker development, which is essential for improving the cultivation efficiency of S. superba. Full article
(This article belongs to the Special Issue Forest Tree Breeding: Genomics and Molecular Biology)
Show Figures

Figure 1

15 pages, 2281 KiB  
Article
Transcriptome and Anthocyanin Profile Analysis Reveals That Exogenous Ethylene Regulates Anthocyanin Biosynthesis in Grape Berries
by Min Liu, Boyuan Fan, Le Li, Jinmei Hao, Ruteng Wei, Hua Luo, Fei Shi, Zhiyuan Ren and Jun Wang
Foods 2025, 14(14), 2551; https://doi.org/10.3390/foods14142551 - 21 Jul 2025
Viewed by 349
Abstract
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the [...] Read more.
Anthocyanins are important phenolic compounds in grape skins, affecting the color, oxidation resistance, and aging ability of red wine. In recent years, global warming has had a negative effect on anthocyanin biosynthesis in grape berries. Ethylene serves as a crucial phytohormone regulating the development and ripening processes of fruit; however, the specific molecular mechanism and the regulatory network between ethylene signaling and the anthocyanin biosynthesis pathway remain incompletely understood. In this study, 400 mg/L ethephon (ETH) solution was sprayed onto the surface of grape berries at the lag phase (EL-34), and the changes in anthocyanin-related genes and metabolites were explored through transcriptomic and metabolomic analysis. The results showed that ETH treatment increased Brix and pH in mature berries. In total, 35 individual anthocyanins were detected, in which 21 individual anthocyanins were enhanced by ETH treatment. However, the anthocyanin profile was not affected by exogenous ethylene. Transcriptomics analysis showed that there were a total of 825 and 1399 differentially expressed genes (DEGs) 12 h and 24 h after treatment. Moreover, key structural genes in the anthocyanin synthesis pathway were strongly induced, including VvPAL, VvCHS, VvF3H, VvF3′5′H, VvDFR and VvUFGT. At the maturity stage (EL-38), the expression levels of these genes were still higher in EHT-treated berries than in the control. ETH treatment also influenced the expression of genes related to hormone biosynthesis and signal transduction. The ethylene biosynthesis gene (VvACO), ethylene receptor genes (VvETR2, VvERS1 and VvEIN4), ABA biosynthesis gene (VvNCED2), and ABA receptor gene (VvPYL4) were up-regulated by ETH treatment, while the auxin biosynthesis gene (VvTAA3) and seven genes of the auxin-responsive protein were inhibited by exogenous ethylene. Meanwhile, ETH treatment promoted the expression of the sugar transporter gene (VvEDL16) and two sucrose synthase genes (VvSUS2 and VvSUS6). In EHT-treated berries, 19 MYB and 23 ERF genes were expressed differently compared with the control (p < 0.05). This study provides the theoretical foundation and technical support for the regulation of anthocyanin synthesis in non-climacteric fruit. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

21 pages, 3038 KiB  
Article
Glycerol Biosynthesis Pathways from Starch Endow Dunaliella salina with the Adaptability to Osmotic and Oxidative Effects Caused by Salinity
by Huiying Yao, Yi Xu, Huahao Yang, Yihan Guo, Pengrui Jiao, Dongyou Xiang, Hui Xu and Yi Cao
Int. J. Mol. Sci. 2025, 26(14), 7019; https://doi.org/10.3390/ijms26147019 - 21 Jul 2025
Viewed by 302
Abstract
Dunaliella salina, a unicellular and eukaryotic alga, has been found to be one of the most salt-tolerant eukaryotes with a wide range of practical applications. To elucidate the underlying molecular mechanisms of D. salina in response to salinity stress, we performed transcriptome [...] Read more.
Dunaliella salina, a unicellular and eukaryotic alga, has been found to be one of the most salt-tolerant eukaryotes with a wide range of practical applications. To elucidate the underlying molecular mechanisms of D. salina in response to salinity stress, we performed transcriptome sequencing on samples under different stress conditions. A total of 82,333 unigenes were generated, 4720, 1111 and 2611 differentially expressed genes (DEGs) were identified under high salt stress, oxidative stress and hypertonic stress, respectively. Our analysis revealed that D. salina responds to salinity stress through a complex network of molecular mechanisms. Under high salt stress, starch degradation is regulated by AMY (α-amylase) and PYG (glycogen phosphorylase) with alternative expression patterns. This process is hypothesized to be initially constrained by low ATP levels due to impaired photosynthesis. The clustering analysis of DEGs indicated that starch and sucrose metabolism, as well as glycerol metabolism, are specifically reprogrammed under high salt stress. Glycerol metabolism, particularly involving GPDHs, plays a crucial role in maintaining osmotic balance under salinity stress. Key glycerol metabolism genes were up-regulated under salinity conditions, indicating the importance of this pathway in osmotic regulation. The G3P shuttle, involving mitochondrial GPDHs (c25199_g1 and c23777_g1), contributes to redox imbalance management under high salt, oxidative and hypertonic stresses. Notably, c23777_g1 is involved in the G3P shuttle under high salt, oxidative and hypertonic stresses, while c25199_g1 is specifically induced by hypertonic stress. The R2R3-MYB gene (c23845_g1) may respond to different effects of salinity stress by regulating the transcription of ROS-related genes. Our study provides a detailed understanding of the molecular responses of D. salina to salinity stress. We reveal the critical roles of starch and sucrose metabolism, glycerol metabolism and transcription factors in the D. salina adaptation to salinity. Full article
(This article belongs to the Special Issue Advance in Plant Abiotic Stress: 3rd Edition)
Show Figures

Figure 1

26 pages, 3710 KiB  
Article
Global Transcriptome and Weighted Gene Co-Expression Network Analyses of Cold Stress Responses in Chinese Cabbage
by Jizong Zhang, Songtao Liu, Huibin Li, Mengmeng Sun, Baoyue Yan, Peng Zhang and Lifeng Zhang
Genes 2025, 16(7), 845; https://doi.org/10.3390/genes16070845 - 20 Jul 2025
Viewed by 399
Abstract
Background/Objectives: Chinese cabbage (Brassica rapa ssp. Pekinensis, AA) growth and development is highly sensitive to cold temperatures. Prolonged low-temperature exposure during early growth stages can induce premature bolting, which reduces market quality and yield. Methods: Here, using comparative leaf RNA-seq transcriptome [...] Read more.
Background/Objectives: Chinese cabbage (Brassica rapa ssp. Pekinensis, AA) growth and development is highly sensitive to cold temperatures. Prolonged low-temperature exposure during early growth stages can induce premature bolting, which reduces market quality and yield. Methods: Here, using comparative leaf RNA-seq transcriptome analysis of plants grown at 6, 9, 12, and 15 °C, we explored key genes and metabolic pathways regulating Chinese cabbage cold response. Results: RNA-seq transcriptome analysis identified a total of 1832 differentially expressed genes (DEGs) in the three comparison groups, with 5452, 1861, and 752 DEGs specifically expressed in the A6_vs_A15, A9_vs_A15, and A12_vs_A15 groups, respectively. KEGG enrichment analysis of DEGs showed that sulfur metabolism, secondary metabolites biosynthesis and photosynthesis pathways were mostly affected by cold stress. K-means clustering revealed distinct expression profiles among the DEGs enriched in cold stress response-associated clusters. Subsequently, DEGs were divided into 18 modules by WGCNA, whereupon co-expression genes that clustered into similar modules exhibited diverse expression and were annotated to various GO terms at different temperatures. Module-trait association analysis revealed M1, M2, M3, and M6 modules as key clusters potentially linked to vernalization-related processes. These modules harbored candidate hub genes encoding transcription factors (including MYB, bZIP, and WRKY), protein kinases, and cold-stress-responsive genes. Additionally, phenotypic analysis showed that 12 °C to 15 °C supported optimal growth, whereas <9 °C temperature inhibited growth. Physiological measurements showed increased antioxidant enzyme activity and proline accumulation at 6 °C. Conclusions: Overall, our study provides a set of candidate cold-stress-responsive genes and co-expression modules that may support cold stress tolerance breeding in Chinese cabbage. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

19 pages, 4907 KiB  
Article
Genome-Wide Analysis of GmMYB S20 Transcription Factors Reveals Their Critical Role in Soybean Nodulation
by Junchen Leng, Ruobing Xu, Yanshuang Liu, Tianshu Jiang, Haiying Hu, Zhaojun Ding and Shaojun Dai
Plants 2025, 14(14), 2240; https://doi.org/10.3390/plants14142240 - 20 Jul 2025
Viewed by 303
Abstract
Soybean relies on symbiotic nitrogen fixation (SNF) to support sustainable agriculture. In this study, we conducted a comprehensive analysis of the GmMYB transcription factor subfamily 20, with a focus on GmMYB62a and GmMYB62b. Phylogenetic and structural analyses revealed that these genes are [...] Read more.
Soybean relies on symbiotic nitrogen fixation (SNF) to support sustainable agriculture. In this study, we conducted a comprehensive analysis of the GmMYB transcription factor subfamily 20, with a focus on GmMYB62a and GmMYB62b. Phylogenetic and structural analyses revealed that these genes are evolutionarily conserved among legumes and possess distinct domain architectures. Expression profiling and GUS staining showed that GmMYB62a and GmMYB62b are constitutively expressed in nodules. Functional analyses revealed that loss of GmMYB62s function significantly reduced nodule density, while overexpression promoted nodulation. Transcriptomic analysis (RNA-seq) further demonstrated that GmMYB62s regulate key pathways, including hormone signaling, immune responses, and cell wall metabolism, thereby coordinating symbiotic interactions. Collectively, our findings identify GmMYB62a and GmMYB62b as critical molecular regulators of nodulation in soybean, providing promising targets for improving symbiotic nitrogen fixation efficiency in legume crops. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

Back to TopTop