Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (504)

Search Parameters:
Keywords = MBC determination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1848 KiB  
Article
RadiomiX for Radiomics Analysis: Automated Approaches to Overcome Challenges in Replicability
by Harel Kotler, Luca Bergamin, Fabio Aiolli, Elena Scagliori, Angela Grassi, Giulia Pasello, Alessandra Ferro, Francesca Caumo and Gisella Gennaro
Diagnostics 2025, 15(15), 1968; https://doi.org/10.3390/diagnostics15151968 - 5 Aug 2025
Abstract
Background/Objectives: To simplify the decision-making process in radiomics by employing RadiomiX, an algorithm designed to automatically identify the best model combination and validate them across multiple environments was developed, thus enhancing the reliability of results. Methods: RadiomiX systematically tests classifier and feature [...] Read more.
Background/Objectives: To simplify the decision-making process in radiomics by employing RadiomiX, an algorithm designed to automatically identify the best model combination and validate them across multiple environments was developed, thus enhancing the reliability of results. Methods: RadiomiX systematically tests classifier and feature selection method combinations known to be suitable for radiomic datasets to determine the best-performing configuration across multiple train–test splits and K-fold cross-validation. The framework was validated on four public retrospective radiomics datasets including lung nodules, metastatic breast cancer, and hepatic encephalopathy using CT, PET/CT, and MRI modalities. Model performance was assessed using the area under the receiver-operating-characteristic curve (AUC) and accuracy metrics. Results: RadiomiX achieved superior performance across four datasets: LLN (AUC = 0.850 and accuracy = 0.785), SLN (AUC = 0.845 and accuracy = 0.754), MBC (AUC = 0.889 and accuracy = 0.833), and CHE (AUC = 0.837 and accuracy = 0.730), significantly outperforming original published models (p < 0.001 for LLN/SLN and p = 0.023 for MBC accuracy). When original published models were re-evaluated using ten-fold cross-validation, their performance decreased substantially: LLN (AUC = 0.783 and accuracy = 0.731), SLN (AUC = 0.748 and accuracy = 0.714), MBC (AUC = 0.764 and accuracy = 0.711), and CHE (AUC = 0.755 and accuracy = 0.677), further highlighting RadiomiX’s methodological advantages. Conclusions: Systematically testing model combinations using RadiomiX has led to significant improvements in performance. This emphasizes the potential of automated ML as a step towards better-performing and more reliable radiomic models. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

22 pages, 11874 KiB  
Article
Bactericidal Activities of Nanoemulsion Containing Piper betle L. Leaf and Hydroxychavicol Against Avian Pathogenic Escherichia coli and Modelling Simulation of Hydroxychavicol Against Bacterial Cell Division Proteins
by Kunchaphorn Ratchasong, Phirabhat Saengsawang, Gorawit Yusakul, Fonthip Makkliang, Hemanth Kumar Lakhanapuram, Phitchayapak Wintachai, Thotsapol Thomrongsuwannakij, Ozioma Forstinus Nwabor, Veerasak Punyapornwithaya, Chonticha Romyasamit and Watcharapong Mitsuwan
Antibiotics 2025, 14(8), 788; https://doi.org/10.3390/antibiotics14080788 - 3 Aug 2025
Viewed by 289
Abstract
Background: Avian pathogenic Escherichia coli (APEC) is a leading cause of colibacillosis in poultry. Piper betle L. is a medicinal plant rich in bioactive compounds including hydroxychavicol that possess potent antibacterial activity. This study aimed to investigate the efficacy of a P. [...] Read more.
Background: Avian pathogenic Escherichia coli (APEC) is a leading cause of colibacillosis in poultry. Piper betle L. is a medicinal plant rich in bioactive compounds including hydroxychavicol that possess potent antibacterial activity. This study aimed to investigate the efficacy of a P. betle L. leaf nanoemulsion (NEPE) and hydroxychavicol against multidrug-resistant APEC isolates. Methods: In vitro and in silico analysis of NEPE and hydroxychavicol against APEC were determined. Results: The nanoemulsion exhibited potent antibacterial activity, with MIC and MBC values of 0.06–0.25% v/v and 0.125–0.25% v/v, respectively. The MIC and MBC values of hydroxychavicol against isolates ranged from 0.25 to 1.0 mg/mL. A time–kill assays revealed rapid bactericidal effects of both compounds, achieving a ≥3-log reduction within 4 h at 4 × MIC. Scanning electron microscopy demonstrated that APEC cells treated with hydroxychavicol exhibited filamentous cells with incomplete septa. Molecular docking and dynamics simulations of hydroxychavicol against APEC cell division proteins were investigated. According to the binding energy, hydroxychavicol exhibited the highest affinity with ZapE, FtsW, FtsX, FtsZ, and FtsA, respectively. However, the FtsA protein showed the least protein conformational change throughout the 5000 ns simulation, reflecting a highly stable conformation. Conclusions: These confirm the potential stability of protein and ligand, as supported by molecular dynamics simulation. The results suggested the potential of NEPE and hydroxychavicol, which may have promising antibacterial potential that can be used to inhibit APEC growth. Full article
(This article belongs to the Special Issue Antimicrobial Extracts and Compounds Derived from Plants)
Show Figures

Figure 1

20 pages, 4784 KiB  
Article
Resilient by Design: Environmental Stress Promotes Biofilm Formation and Multi-Resistance in Poultry-Associated Salmonella
by Gabriel I. Krüger, Francisca Urbina, Coral Pardo-Esté, Valentina Salinas, Javiera Álvarez, Nicolás Avilés, Ana Oviedo, Catalina Kusch, Valentina Pavez, Rolando Vernal, Mario Tello, Luis Alvarez-Thon, Juan Castro-Severyn, Francisco Remonsellez, Alejandro Hidalgo and Claudia P. Saavedra
Microorganisms 2025, 13(8), 1812; https://doi.org/10.3390/microorganisms13081812 - 3 Aug 2025
Viewed by 180
Abstract
Salmonella is one of the main causes of food-borne illness worldwide. In most cases, Salmonella contamination can be traced back to food processing plants and/or to cross-contamination during food preparation. To avoid food-borne diseases, food processing plants use sanitizers and biocidal to reduce [...] Read more.
Salmonella is one of the main causes of food-borne illness worldwide. In most cases, Salmonella contamination can be traced back to food processing plants and/or to cross-contamination during food preparation. To avoid food-borne diseases, food processing plants use sanitizers and biocidal to reduce bacterial contaminants below acceptable levels. Despite these preventive actions, Salmonella can survive and consequently affect human health. This study investigates the adaptive capacity of the main Salmonella enterica serotypes isolated from the poultry production line, focusing on their replication, antimicrobial resistance, and biofilm formation under stressors such as acidic conditions, oxidative environment, and high osmolarity. Using growth curve analysis, crystal violet staining, and microscopy, we assessed replication, biofilm formation, and antimicrobial resistance under acidic, oxidative, and osmotic stress conditions. Disinfectant tolerance was evaluated by determining the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of sodium hypochlorite. The antibiotic resistance was assessed using the Kirby–Bauer method. The results indicate that, in general, acidic and osmotic stress reduce the growth of Salmonella. However, no significant differences were observed specifically for serotypes Infantis, Heidelberg, and Corvallis. The S. Infantis isolates were the strongest biofilm producers and showed the highest prevalence of multidrug resistance (71%). Interestingly, S. Infantis forming biofilms required up to 8-fold higher concentrations of sodium hypochlorite for eradication. Furthermore, osmotic and oxidative stress significantly induced biofilm production in industrial S. Infantis isolates compared to a reference strain. Understanding how Salmonella responds to industrial stressors is vital for designing strategies to control the proliferation of these highly adapted, multi-resistant pathogens. Full article
(This article belongs to the Section Biofilm)
Show Figures

Figure 1

16 pages, 8522 KiB  
Article
Plant Extracts as Modulators of the Wound Healing Process—Preliminary Study
by Anna Herman, Aleksandra Leska, Patrycja Wińska and Andrzej Przemysław Herman
Int. J. Mol. Sci. 2025, 26(15), 7490; https://doi.org/10.3390/ijms26157490 - 2 Aug 2025
Viewed by 343
Abstract
The treatment of chronic wounds is one of the most complex therapeutic problems of modern medicine. It leads to patients’ protracted recovery, generating high treatment costs. Herbal products may be useful in the treatment of chronic wounds via a wide range of pharmacological [...] Read more.
The treatment of chronic wounds is one of the most complex therapeutic problems of modern medicine. It leads to patients’ protracted recovery, generating high treatment costs. Herbal products may be useful in the treatment of chronic wounds via a wide range of pharmacological properties and multidirectional effects on the wound healing phases. The study aims to determine the ability of selected plant extracts to modulate the processes involved in wound healing. The antimicrobial (MIC, MBC, MFC) and antioxidant (ABTS, DPPH) activities, cytotoxicity (MTT test), scratch wound test, and collagen assay were tested. R. canina (MBC 0.39 mg/mL) and V. venifera (MBC 3.13 mg/mL) extracts had bactericidal activities against P. aeruginosa and S. aureus, respectively. The V. vinifera extract showed the highest antioxidant activity in both ABTS (EC50 0.078 mg/mL) and DPPH (EC50 0.005 mg/mL) methods. The percentage of wound closure observed for C. cardunculus, R. rosea, and R. canina extracts with HaCaT, and V. vinifera extract with Hs27 cells was set as 100%. V. vinifera extract (50 μg/mL) stimulated collagen synthesis 5.16 times more strongly than ascorbic acid. Our preliminary study showed that some plant extracts may be promising modulators of the wound healing process, although further in-depth studies are necessary to determine their effectiveness in the in vivo model. Full article
Show Figures

Figure 1

14 pages, 2030 KiB  
Article
In Vitro Assessment of the Antimicrobial and Antibiofilm Activities of Commercial Toothpastes Against Streptococcus mutans
by Yun Ju Lee and Jeong Nam Kim
Appl. Biosci. 2025, 4(3), 38; https://doi.org/10.3390/applbiosci4030038 - 2 Aug 2025
Viewed by 157
Abstract
Toothpaste is an essential oral hygiene product commonly used to sustain oral health due to its incorporation of antimicrobial agents. Numerous functional toothpastes enriched with antimicrobial agents have been developed and are available to consumers. This study evaluates the antimicrobial and antibiofilm efficacy [...] Read more.
Toothpaste is an essential oral hygiene product commonly used to sustain oral health due to its incorporation of antimicrobial agents. Numerous functional toothpastes enriched with antimicrobial agents have been developed and are available to consumers. This study evaluates the antimicrobial and antibiofilm efficacy of 12 commercially available toothpaste products, including those with specialized functions. Statistical significance was assessed to validate the differences observed among the toothpaste samples. Their effects on Streptococcus mutans, the primary pathogen responsible for dental caries, were evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined, and bacterial growth was measured to compare antimicrobial activities. Toothpaste containing 1000 μg/mL fluoride and whitening toothpaste exhibited the strongest antimicrobial effects, effectively inhibiting S. mutans growth. Additionally, bamboo salt-enriched and tartar-control toothpaste demonstrated inhibitory effects on bacterial growth. Assays to evaluate the ability of cells to form biofilms and the expression of genes involved in biofilm formation revealed a partial correlation between biofilm formation and spaP, gtfB, gtfC, and gtfD expression, although some showed opposite trends. Collectively, this study provides valuable insights into the antimicrobial and biofilm inhibition capabilities of commercial toothpastes against S. mutans, offering a foundation for evaluating the efficacy of functional toothpaste products. Full article
Show Figures

Figure 1

11 pages, 944 KiB  
Article
Amesilide, a New Bicyclic Polyketide from the Marine Fungus Amesia nigricolor MUT6601
by Giang Nam Pham, Matteo Florio Furno, Juan A. Garcia-Sanchez, Patrick Munro, Fatouma Mohamed Abdoul-Latif, Laurent Boyer, Giovanna Cristina Varese and Mohamed Mehiri
Molecules 2025, 30(15), 3169; https://doi.org/10.3390/molecules30153169 - 29 Jul 2025
Viewed by 254
Abstract
A new bicyclic polyketide, amesilide (1), along with the previously reported metabolites, chamisides A (2), B (3), and E (4), chaetoconvosins B (5) and C (6), and chaetochromins A (7 [...] Read more.
A new bicyclic polyketide, amesilide (1), along with the previously reported metabolites, chamisides A (2), B (3), and E (4), chaetoconvosins B (5) and C (6), and chaetochromins A (7) and B (8), were isolated from the marine fungus Amesia nigricolor MUT6601. The structures of the compounds were determined by extensive spectrometric (HRMS) and spectroscopic (1D and 2D NMR) analyses, as well as specific rotation. Absolute configurations of the stereogenic centers of amesilide (1) were determined by a comparison of its experimental circular dichroism (CD) spectrum with its time-dependent density functional theory (TD-DFT) electronic circular dichroism (ECD) spectra. Among them, chaetochromins A (7) and B (8) showed strong antibacterial activity against Staphylococcus aureus S25 (MBC values of 12.50 µM and MIC values of 6.25 µM) and a moderate cytotoxicity against monocytes (THP-1) and peripheral blood cells (PBMC) (IC50 values of 33.65–40.01 µM). Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

22 pages, 1531 KiB  
Article
Evaluation of the Biological Properties and Antibacterial Activities of the Natural Food Supplement “Epavin” for Liver Detoxification and Protection
by Alexia Barbarossa, Maria Pia Argentieri, Maria Valeria Diella, Anita Caforio, Antonio Carrieri, Filomena Corbo, Antonio Rosato and Alessia Carocci
Foods 2025, 14(15), 2600; https://doi.org/10.3390/foods14152600 - 24 Jul 2025
Viewed by 401
Abstract
Background/Objectives: The liver, the body’s primary detoxifying organ, is often affected by various inflammatory diseases, including hepatitis, cirrhosis, and non-alcoholic fatty liver disease (NAFLD), many of which can be exacerbated by secondary infections such as spontaneous bacterial peritonitis, bacteremia, and sepsis—particularly in patients [...] Read more.
Background/Objectives: The liver, the body’s primary detoxifying organ, is often affected by various inflammatory diseases, including hepatitis, cirrhosis, and non-alcoholic fatty liver disease (NAFLD), many of which can be exacerbated by secondary infections such as spontaneous bacterial peritonitis, bacteremia, and sepsis—particularly in patients with advanced liver dysfunction. The global rise in these conditions underscores the need for effective interventions. Natural products have attracted attention for their potential to support liver health, particularly through synergistic combinations of plant extracts. Epavin, a dietary supplement from Erbenobili S.r.l., formulated with plant extracts like Taraxacum officinale (L.), Silybum marianum (L.) Gaertn., and Cynara scolymus (L.), known for their liver-supporting properties, has been proposed as adjuvant for liver functions. The aim of this work was to evaluate of Epavin’s antioxidant, anti-inflammatory, and protective effects against heavy metal-induced toxicity. In addition, the antibacterial effect of Epavin against a panel of bacterial strains responsible for infections associated with liver injuries has been evaluated. Methods: The protection against oxidative stress induced by H2O2 was evaluated in HepG2 and BALB/3T3 cells using the dichlorofluorescein diacetate (DCFH-DA) assay. Its anti-inflammatory activity was investigated by measuring the reduction in nitric oxide (NO) production in LPS-stimulated RAW 264.7 macrophages using the Griess assay. Additionally, the cytoprotecting of Epavin against heavy metal-induced toxicity and oxidative stress were evaluated in HepG2 cells using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (MTT) and DCFH-DA assays. The antibacterial activity of Epavin was assessed by determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) against Gram-positive (Enterococcus faecalis ATCC 29212, and BS, Staphylococcus aureus 25923, 29213, 43300, and BS) and Gram-negative (Escherichia coli 25922, and BS, Klebsiella pneumoniae 13883, 70063, and BS) bacterial strains using the microdilution method in broth, following the Clinical and Laboratory Standards Institute’s (CLSI) guidelines. Results: Epavin effectively reduced oxidative stress in HepG2 and BALB/3T3 cells and decreased NO production in LPS-stimulated RAW 264.7 macrophages. Moreover, Epavin demonstrated a protective effect against heavy metal-induced toxicity and oxidative damage in HepG2 cells. Finally, it exhibited significant antibacterial activity against both Gram-positive and Gram-negative bacterial strains, with MIC values ranging from 1.5 to 6.0 mg/mL. Conclusions: The interesting results obtained suggest that Epavin may serve as a valuable natural adjuvant for liver health by enhancing detoxification processes, reducing inflammation, and exerting antibacterial effects that could be beneficial in the context of liver-associated infections. Full article
Show Figures

Figure 1

18 pages, 849 KiB  
Article
Antimicrobial Activity of Greek Native Essential Oils Against Escherichia coli O157:H7 and Antibiotic Resistance Strains Harboring pNorm Plasmid, mecA, mcr-1 and blaOXA Genes
by Rafail Fokas, Zoi Anastopoulou and Apostolos Vantarakis
Antibiotics 2025, 14(8), 741; https://doi.org/10.3390/antibiotics14080741 - 24 Jul 2025
Viewed by 917
Abstract
Background/Objectives: The rapid emergence of antibiotic-resistant Escherichia coli in food and clinical environments necessitates new, clean-label antimicrobials. This study assessed eight Greek native essential oils—oregano, thyme, dittany, rosemary, peppermint, lavender, cistus and helichrysum—for activity against six genetically and phenotypically diverse E. coli strains [...] Read more.
Background/Objectives: The rapid emergence of antibiotic-resistant Escherichia coli in food and clinical environments necessitates new, clean-label antimicrobials. This study assessed eight Greek native essential oils—oregano, thyme, dittany, rosemary, peppermint, lavender, cistus and helichrysum—for activity against six genetically and phenotypically diverse E. coli strains (reference, pNorm, mecA, mcr-1, blaOXA and O157:H7). We aimed to identify oils with broad-spectrum efficacy and clarify the chemical constituents responsible. Methods: Disk-diffusion assays measured inhibition zones at dilutions from 50% to 1.56% (v/v). MIC and MBC values were determined by broth microdilution. GC–MS profiling identified dominant components, and Spearman rank-order correlations (ρ) linked composition to activity. Shapiro–Wilk tests (W = 0.706–0.913, p ≤ 0.002) indicated non-normal data, so strain comparisons used Kruskal–Wallis one-way ANOVA with Dunn’s post hoc and Bonferroni correction. Results: Oregano, thyme and dittany oils—rich in carvacrol and thymol—exhibited the strongest activity, with MIC/MBC ≤ 0.0625% (v/v) against all strains and inhibition zones > 25 mm at 50%. No strain-specific differences were detected (H = 0.30–3.85; p = 0.998–0.571; padj = 1.000). Spearman correlations confirmed that carvacrol and thymol content strongly predicted efficacy (ρ = 0.527–0.881, p < 0.001). Oils dominated by non-phenolic terpenes (rosemary, peppermint, lavender, cistus, helichrysum) showed minimal or no activity. Conclusions: Phenolic-rich EOs maintain potent, strain-independent antimicrobial effects—including against multidrug-resistant and O157:H7 strains—via a multi-target mode that overcomes classical resistance. Their low-dose efficacy and GRAS status support their use as clean-label food preservatives or adjuncts to antibiotics or bacteriophages to combat antimicrobial resistance. Full article
Show Figures

Figure 1

13 pages, 2675 KiB  
Article
Material Removal in Mycelium-Bonded Composites Through Laser Processing
by Maciej Sydor, Grzegorz Pinkowski and Agata Bonenberg
J. Compos. Sci. 2025, 9(8), 389; https://doi.org/10.3390/jcs9080389 - 23 Jul 2025
Viewed by 413
Abstract
Mycelium-bonded composites (MBCs), or myco-composites, represent a novel engineered material that combines natural lignocellulosic substrates with a fungal matrix. As a sustainable alternative to plastics, MBCs are gaining increasing interest; however, their large-scale industrial adoption remains limited, partly due to low social acceptance [...] Read more.
Mycelium-bonded composites (MBCs), or myco-composites, represent a novel engineered material that combines natural lignocellulosic substrates with a fungal matrix. As a sustainable alternative to plastics, MBCs are gaining increasing interest; however, their large-scale industrial adoption remains limited, partly due to low social acceptance resulting from their unattractive appearance. Laser engraving provides a promising method for fabricating intricate patterns and functional surfaces on MBCs, minimizing tool wear, material loss, and environmental impact, while enhancing esthetic and engineering properties. This study investigates the influence of CO2 laser parameters on the material removal rate during the engraving of myco-composites, focusing on the effects of variable laser power, beam defocus, and head feed rate on engraving outcomes. The results demonstrate that laser power and beam focus significantly impact material removal in mycelium-bonded composites. Specifically, increasing the laser power results in greater material removal, which is more pronounced when the beam is focused due to higher energy density. In contrast, a beam defocused by 1 mm produces less intense material removal. These findings highlight the critical role of beam focus—surpassing the influence of power alone—in determining engraving quality, particularly on irregular or uneven surfaces. Moreover, reducing the laser head feed rate at a constant power level increases the material removal rate linearly; however, it also results in excessive charring and localized overheating, revealing the low thermal tolerance of myco-composites. These insights are essential for optimizing laser processing techniques to fully realize the potential of mycelium-bonded composites as sustainable engineering materials, simultaneously maintaining their appearance and functional properties. Full article
(This article belongs to the Special Issue Advances in Laser Fabrication of Composites)
Show Figures

Figure 1

15 pages, 311 KiB  
Article
Antibacterial Activity of Clove Essential Oil (Syzygium aromaticum) Against Oxacillin-Resistant Staphylococcus pseudintermedius Isolated from Dogs with Otitis Externa
by Vanessa Danielle de Freitas, Edison Lorran Jerdlicka Coelho, Janaina Marcela Assunção Rosa Moreira, Valéria Dutra, Valéria Régia Franco Sousa and Arleana do Bom Parto Ferreira de Almeida
Pathogens 2025, 14(7), 709; https://doi.org/10.3390/pathogens14070709 - 17 Jul 2025
Viewed by 453
Abstract
Infections caused by oxacillin-resistant Staphylococcus pseudintermedius are increasingly common in veterinary medicine. The indiscriminate use of antibiotics by pet owners worsens this problem, reducing treatment efficacy and creating the need for alternative therapies. This study aimed to evaluate the inhibitory effect of clove [...] Read more.
Infections caused by oxacillin-resistant Staphylococcus pseudintermedius are increasingly common in veterinary medicine. The indiscriminate use of antibiotics by pet owners worsens this problem, reducing treatment efficacy and creating the need for alternative therapies. This study aimed to evaluate the inhibitory effect of clove essential oil (Syzygium aromaticum) on both oxacillin-resistant and susceptible S. pseudintermedius. Thirty-five isolates from dogs with otitis externa were analyzed. The bacteria were identified by phenotypic tests and tested for susceptibility to 22 antibiotics using disk diffusion. Resistance genes (mecA and blaZ) were detected using conventional PCR. Among the isolates, 34.28% (12/35) were positive for mecA, and 97.14% (34/35) for blaZ. The essential oil’s efficacy was assessed using broth microdilution to determine its minimum inhibitory concentration (MIC). Clove oil showed an average MIC and minimum bactericidal concentration (MBC) of 6.4 mg/mL, inhibiting both resistant and susceptible isolates. In conclusion, clove essential oil demonstrated in vitro antimicrobial activity against S. pseudintermedius. Full article
15 pages, 1973 KiB  
Article
Factors Affecting the Survival of Metastatic Breast Cancer Patients Treated with CDK 4/6 Inhibitors
by Zehra Sucuoğlu İşleyen, Harun Muğlu, Zeynep Alaca Topçu, Mehmet Beşiroğlu, Ayşe İrem Yasin, Atakan Topçu, Melih Şimşek, Mesut Şeker and Hacı Mehmet Türk
Medicina 2025, 61(7), 1279; https://doi.org/10.3390/medicina61071279 - 16 Jul 2025
Viewed by 305
Abstract
Background and Objective: We aim to determine the efficacy and the factors associated with the effectiveness of first-line CDK4/6i (ribociclib or palbociclib) treatment in HR-positive, HER2-negative MBC patients. Materials and Methods: This is a retrospective, cross-sectional, and descriptive study. Ninety patients with metastatic [...] Read more.
Background and Objective: We aim to determine the efficacy and the factors associated with the effectiveness of first-line CDK4/6i (ribociclib or palbociclib) treatment in HR-positive, HER2-negative MBC patients. Materials and Methods: This is a retrospective, cross-sectional, and descriptive study. Ninety patients with metastatic breast cancer receiving CDK 4/6i treatment from three different oncology clinics were included in this study. Results: Of the patients, 56 (62.2%) received ribociclib, and 34 (37.8%) were administered palbociclib. There was no significant difference between the groups regarding age, gender, comorbidities, ECOG performance status, or menopausal status (p > 0.05). The cut-off values for ER, PR, and Ki-67 levels were determined via ROC curve analysis. These values were found to be 80% for ER levels, 50% for PR levels, and 30% for Ki-67 levels. PFS was significantly longer for patients with ER levels greater than 80% and Ki-67 expression levels less than 30% according to multivariate analysis. Among the patients included in our study, the median PFS was 22.41 months for the patients with Ki-67 levels of 30% and above, while the median PFS was 17.24 months for the patients with ER levels of 80% and below. Among the patients with a combined ER of 80% or less and a Ki-67 of 30% or more, the median PFS was 12.42 months (p < 0.001). Conclusions: This study demonstrates that CDK4/6i therapies led to longer PFS among patients with ER levels greater than 80% and Ki-67 expression levels less than 30%. It is essential to determine which patient group benefits more from first-line CDK4/6is therapy. Full article
(This article belongs to the Collection Frontiers in Breast Cancer Diagnosis and Treatment)
Show Figures

Figure 1

13 pages, 1667 KiB  
Article
Isolation and Identification of Pathogenic Bacteria Aeromonas veronii in Ctenopharyngodon idella (Grass Carp) and Chinese Herbal Medicine Antibacterial Experiment
by Yanhua Zhao, Hui Xue, Guoxing Liu, Li Sun and Hucheng Jiang
Bacteria 2025, 4(3), 34; https://doi.org/10.3390/bacteria4030034 - 12 Jul 2025
Viewed by 220
Abstract
Grass carp in aquaculture exhibited symptoms of bacterial infection leading to mortality. To investigate the cause of the disease and control grass carp infections, samples from diseased grass carp were collected, and a bacterial strain named XH-1 was isolated from the internal organs [...] Read more.
Grass carp in aquaculture exhibited symptoms of bacterial infection leading to mortality. To investigate the cause of the disease and control grass carp infections, samples from diseased grass carp were collected, and a bacterial strain named XH-1 was isolated from the internal organs of the infected fish. Artificial infection experiments were conducted to determine whether the isolated strain XH-1 was the pathogenic bacterium. The biological characteristics of the isolated strain were studied through a 16S rRNA sequence analysis, physiological and biochemical identification, and phylogenetic tree construction. Extracts from 14 traditional Chinese herbs were tested to evaluate their bacteriostatic and bactericidal effects on the isolated strain. The regression infection experiment confirmed that the isolated strain XH-1 was the pathogenic bacterium causing the grass carp disease. Biological characterization studies identified the bacterium as Aeromonas veronii, which is clustered with A. veronii MW116767.1 on the phylogenetic tree. Among the 14 Chinese herbal extracts, Lignum sappa, Pericarpium granna, Artemisia argyi, Scutellaria baicalensis Georgi, Coptis chinensis, and Artemisiacapillaris thunb exhibited significant bacteriostatic effects on XH-1. Lignum sappa showed the highest sensitivity to A. veronii, with the largest inhibition zone diameter, and its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 7.813 mg/mL and 15.625 mg/mL, respectively. As the concentration of Lignum sappa extract increased, its bacteriostatic and bactericidal effects strengthened. When the concentration exceeded 14 mg/mL, it maintained strong bactericidal activity over 32 h. This study on A. veronii XH-1 provides theoretical insights for the prevention of grass carp aquaculture diseases and the use of traditional Chinese herbs for treatment. Full article
Show Figures

Figure 1

21 pages, 14585 KiB  
Article
Zingiber officinale Polysaccharide Silver Nanoparticles: A Study of Its Synthesis, Structure Elucidation, Antibacterial and Immunomodulatory Activities
by Xiaoyu Chang, Huina Xiao, Mingsong Li, Yongshuai Jing, Kaiyan Zheng, Beibei Hu, Yuguang Zheng and Lanfang Wu
Nanomaterials 2025, 15(14), 1064; https://doi.org/10.3390/nano15141064 - 9 Jul 2025
Viewed by 336
Abstract
Green-synthesized metal nanoparticles show promise in nanomedicine and material engineering. In this study, the polysaccharide of Zingiber officinale (ZOP) was used as a raw material. Through single-factor experiments and a response surface methodology, the optimum synthesis protocol of Zingiber officinale polysaccharide silver nanoparticles [...] Read more.
Green-synthesized metal nanoparticles show promise in nanomedicine and material engineering. In this study, the polysaccharide of Zingiber officinale (ZOP) was used as a raw material. Through single-factor experiments and a response surface methodology, the optimum synthesis protocol of Zingiber officinale polysaccharide silver nanoparticles (ZOP-NPs-AgNPs) was determined as follows: V(AgNO3):V(ZOP) = 2.98:1, 59.79 °C, 3 h, pH 9, and 20 mL NaCl, achieving a 92.51% silver chelation rate. Structure analysis revealed that ZOP-NPs-AgNPs were spherical or quasi-spherical, with a particle size < 20 nm and a face-centered cubic crystal structure, which has good thermal stability. Subsequent studies explored the antibacterial and immunomodulatory effects of ZOP-NPs-AgNPs. The minimum inhibitory concentration (MIC) of ZOP-NPs-AgNPs against Escherichia coli and Staphylococcus aureus was determined to be 0.5000 mg/mL and 0.0310 mg/mL, respectively, while the minimum bactericidal concentration (MBC) was 0.5000 mg/mL and 0.0310 mg/mL, respectively. Additionally, ZOP-NPs-AgNPs significantly enhance RAW264.7 cell proliferation and phagocytosis and boost IL−1β, IL−6, NO, and TNF-α production. This confirms that ZOP can act as a green reductant and stabilizer, offering a new method for green nano-silver synthesis. This provides a sustainable way to produce antibacterial products and functional foods, and offers useful references for eco-friendly nano-silver applications. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

18 pages, 781 KiB  
Article
Technical Lignins Antibacterial Effects Against Environmental Mastitis Pathogens Across Various Levels of Bedding Cleanliness In Vitro
by Godloves M. Oppong, Diana C. Reyes, Zhengxin Ma, Santiago A. Rivera, Marjorie A. Killerby, Diego Zamudio, Anne B. Lichtenwalner and Juan J. Romero
Molecules 2025, 30(14), 2904; https://doi.org/10.3390/molecules30142904 - 9 Jul 2025
Viewed by 300
Abstract
This study aimed to evaluate the antibacterial activity of several technical lignins against major environmental bacteria that cause mastitis in dairy cattle. The efficacy of four types of technical lignins against environmental mastitis pathogens was evaluated using MIC and MBC assays. The best [...] Read more.
This study aimed to evaluate the antibacterial activity of several technical lignins against major environmental bacteria that cause mastitis in dairy cattle. The efficacy of four types of technical lignins against environmental mastitis pathogens was evaluated using MIC and MBC assays. The best candidate, sodium lignosulfonate (NaL-O), was further tested using sawdust bedding substrates. Substrates were prepared in different cleanliness conditions: sawdust only, sawdust plus urine, sawdust plus feces, or sawdust plus a combination of both. The antimicrobial activity of NaL-O against the mixture of environmental mastitis-causing pathogens was determined on days 0, 2, and 6 of incubation. In addition, the components of bedding substrates were analyzed to help understand the dynamics of pathogen loads. In the MIC and MBC assays, NaL-O showed the best antimicrobial performance against all pathogens except Escherichia coli. When testing in the bedding substrates, the addition of NaL-O decreased the concentration of Staphylococcus chromogenes, Streptococcus uberis, and Pseudomonas aeruginosa across all bedding cleanliness levels at d 0, 2, and 6 of incubation. As the incubation time increased, the antimicrobial effect decreased. NaL-O also lowered the counts of E. coli and Klebsiella pneumoniae across all incubation times, but to a lesser extent. The presence of feces significantly reduced the antibacterial effects of NaL-O for these two bacteria. Among the technical lignins tested, NaL-O showed the broadest antibacterial activity against the mastitis pathogens tested. This study suggests that NaL-O has promising potential as a bedding conditioner to control environmental pathogens on dairies due to its low cost, ready availability, and compatibility with sustainable livestock practices. Combined with bedding cleanliness, bedding conditioner application may play a crucial role in reducing the growth of EM pathogens and subsequent mastitis incidence. Full article
Show Figures

Figure 1

21 pages, 1507 KiB  
Article
Physicochemical Properties, Antioxidant and Antibacterial Activities and Anti-Hepatocarcinogenic Effect and Potential Mechanism of Schefflera oleifera Honey Against HepG2 Cells
by Jingjing Li, Jie Wang, Yicong Wang and Wenchao Yang
Foods 2025, 14(13), 2376; https://doi.org/10.3390/foods14132376 - 4 Jul 2025
Viewed by 478
Abstract
Schefflera oleifera honey (SH) is produced from the nectar of S. Oleifera by worker bees. Due to its unique properties and potential biological activities, this winter honey has attracted much attention. In this study, the physicochemical characteristics, antioxidant and antibacterial activities, antitumor effect [...] Read more.
Schefflera oleifera honey (SH) is produced from the nectar of S. Oleifera by worker bees. Due to its unique properties and potential biological activities, this winter honey has attracted much attention. In this study, the physicochemical characteristics, antioxidant and antibacterial activities, antitumor effect against HepG2 cells, and its potential mechanisms of SH were systematically evaluated. The results showed that different SH samples differed significantly in their physicochemical characteristics. The 910 chemical components, including 52 kinds of phenols, phenolic acids, and flavonoids, were detected in the methanol extract of SH using UHPLC-MS/MS by non-targeted metabolomics. Based on our limited knowledge, solanine and soyasaponin I are the first determined components in honey, and they may be used as characteristic substances of SH for identification and adulteration. SH had a weaker inhibitory effect against Salmonella typhimurium and Staphylococcus aureus than MH (UMF 10+), analyzed by MBC and MIC assays. Network pharmacology analysis showed that 95 overlapping targets were found between the active ingredients of SH and liver cancer cells (HepG2), which were enriched in KEGG of the PI3K-Akt pathway, Lipid and atherosclerosis, Proteoglycans in cancer, etc. The IC50 of SH against HepG2 cells was 5.07% (dw/v), which is lower than the glucose, fructose, and sucrose contents in SH on HepG2 cells, of 16.24%, 9.60% dw/v, and 9.94% dw/v, respectively. SH significantly down-regulated the expression of EGFR, AKT1, and SRC in HepG2 cells (p < 0.05), determined by an enzyme-linked immunosorbent assay kit, and induced cell cycle arrest and apoptosis by multiple pathways. These results provide a theoretical basis for its potential application in developing functional foods and additives. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

Back to TopTop