Antibacterial Activity of Clove Essential Oil (Syzygium aromaticum) Against Oxacillin-Resistant Staphylococcus pseudintermedius Isolated from Dogs with Otitis Externa
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation and Identification
2.2. Antimicrobial Susceptibility Testing
2.3. Genotypic Detection of mecA and blaZ
2.4. Acquisition and Identification of Clove Essential Oil (S. aromaticum)
2.5. In Vitro Antimicrobial Evaluation of Clove Essential Oil (S. aromaticum)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MIC | Minimum Inhibitory Concentration |
MBC | Minimum Bactericidal Concentration |
SIG | Staphylococcus intermedius Group |
MRSP | Methicillin Resistance Staphylococcus pseudintermedius |
MSSP | Methicillin-susceptible Staphylococcus pseudintermedius |
EO | Essential Oil |
MAR | Multiple Antimicrobial Resistance |
MCAR | Multiple-Class Antimicrobial Resistance |
UFMT | Federal University of Mato Grosso |
UFMG | Federal University of Minas Gerais |
PCR | Polymerase Chain Reaction |
GC-MS | Gas Chromatography Coupled With Mass Spectrometry |
GC-FID | Gas Chromatography with Flame Ionization Detection |
CFU | Colony-Forming Units |
MRSA | Methicillin-Resistant Staphylococcus aureus |
References
- Beck, K.; Waisglass, S.; Dick, H.; Weese, J. Prevalence of meticillin-resistant Staphylococcus pseudintermedius (MRSP) from skin and carriage sites of dogs after treatment of their meticillin-resistant or meticillin-sensitive staphylococcal pyoderma. Vet. Microbiol. 2012, 23, 369–375. [Google Scholar] [CrossRef]
- Kjellman, E.; Slettemea, J.; Small, H.; Sunde, M. Methicillin-resistant Staphylococcus pseudintermedius (MRSP) from healthy dogs in Norway—Occurrence, genotypes and comparison to clinical MRSP. Microbiologyopen 2015, 4, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; van Duijkeren, E. Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. Vet. Microbiol. 2010, 140, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.A.; Helbig, K.J. The complex diseases of Staphylococcus pseudintermedius in canines: Where to next? Vet. Sci. 2021, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Borjesson, S.; Gomez-Sanz, E.; Ekstrom, K.; Torres, C.; Gronlund, U. Staphylococcus pseudintermedius can be misdiagnosed as Staphylococcus aureus in humans with dog bite wounds. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 839–844. [Google Scholar] [CrossRef]
- Robb, A.R.; Wright, E.D.; Foster, A.M.E.; Walker, R.; Malone, C. Skin infection caused by a novel strain of Staphylococcus pseudintermedius in a Siberian husky dog owner. JMM Case Rep. 2017, 4, e005087. [Google Scholar] [CrossRef]
- Somayaji, R.; Priyantha, M.A.; Rubin, J.E.; Church, D. Human infections due to Staphylococcus pseudintermedius, an emerging zoonosis of canine origin: Report of 24 cases. Diagn. Microbiol. Infect. Dis. 2016, 85, 471–476. [Google Scholar] [CrossRef]
- Moses, I.B.; Santos, F.F.; Gales, A.C. Human colonization and infection by Staphylococcus pseudintermedius: An emerging and underestimated zoonotic pathogen. Microorganisms 2023, 11, 581. [Google Scholar] [CrossRef]
- Blondeau, L.D.; Deneer, H.; Rubin, J.E.; Kanthan, R.; Sanche, S.E.; Hamula, C.L.; Blondeau, J.M. Zoonotic Staphylococcus pseudintermedius: An underestimated human pathogen? Future Microbiol. 2023, 18, 311–315. [Google Scholar] [CrossRef]
- Guimarães, L.; Teixeira, I.M.; da Silva, I.T.; Antunes, M.; Pesset, C.; Fonseca, C.; Penna, B. Epidemiologic case investigation on the zoonotic transmission of Methicillin-resistant Staphylococcus pseudintermedius among dogs and their owners. J. Infect. Public Health 2023, 16, 183–189. [Google Scholar] [CrossRef]
- Bannoehr, J.; Guardabassi, L. Staphylococcus pseudintermedius in the dog: Taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Vet. Dermatol. 2012, 23, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Krapf, M.; Müller, E.; Reissig, A.; Slickers, P.; Braun, S.D.; Monecke, S. Molecular characterisation of methicillin-resistant Staphylococcus pseudintermedius from dogs and the description of their SCCmec elements. Vet. Microbiol. 2019, 233, 196–203. [Google Scholar] [CrossRef]
- Nocera, F.P.; De Martino, L. Methicillin-resistant Staphylococcus pseudintermedius: Epidemiological changes, antibiotic resistance, and alternative therapeutic strategies. Vet. Res. Commun. 2024, 48, 3505–3515. [Google Scholar] [CrossRef] [PubMed]
- Alibayov, B.; Baba-Moussa, L.; Sina, H.; Zdeňková, K.; Demnerová, K. Staphylococcus aureus mobile genetic elements. Mol. Biol. Rep. 2014, 41, 5005–5018. [Google Scholar] [CrossRef] [PubMed]
- Peacock, S.J.; Paterson, G.K. Mechanisms of Methicillin Resistance in Staphylococcus aureus. Annu. Rev. Biochem. 2015, 84, 577–601. [Google Scholar] [CrossRef]
- Perreten, V.; Kadlec, K.; Schwarz, S.; Andersson, U.G.; Finn, M.; Greko, C.; Moodley, A.; Kania, S.A.; Frank, L.A.; Bemis, D.A.; et al. Clonal spread of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: An international multicentre study. J. Antimicrob. Chemother. 2010, 65, 1145–1154. [Google Scholar] [CrossRef]
- Papich, M.G. Selection of antibiotics for meticillin-resistant Staphylococcus pseudintermedius: Time to revisit some old drugs. Vet. Microbiol. 2012, 23, 1–10. [Google Scholar] [CrossRef]
- Sienkiewicz, M.; Denys, P.; Kowalczyk, E. Antibacterial and immunostimulatory effect of essential oils. J. Investig. Allergol. Clin. Immunol. 2011, 17, 40–44. [Google Scholar]
- Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689. [Google Scholar] [CrossRef]
- Nada, H.G.; Mohsen, R.; Zaki, E.M.; Aly, A.A. Evaluation of chemical composition, antioxidant, antibiofilm and antibacterial potency of essential oil extracted from gamma irradiated clove (Eugenia caryophyllata). Food Meas. Charact. 2022, 16, 673–686. [Google Scholar] [CrossRef]
- Grafakou, M.E.; Barda, C.; Karikas, G.A.; Skaltsa, H. Hypericum Essential Oils—Composition and Bioactivities: An Update (2012–2022). Molecules 2022, 27, 5246. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Assessment Report on Syzygium aromaticum (L.) Merill et L.M. Perry, Flos and Syzygium aromaticum (L.) Merill et L.M. Perry, Floris Aetheroleum. Committee on Herbal Medicinal Products (HMPC); EMA: Singapore, 2011; EMA/HMPC/534946/2010. [Google Scholar]
- Affonso, R.S.; Rennó, M.N.; Slana, G.B.C.A.; Franca, T.C.C. Aspectos Químicos e Biológicos do Óleo Essencial de Cravo da Índia. Rev. Virtual Quim. 2012, 4, 146–161. [Google Scholar] [CrossRef]
- Da Silva, A.A.; Bergamo, L.; De Camargo, L.P.; Fernandes, C.; Mussato, D.; Canazart, D.; De Abreu Filho, B.A. Atividade microbiológica de óleos essenciais obtidos por arraste a vapor. UNINGÁ Rev. 2014, 20, 33–39. [Google Scholar]
- Sateriale, D.; Forgione, G.; De Cristofaro, G.A.; Facchiano, S.; Boscaino, F.; Pagliuca, C.; Pagliarulo, C. Towards Green Strategies of Food Security: Antibacterial synergy of essential oils from Thymus vulgaris and Syzygium aromaticum to inhibit Escherichia coli and Staphylococcus aureus pathogenic food isolates. Microorganisms 2022, 10, 2446. [Google Scholar] [CrossRef]
- Beraldo, C.; Silva, D.N.; Scanavacca, J.; Doyaman, J.T.; Júnior, A.F.; Moritz, C.M.F. Eficiência de óleos essenciais de canela e cravo-da-índia como sanitizantes na indústria de alimentos. Pesq. Agropec. Trop. 2013, 43, 436–440. [Google Scholar] [CrossRef]
- Mostaqim, S.; Saha, S.K.; Hani, U.; Paul, S.K.; Sharmin, M.; Basak, S.; Shahabuddin, M.S. Antibacterial activities of clove (Syzygium aromaticum) extracts against three food borne pathogens: Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Mymensingh Med. J. 2019, 28, 779–791. [Google Scholar] [PubMed]
- Zeshan, M.Q.; Ashraf, M.; Omer, M.O.; Anjum, A.A.; Ali, M.A.; Najeeb, M.; Majeed, J. Antimicrobial activity of essential oils of Curcuma longa and Syzygium aromaticum against multiple drug-resistant pathogenic bacteria. Trop. Biomed. 2023, 40, 174–182. [Google Scholar] [CrossRef]
- Silvestri, J.D.F.; Paroul, N.; Czyewski, E.; Lerin, L.; Rotava, I.; Cansian, R.L.; Mossi, A.; Toniazzo, G.; de Oliveira, D.; Treichel, H. Perfil da composição química e atividades antibacteriana e antioxidante do óleo essencial do cravo-da-índia (Eugenia caryophyllata Thunb.). Rev. Ceres 2010, 57, 589–594. [Google Scholar] [CrossRef]
- Quinn, P.J.; Carter, M.E.; Markey, B.; Carter, G.R. Clinical Veterinary Microbiology; Wolfe: London, UK, 1994; pp. 21–66. [Google Scholar]
- Green, R.M.; Sambrook, J. Molecular Cloning: A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory: New York, NY, USA, 2012; pp. 21–25. [Google Scholar]
- Sasaki, T.; Tsubakishita, S.; Tanaka, Y.; Sakusabe, A.; Ohtsuka, M.; Hirotaki, S.; Hiramatsu, K. Multiplex-PCR method for species identification of coagulase-positive staphylococci. J. Clin. Microbiol. 2010, 48, 765–769. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Second Informational Supplement, VET01-S2; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2013; Volume 33. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement, M100-S25; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; Volume 35. [Google Scholar]
- Papich, M.G. Antibiotic treatment of resistant infections in small animals. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 1091–1107. [Google Scholar] [CrossRef]
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk source of fecal contamination of foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef]
- Ngoi, S.T.; Thong, K.L. Molecular characterization showed limited genetic diversity among Salmonella Enteritidis isolated from humans and animals in Malaysia. Diagn. Microbiol. Infect. Dis. 2013, 77, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.M.; Kim, S.H.; Kim, H.J.; Lee, D.G.; Choi, J.H. Multiplex PCR for the detection of genes encoding aminoglycoside modifying enzymes and methicillin resistance among Staphylococcus species. J. Korean Med. Sci. 2003, 18, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Martineau, F.; Picard, J.F.; Lansac, N. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2000, 44, 231–238. [Google Scholar] [CrossRef]
- Freire, I.C.M.; Pérez, A.L.A.L.; Cardoso, A.M.R. Atividade antibacteriana de óleos essenciais sobre Streptococcus mutans e Staphylococcus aureus. Rev. Bras. Plantas Med. 2014, 16, 372–377. [Google Scholar] [CrossRef]
- Aligiannis, N.; Kalpoutzakis, E.; Mitaku, S. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem. 2001, 49, 4168–4170. [Google Scholar] [CrossRef]
- Martins, E.A.; Momesso, C.S.; Nardo, C.D.D. Estudo clínico e microbiológico de otite externa de cães atendidos em hospital veterinário do noroeste paulista. Acta Vet. Bras. 2011, 5, 61–67. [Google Scholar] [CrossRef]
- Fernandez, G.; Barboza, G.; Villalobos, A. Isolation and identification of microorganisms present in 53 dogs suffering otitis externa. Rev. Cient. 2006, 16, 23–30. [Google Scholar]
- Zur, G.; Lifshitz, B.; Bdolah-Abram, T. The association between the signalment, common causes of canine otitis externa and pathogens. J. Small Anim. Pract. 2011, 52, 254–258. [Google Scholar] [CrossRef]
- Terziev, G.; Borissov, I. Prevalence of ear diseases in dogs—A retrospective 5-year clinical study. Bulg. J. Vet. Med. 2018, 21, 76–85. [Google Scholar] [CrossRef]
- Lee, G.Y.; Yang, S.J. Comparative assessment of genotypic and phenotypic correlates of Staphylococcus pseudintermedius strains isolated from dogs with otitis externa and healthy dogs. Comp. Immunol. Microbiol. Infect. Dis. 2020, 70, e101376. [Google Scholar] [CrossRef]
- Lee, G.Y.; Lee, S.I.; Park, J.H.; Kim, S.D.; Kim, G.B.; Yang, S.J. Detection and characterization of potential virulence determinants in Staphylococcus pseudintermedius and S. schleiferi strains isolated from canine otitis externa in Korea. J. Vet. Sci. 2023, 24, e85. [Google Scholar] [CrossRef]
- Morais, C.; Costa, S.S.; Leal, M.; Ramos, B.; Andrade, M.; Ferreira, C.; Couto, I. Genetic diversity and antimicrobial resistance profiles of Staphylococcus pseudintermedius associated with skin and soft-tissue infections in companion animals in Lisbon, Portugal. Front. Microbiol. 2023, 14, e1167834. [Google Scholar] [CrossRef] [PubMed]
- Hur, B.A.; Hardefeldt, L.Y.; Verspoor, K.M.; Baldwin, T.; Gilkerson, J.R. Describing the antimicrobial usage patterns of companion animal veterinary practices; free text analysis of more than 4.4 million consultation records. PLoS ONE 2020, 15, e0230049. [Google Scholar] [CrossRef] [PubMed]
- Chirollo, C.; Nocera, F.P.; Piantedosi, D.; Fatone, G.; Della Valle, G.; De Martino, L.; Cortese, L. Data on before and after the traceability system of Veterinary antimicrobial prescriptions in small animals at the University Veterinary Teaching Hospital of Naples. Animals 2021, 11, 913. [Google Scholar] [CrossRef] [PubMed]
- Glavind, A.S.; Kruse, A.B.; Nielsen, L.R.; Stege, H. Monitoring antimicrobial usage in companion animals: Exploring the use of the Danish VetStat database. Acta Vet. Scand. 2022, 64, 27. [Google Scholar] [CrossRef]
- Saribas, Z.; Tunckanat, F.; Pinar, A. Prevalence of erm genes encoding macrolide-lincosamide-streptogramin (MLS) resistance among clinical isolates of Staphylococcus aureus in a Turkish university hospital. Clin. Microbiol. Infect. 2006, 12, 797–799. [Google Scholar] [CrossRef]
- Thakuri, D.R.; Pokhrel, A.; Amatya, R.; Bashyal, N.S.; Neupane, M.; KC, S.; Khanal, S. Distribution of MecA and Erm Genes among Methicillin-resistant Staphylococcus aureus with Inducible Resistance to Clindamycin. J. Nepal Health Res. Counc. 2023, 21, 29–33. [Google Scholar] [CrossRef]
- Feng, Y.; Tian, W.; Lin, D. Prevalence and characterization of methicillin-resistant Staphylococcus pseudintermedius in pets from South China. Vet. Microbiol. 2012, 160, 517–524. [Google Scholar] [CrossRef]
- Lopes, G.V.; Guerra, P.R.; Machado, V. Methicillin-resistant Staphylococcus pseudintermedius clonal groups isolated from canine pyoderma in Brazil. Acta Sci. Vet. 2015, 43, 1138. [Google Scholar]
- Rana, E.A.; Islam, M.Z.; Das, T.; Dutta, A.; Ahad, A.; Biswas, P.K.; Barua, H. Prevalence of coagulase-positive methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in dogs in Bangladesh. Vet. Med. Sci. 2022, 8, 498–508. [Google Scholar] [CrossRef]
- González-Domínguez, M.S.; Carvajal, H.D.; Calle-Echeverri, D.A.; Chinchilla-Cárdenas, D. Molecular Detection and Characterization of the mecA and nuc Genes from Staphylococcus Species (S. aureus, S. pseudintermedius, and S. schleiferi) Isolated from Dogs Suffering Superficial Pyoderma and Their Antimicrobial Resistance Profiles. Front. Vet. Sci. 2020, 7, 376. [Google Scholar] [CrossRef]
- Cruz, A.R.; Paes, A.C.; Siqueira, A.K. Perfil de sensibilidade de bactérias patogênicas isoladas de cães frente a antimicrobianos. Vet. Zootec. 2012, 19, 601–610. [Google Scholar]
- Kadlec, K.; Weiß, S.; Wendlandt, S.; Schwarz, S.; Tonpitak, W. Characterization of canine and feline methicillin-resistant Staphylococcus pseudintermedius (MRSP) from Thailand. Vet. Microbiol. 2016, 194, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Viegas, F.M.; Santana, J.A.; Silva, B.A.; Xavier, R.G.C.; Bonisson, C.T.; Câmara, J.L.S.; Silva, R.O.S. Occurrence and characterization of methicillin-resistant Staphylococcus spp. in diseased dogs in Brazil. PLoS ONE 2022, 17, e0269422. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; van Alen, S.; Idelevich, E.A.; Schleimer, N.; Seggewiß, J.; Mellmann, A.; Kaspar, U.; Peters, G. Plasmid-Encoded Transferable mecB-Mediated Methicillin Resistance in Staphylococcus aureus. Emerg. Infect. Dis. 2018, 24, 242–248. [Google Scholar] [CrossRef]
- Bonjean, M.; Hodille, E.; Dumitrescu, O. Disk diffusion testing for the detection of methicillin-resistant staphylococci: Does moxalactam improve upon cefoxitin? J. Clin. Microbiol. 2016, 54, 2905–2909. [Google Scholar] [CrossRef]
- Prior, C.D.; Moodley, A.; Karama, M.; Malahlela, M.N.; Leisewitz, A. Prevalence of methicillin resistance in Staphylococcus pseudintermedius isolates from dogs with skin and ear infections in South Africa. J. S. Afr. Vet. Assoc. 2022, 93, 40a–40h. [Google Scholar] [CrossRef]
- Naziri, Z.; Majlesi, M. Comparison of the prevalence, antibiotic resistance patterns, and biofilm formation ability of methicillin-resistant Staphylococcus pseudintermedius in healthy dogs and dogs with skin infections. Vet. Res. Commun. 2023, 47, 713–721. [Google Scholar] [CrossRef]
- Santin, J.R.; Lemos, M.; Klein-Júnior, L.C. Gastroprotective activity of essential oil of the Syzygium aromaticum and its major component eugenol in different animal models. Naunyn Schmiedebergs Arch. Pharmacol. 2011, 383, 149–158. [Google Scholar] [CrossRef]
- Alma, M.K.; Ertas, M.; Nitz, S.; Kollmannsberger, H. Chemical composition and content of essential oil from the bud of cultivated Turkish clove (Syzygium aromaticum, L.). BioResources 2007, 2, 265–269. [Google Scholar] [CrossRef]
- Chaieb, K.; Hajlaoui, H.; Zmantar, T. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzygium aromaticum, L. Myrtaceae): A short review. Phytother. Res. 2007, 21, 501–506. [Google Scholar] [CrossRef]
- Gomes, P.R.B.; Filho, V.E.M.; Rabelo, W.F. Caracterização química e citotoxicidade do óleo essencial do cravo-da-índia (Syzygium aromaticum). Rev. Colomb. Cienc. Quím. Farm. 2018, 47, 37–52. [Google Scholar] [CrossRef]
- Radunz, M.; da Trindade, M.L.M.; Camargo, T.M. Antimicrobial and Antioxidant Activity of Unencapsulated and Encapsulated Clove (Syzygium aromaticum, L.) Essential Oil. Food Chem. 2018, 276, 180–186. [Google Scholar] [CrossRef]
- Aelenei, P.; Miron, A.; Trifan, A.; Bujor, A.; Gille, E.; Aprotosoaie, A.C. Essential oils and their components as modulators of antibiotic activity against gram-negative bacteria. Medicines 2016, 3, 19. [Google Scholar] [CrossRef]
- Raikwar, G.; Kumar, D.; Mohan, S.; Dahiya, P. Synergistic Potential of Essential oils with Antibiotics for Antimicrobial Resistance with Emphasis on Mechanism of Action: A Review. Biocatal. Agric. Biotechnol. 2024, 61, e103384. [Google Scholar] [CrossRef]
- Nascimento, G.G.; Locatelli, J.; Freitas, P.C.; Silva, G.L. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz. J. Microbiol. 2000, 31, 247–256. [Google Scholar] [CrossRef]
- Purkait, S.; Bhattacharya, A.; Bag, A.; Chattopadhyay, R.R. Evaluation of antibiofilm efficacy of essential oil components β-caryophyllene, cinnamaldehyde and eugenol alone and in combination against biofilm formation and preformed biofilms of Listeria monocytogenes and Salmonella typhimurium. Lett. Appl. Microbiol. 2020, 71, 195–202. [Google Scholar] [CrossRef]
- Albuquerque, V.D.Q.; Soares, M.J.C.; Matos, M.N.C.; Cavalcante, R.M.B.; Guerrero, J.A.P.; Rodrigues, T.H.S.; Carneiro, V.A. Anti-staphylococcal activity of Cinnamomum zeylanicum essential oil against planktonic and biofilm cells isolated from canine otological infections. Antibiotics 2021, 11, 4. [Google Scholar] [CrossRef]
- Nada, H.; Khatab, R.; Hashem, A.; Elhifnawi, H.; Ashraf, A. In vitro enhancement of ciprofloxacin, tobramycin, and nystatin activity by irradiated aqueous garlic extract against multidrug-resistant pathogens causing otitis. Arab. J. Nucl. Sci. Appl. 2022, 55, 132–146. [Google Scholar] [CrossRef]
- Mustafa, E.A.; Hashem, A.E.G.; Elhifnawi, H.N.; Nada, H.G.; Khattab, R.A. One-pot biosynthesis of silver nanoparticles with potential antimicrobial and antibiofilm efficiency against otitis media–causing pathogens. J. Clin. Microbiol. Infect. Dis. 2021, 40, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.C.T.; Leme, C.; Figueira, G.M. Effects of essential oils from medicinal plants used in Brazil against EPEC and ETEC Escherichia coli. Rev. Bras. Plantas Med. 2007, 8, 139–143. [Google Scholar] [CrossRef]
- Stefanetti, V.; Passamonti, F.; Rampacci, E. Antimicrobial strategies proposed for the treatment of S. pseudintermedius and other dermato-pathogenic Staphylococcus spp. in companion animals: A narrative review. Vet. Sci. 2024, 11, 311. [Google Scholar] [CrossRef] [PubMed]
- Fidyt, K.; Fiedorowicz, A.; Strządała, L.; Szumny, A. β-caryophyllene and β-caryophyllene oxide—Natural compounds of anticancer and analgesic properties. Cancer Med. 2016, 5, 3007–3017. [Google Scholar] [CrossRef]
- Rio, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef]
- Liñán-Atero, R.; Aghababaei, F.; García, S.R.; Hasiri, Z.; Ziogkas, D.; Moreno, A.; Hadidi, M. Clove essential oil: Chemical profile, biological activities, encapsulation strategies, and food applications. Antioxidants 2024, 13, 488. [Google Scholar] [CrossRef]
- Hill, L.E.; Gomes, C.; Taylor, T.M. Characterization of β-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. Food Sci. Technol. 2012, 51, 86–93. [Google Scholar] [CrossRef]
Antimicrobial | Sensitive n° (%) | Intermediate n° (%) | Resistant n° (%) |
---|---|---|---|
Amikacin | 29 (82.86) | - | 06 (17.14) |
Ampicillin | 12 (34.29) | - | 23 (65.71) |
Amoxicillin + Clavulanic Acid | 27 (77.14) | - | 08 (22.86) |
Cephalexin | 24 (68.57) | 01 (2.85) | 10 (28.57) |
Cefoxitin | 29 (82.86) | - | 06 (17.14) |
Ciprofloxacin | 18 (51.43) | 02 (5.71) | 15 (42.85) |
Clindamycin | 14 (40.00) | 03 (11.42) | 18 (51.43) |
Chloramphenicol | 21 (60.00) | 10 (28.57) | 04 (11.42) |
Doxycycline | 17 (48.57) | 03 (8.57) | 15 (42.85) |
Enrofloxacin | 19 (54.28) | 02 (5.71) | 14 (40.00) |
Erythromycin | 12 (34.28) | - | 23 (65.71) |
Gentamicin | 27 (77.14) | 01 (2.85) | 07 (20.00) |
Imipenem | 34 (97.14) | - | 01 (2.85) |
Marbofloxacin | 21 (60.00) | - | 14 (40.00) |
Neomycin | 20 (57.14) | 03 (8.57) | 12 (34.28) |
Oxacillin | 25 (71.42) | - | 10 (28.57) |
Penicillin | 05 (14.28) | - | 30 (85.71) |
Polymyxin B | 19 (54.28) | 04 (11.42) | 12 (34.28) |
Rifampicin | 20 (57.14) | 01 (2.85) | 14 (40.00) |
Sulfadiazine + Trimethoprim | 11 (31.42) | - | 24 (65.57) |
Tobramycin | 28 (80.00) | 02 (5.71) | 05 (14.28) |
Vancomycin | 22 (62.85) | - | 13 (37.14) |
Bacteria Analyzed | Essential Oil Syzygium aromaticum n° (mg/mL) | Methicillin n° (mg/mL) |
---|---|---|
Staphylococcus pseudintermedius (MSSP) | 01 (0.21) 01 (1.79) 04 (6.82) | 01 (5×10−4) 01 (2 × 10−3) 03 (4 × 10−3) 01 (8 × 10−3) |
Staphylococcus pseudintermedius (MRSP) | 02 (3.41) 02 (6.82) 02 (13.65) | 01 (2 × 10−3) 01 (4 × 10−3) 01 (8 × 10−3) 01 (1.28 × 10−1) 02 (NI) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, V.D.d.; Coelho, E.L.J.; Moreira, J.M.A.R.; Dutra, V.; Sousa, V.R.F.; Almeida, A.d.B.P.F.d. Antibacterial Activity of Clove Essential Oil (Syzygium aromaticum) Against Oxacillin-Resistant Staphylococcus pseudintermedius Isolated from Dogs with Otitis Externa. Pathogens 2025, 14, 709. https://doi.org/10.3390/pathogens14070709
Freitas VDd, Coelho ELJ, Moreira JMAR, Dutra V, Sousa VRF, Almeida AdBPFd. Antibacterial Activity of Clove Essential Oil (Syzygium aromaticum) Against Oxacillin-Resistant Staphylococcus pseudintermedius Isolated from Dogs with Otitis Externa. Pathogens. 2025; 14(7):709. https://doi.org/10.3390/pathogens14070709
Chicago/Turabian StyleFreitas, Vanessa Danielle de, Edison Lorran Jerdlicka Coelho, Janaina Marcela Assunção Rosa Moreira, Valéria Dutra, Valéria Régia Franco Sousa, and Arleana do Bom Parto Ferreira de Almeida. 2025. "Antibacterial Activity of Clove Essential Oil (Syzygium aromaticum) Against Oxacillin-Resistant Staphylococcus pseudintermedius Isolated from Dogs with Otitis Externa" Pathogens 14, no. 7: 709. https://doi.org/10.3390/pathogens14070709
APA StyleFreitas, V. D. d., Coelho, E. L. J., Moreira, J. M. A. R., Dutra, V., Sousa, V. R. F., & Almeida, A. d. B. P. F. d. (2025). Antibacterial Activity of Clove Essential Oil (Syzygium aromaticum) Against Oxacillin-Resistant Staphylococcus pseudintermedius Isolated from Dogs with Otitis Externa. Pathogens, 14(7), 709. https://doi.org/10.3390/pathogens14070709