Resilient by Design: Environmental Stress Promotes Biofilm Formation and Multi-Resistance in Poultry-Associated Salmonella
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Culture Conditions and Growth Under Osmotic and Acid Stress
2.3. Sodium Hypochlorite Minimal Inhibitory Concentration (MIC) Determination
2.4. Biofilm Formation Capacity and Determination of the Intensity in the Presence of Sodium Hypochlorite
- 0.
- Non-forming isolates: OD570nm ≤ ODc.
- 1.
- Week biofilm formation isolate: ODc < OD570nm ≤ 2xODc.
- 2.
- Moderate biofilm formation isolate: 2xODc < OD570nm ≤ 3xODc.
- 3.
- Strong biofilm formation isolate: 3xODc < OD570nm ≤ 4xODc.
- 4.
- Very strong biofilm formation isolate: OD570nm > 4xODc.
2.5. Bactericidal and Minimal Inhibitory Concentration of Sodium Hypochlorite in Biofilm
2.6. Antimicrobial Susceptibility Testing
2.7. Scanning Electron Microscopy Analysis
2.8. Extracellular Polymeric Substances Determination
2.9. Statistical Analysis
3. Results
3.1. Variability of Stress Response Performance Profiles in a Salmonella Population from the Poultry Production Line
3.2. Differential Resistance of Salmonella Biofilms to Oxidative Stress Induced by Hypochlorite
3.3. Multidrug-Resistance Profiles Are Concentrated in the Salmonella Infantis Serotype
3.4. Osmotic Stress Induces Enhanced Biofilm Formation in Salmonella Infantis Isolates from the Poultry Production Line
3.5. Osmotic Stress Enhances the Production of a Polysaccharide-Rich EPS Matrix
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EFSA. The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar] [PubMed]
- Obe, T.; Kiess, A.S.; Nannapaneni, R. Antimicrobial Tolerance in Salmonella: Contributions to Survival and Persistence in Processing Environments. Animals 2024, 14, 578. [Google Scholar] [CrossRef]
- Obe, T.; Boltz, T.; Kogut, M.; Ricke, S.C.; Brooks, L.A.; Macklin, K.; Peterson, A. Controlling Salmonella: Strategies for feed, the farm, and the processing plant. Poult. Sci. 2023, 102, 103086. [Google Scholar] [CrossRef] [PubMed]
- Krüger, G.I.; Pardo-Esté, C.; Zepeda, P.; Olivares-Pacheco, J.; Galleguillos, N.; Suarez, M.; astro-Severyn, J.; Alvarez-Thon, L.; Tello, M.; Valdes, J.H.; et al. Mobile genetic elements drive the multidrug resistance and spread of Salmonella serotypes along a poultry meat production line. Front. Microbiol. 2023, 14, 1072793. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Esté, C.; Lorca, D.; Castro-Severyn, J.; Krüger, G.; Alvarez-Thon, L.; Zepeda, P.; Sulbaran-Bracho, Y.; Hidalgo, A.; Tello, M.; Molina, F.; et al. Genetic Characterization of Salmonella Infantis with Multiple Drug Resistance Profiles Isolated from a Poultry-Farm in Chile. Microorganisms 2021, 9, 2370. [Google Scholar] [CrossRef]
- Hu, L.; Brown, E.W.; Zhang, G. Diversity of antimicrobial resistance, stress resistance, and virulence factors of Salmonella, Shiga toxin-producing Escherichia coli, and Listeria monocytogenes from produce, spices, and tree nuts by whole genome sequencing. Front. Sustain. Food Syst. 2023, 7, 1281005. [Google Scholar] [CrossRef]
- Gu, D.; Xue, H.; Yuan, X.; Yu, J.; Xu, X.; Huang, Y.; Li, M.; Zhai, X.; Pan, Z.; Zhang, Y.; et al. Genome-Wide Identification of Genes Involved in Acid Stress Resistance of Salmonella Derby. Genes 2021, 12, 476. [Google Scholar] [CrossRef]
- Kant, S.; Till, J.K.A.; Liu, L.; Margolis, A.; Uppalapati, S.; Kim, J.S.; Vazquez-Torres, A. Gre factors help Salmonella adapt to oxidative stress by improving transcription elongation and fidelity of metabolic genes. PLoS Biol. 2023, 21, e3002051. [Google Scholar] [CrossRef]
- Begley, M.; Hill, C. Stress Adaptation in Foodborne Pathogens. Annu. Rev. Food Sci. Technol. 2015, 6, 191–210. [Google Scholar] [CrossRef]
- Marin, C.; Cerdà-Cuéllar, M.; González-Bodi, S.; Lorenzo-Rebenaque, L.; Vega, S. Research Note: Persistent Salmonella problems in slaughterhouses related to clones linked to poultry companies. Poult. Sci. 2022, 101, 101968. [Google Scholar] [CrossRef] [PubMed]
- Chitlapilly Dass, S.; Wang, R. Biofilm through the Looking Glass: A Microbial Food Safety Perspective. Pathogens 2022, 11, 346. [Google Scholar] [CrossRef]
- Aleksandrowicz, A.; Carolak, E.; Dutkiewicz, A.; Błachut, A.; Waszczuk, W.; Grzymajlo, K. Better together—Salmonella biofilm-associated antibiotic resistance. Gut Microbes 2023, 15, 2229937. [Google Scholar] [CrossRef]
- Badie, F.; Saffari, M.; Moniri, R.; Alani, B.; Atoof, F.; Khorshidi, A.; Shayestehpour, M. The combined effect of stressful factors (temperature and pH) on the expression of biofilm, stress, and virulence genes in Salmonella enterica ser. Enteritidis and Typhimurium. Arch. Microbiol. 2021, 203, 4475–4484. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Nomura, N.; Suzuki, S. Biofilms: Hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol. Ecol. 2020, 96, fiaa031. [Google Scholar] [CrossRef]
- Müller, A.; Rychli, K.; Muhterem-Uyar, M.; Zaiser, A.; Stessl, B.; Guinane, C.M.; Cotter, P.D.; Wagner, M.; Schmitz-Esser, S. Tn6188—A Novel Transposon in Listeria monocytogenes Responsible for Tolerance to Benzalkonium Chloride. PLoS ONE. 2013, 8, e76835. [Google Scholar] [CrossRef]
- Roy, S.; Chowdhury, G.; Mukhopadhyay, A.K.; Dutta, S.; Basu, S. Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Front. Med. 2022, 9, 793615. [Google Scholar] [CrossRef]
- Capita, R.; Fernández-Pérez, S.; Buzón-Durán, L.; Alonso-Calleja, C. Effect of Sodium Hypochlorite and Benzalkonium Chloride on the Structural Parameters of the Biofilms Formed by Ten Salmonella enterica Serotypes. Pathogens 2019, 8, 154. [Google Scholar] [CrossRef] [PubMed]
- Curiao, T.; Marchi, E.; Grandgirard, D.; León-Sampedro, R.; Viti, C.; Leib, S.L.; Baquero, F.; Oggioni, M.R.; Martinez, J.L.; Coque, T.M. Multiple adaptive routes of Salmonella enterica Typhimurium to biocide and antibiotic exposure. BMC Genomics 2016, 17, 491. [Google Scholar] [CrossRef]
- Musa, L.; Toppi, V.; Stefanetti, V.; Spata, N.; Rapi, M.C.; Grilli, G.; Addis, M.F.; Di Giacinto, G.; Franciosini, M.P.; Casagrande Proietti, P. High Biofilm-Forming Multidrug-Resistant Salmonella Infantis Strains from the Poultry Production Chain. Antibiotics 2024, 13, 595. [Google Scholar] [CrossRef] [PubMed]
- Ćwiek, K.; Korzekwa, K.; Tabiś, A.; Bania, J.; Bugla-Płoskońska, G.; Wieliczko, A. Antimicrobial Resistance and Biofilm Formation Capacity of Salmonella enterica Serovar Enteritidis Strains Isolated from Poultry and Humans in Poland. Pathogens 2020, 9, 643. [Google Scholar] [CrossRef]
- Krüger, G.I.; Pardo-Esté, C.; Álvarez, J.; Pacheco, N.; Castro-Severyn, J.; Alvarez-Thon, L.; Saavedra, C.P. Adaptive signatures of emerging Salmonella serotypes in response to stressful conditions in the poultry industry. LWT 2025, 215, 117188. [Google Scholar] [CrossRef]
- Chakraborty, S.; Kenney, L.J. A New Role of OmpR in Acid and Osmotic Stress in Salmonella and E. coli. Front. Microbiol 2018, 9, 2656. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Hola, V.; Di Bonaventura, G.; Djukić, S.; Cirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Acta Pathol. Microbiol. Et Immunol. Scand. 2007, 115, 891–899. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Suscetibility Testing, 34th ed.; Laboratory Standards Institute: Berwyn, PA, USA, 2024. [Google Scholar]
- Jiao, Y.; Cody, G.D.; Harding, A.K.; Wilmes, P.; Schrenk, M.; Wheeler, K.E.; Banfield, J.F.; Thelen, M.P. Characterization of Extracellular Polymeric Substances from Acidophilic Microbial Biofilms. Appl. Environ. Microbiol. 2010, 76, 2916–2922. [Google Scholar] [CrossRef]
- Bezek, K.; Avberšek, J.; Zorman Rojs, O.; Barlič-Maganja, D. Antimicrobial and Antibiofilm Effect of Commonly Used Disinfectants on Salmonella Infantis Isolates. Microorganisms 2023, 11, 301. [Google Scholar] [CrossRef]
- Kranjc, K.; Avberšek, J.; Šemrov, N.; Zorman-Rojs, O.; Barlič-Maganja, D. Salmonella Infantis Adhesion to Various Surfaces and In Vitro Antimicrobial Efficacy of Commercial Disinfectants. Pathogens 2024, 13, 999. [Google Scholar] [CrossRef] [PubMed]
- Headrick, J.; Ohayon, A.; Elliott, S.; Schultz, J.; Mills, E.; Petersen, E. Biomolecule screen identifies several inhibitors of Salmonella enterica surface colonization. Front. Bioeng. Biotechnol. 2025, 12, 1467511. [Google Scholar] [CrossRef] [PubMed]
- Merino, L.; Procura, F.; Trejo, F.M.; Bueno, D.J.; Golowczyc, M.A. Biofilm formation by Salmonella sp. in the poultry industry: Detection, control and eradication strategies. Food Res. Int. 2019, 119, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Rather, M.A.; Gupta, K.; Bardhan, P.; Borah, M.; Sarkar, A.; Eldiehy, K.S.H.; Bhuyan, S.; Mandal, M. Microbial biofilm: A matter of grave concern for human health and food industry. J. Basic Microbiol. 2021, 61, 380–395. [Google Scholar] [CrossRef]
- Marmion, M.; Macori, G.; Whyte, P.; Scannell, A.G.M. Stress response modulation: The key to survival of pathogenic and spoilage bacteria during poultry processing. Microbiolgy 2022, 168, 001184. [Google Scholar] [CrossRef]
- Spratt, M.R.; Lane, K. Navigating Environmental Transitions: The Role of Phenotypic Variation in Bacterial Responses. mBio 2022, 13, e0221222. [Google Scholar] [CrossRef]
- Wang, H.; Huang, M.; Zeng, X.; Peng, B.; Xu, X.; Zhou, G. Resistance Profiles of Salmonella Isolates Exposed to Stresses and the Expression of Small Non-coding RNAs. Front. Microbiol. 2020, 11, 130. [Google Scholar] [CrossRef]
- Humayoun, S.B.; Hiott, L.M.; Gupta, S.K.; Barrett, J.B.; Woodley, T.A.; Johnston, J.J.; Jackson, C.R.; Frye, J.G. An assay for determining the susceptibility of Salmonella isolates to commercial and household biocides. PLoS ONE 2018, 13, e0209072. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Chae, M.; Kang, M.S.; Lee, J.Y.; Kwon, Y.K.; Lee, H.J.; Lee, S.-H.; Son, H.-B.; Moon, J.-S.; Cho, S. Emergence and characteristics of multidrug-resistant Salmonella enterica subspecies enterica serovar Infantis harboring the pESI plasmid in chicken slaughterhouses in South Korea. Microbiol. Spectr. 2025, 13, e0295524. [Google Scholar] [CrossRef]
- Szmolka, A.; Wami, H.; Dobrindt, U. Comparative Genomics of Emerging Lineages and Mobile Resistomes of Contemporary Broiler Strains of Salmonella Infantis and E. coli. Front. Microbiol. 2021, 12, 642125. [Google Scholar] [CrossRef]
- Alvarez, D.M.; Barrón-Montenegro, R.; Conejeros, J.; Rivera, D.; Undurraga, E.A.; Moreno-Switt, A.I. A review of the global emergence of multidrug-resistant Salmonella enterica subsp. enterica Serovar Infantis. Int. J. Food Microbiol. 2023, 403, 110297. [Google Scholar] [CrossRef]
- Kürekci, C.; Sahin, S.; Iwan, E.; Kwit, R.; Bomba, A.; Wasyl, D. Whole-genome sequence analysis of Salmonella Infantis isolated from raw chicken meat samples and insights into pESI-like megaplasmid. Int. J. Food Microbiol. 2021, 337, 108956. [Google Scholar] [CrossRef]
- Bertani AMde, J.; Cunha, M.P.V.; de Carvalho, E.; Araújo, L.T.; dos Santos, C.A.; Amarante, A.F.; Reis, A.D.; de Almeida, E.A.; Campos, K.R.; Sacchi, C.T.; et al. Genomic characterization of a multi-drug resistant, CTX-M-65-producing clinical isolate of Salmonella Infantis isolated in Brazil. Microbes Infect. 2022, 24, 104972. [Google Scholar] [CrossRef]
- Ishihara, K.; Someno, S.; Matsui, K.; Nakazawa, C.; Abe, T.; Harima, H.; Omatsu, T.; Ozawa, M.; Iwabuchi, E.; Asai, T. Determination of Antimicrobial Resistance Megaplasmid-Like pESI Structures Contributing to the Spread of Salmonella Schwarzengrund in Japan. Antibiotics 2025, 14, 288. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.B.; Lee, Y.J. Emergence of Salmonella Infantis carrying the pESI-like plasmid from eggs in egg grading and packing plants in Korea. Food Microbiol. 2024, 122, 104568. [Google Scholar] [CrossRef] [PubMed]
- Piña-Iturbe, A.; Díaz-Gavidia, C.; Álvarez, F.P.; Barron-Montenegro, R.; Álvarez-Espejo, D.M.; García, P.; Solís, D.; Constenla-Albornoz, R.; Toro, M.; Olivares-Pacheco, J.; et al. Genomic characterisation of the population structure and antibiotic resistance of Salmonella enterica serovar Infantis in Chile, 2009–2022. Lancet Reg. Health Am. 2024, 32, 100711. [Google Scholar] [CrossRef]
- Sohail, M.N.; Varga, C. Monitoring antimicrobial resistance in Salmonella enterica serovar Infantis isolates of poultry, livestock, and humans across the United States, 2013–2020. Int. J. Food Microbiol. 2025, 432, 111090. [Google Scholar] [CrossRef]
- Cawthraw, S.; Wales, A.; Guzinski, J.; Trew, J.; Ring, I.; Huby, T.; Hussaini, A.; Petrovska, L.; Martelli, F. Salmonella Infantis outbreak on six broiler units in Great Britain: Investigation, epidemiology, and control. J. Appl. Microbiol. 2025, 136, lxaf040. [Google Scholar] [CrossRef]
- Burgess, C.M.; Gianotti, A.; Gruzdev, N.; Holah, J.; Knøchel, S.; Lehner, A.; Margas, E.; Esser, S.S.; Sela Saldinger, S.; Tresse, O. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int. J. Food Microbiol. 2016, 221, 37–53. [Google Scholar] [CrossRef]
- Gong, Y.; Li, X.; Wang, J.; Zhao, Y.; Meng, J.; Zhai, L. Unveiling Salmonella Derby Survival: Stress Responses to Prolonged Hyperosmotic Stress. Foods 2025, 14, 1440. [Google Scholar] [CrossRef]
- Lin, Z.; Liang, Z.; He, S.; Chin, F.W.L.; Huang, D.; Hong, Y.; Wang, X.; Li, D. Salmonella dry surface biofilm: Morphology, single-cell landscape, and sanitization. Appl. Environ. Microbiol. 2024, 90, e0162324. [Google Scholar] [CrossRef]
- Gerstel, U.; Römling, U. The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium. Res. Microbiol. 2003, 154, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Simm, R.; Morr, M.; Kader, A.; Nimtz, M.; Römling, U. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol. Microbiol. 2004, 53, 1123–1134. [Google Scholar] [CrossRef]
- Adams, J.L.; McLean, R.J.C. Impact of rpoS Deletion on Escherichia coli Biofilms. Appl. Environ. Microbiol. 1999, 65, 4285–4287. [Google Scholar] [CrossRef] [PubMed]
- Jesudhasan, P.R.; Cepeda, M.L.; Widmer, K.; Dowd, S.E.; Soni, K.A.; Hume, M.E.; Zhu, J.; Pillai, S.D. Transcriptome Analysis of Genes Controlled by luxS/Autoinducer-2 in Salmonella enterica Serovar Typhimurium. Foodborne Pathog. Dis. 2010, 7, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Mikš-Krajnik, M.; Zheng, Q.; Lee, S.B.; Lee, S.C.; Yuk, H.G. Biofilm formation of Salmonella Enteritidis under food-related environmental stress conditions and its subsequent resistance to chlorine treatment. Food Microbiol. 2016, 54, 98–105. [Google Scholar] [CrossRef]
- Garmiri, P.; Coles, K.E.; Humphrey, T.J.; Cogan, T.A. Role of outer membrane lipopolysaccharides in the protection of Salmonella enterica serovar Typhimurium from desiccation damage. FEMS Microbiol. Lett. 2008, 281, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Norberto, A.P.; Alvarenga, V.O.; Hungaro, H.M.; Sant’Ana, A.S. Desiccation resistance of a large set of Salmonella enterica strains and survival on dry- and wet-inoculated soybean meal through storage. LWT 2022, 158, 113153. [Google Scholar] [CrossRef]
- Sun, Z.; Guo, N.; Wang, X.; Guo, Z.; Liang, X.; Yang, J.; Liu, T. Adhesion and corrosion effects of biofilms on steel surface mediated by hydrophilic exopolysaccharide colanic acid. Corros. Sci. 2024, 229, 111876. [Google Scholar] [CrossRef]
- Balducci, E.; Papi, F.; Capialbi, D.E.; Del Bino, L. Polysaccharides’ Structures and Functions in Biofilm Architecture of Antimicrobial-Resistant (AMR) Pathogens. Int. J. Mol. Sci. 2023, 24, 4030. [Google Scholar] [CrossRef]
- Byun, K.H.; Han, S.H.; Yoon Jwon Park, S.H.; Ha, S.D. Efficacy of chlorine-based disinfectants (sodium hypochlorite and chlorine dioxide) on Salmonella Enteritidis planktonic cells, biofilms on food contact surfaces and chicken skin. Food Control 2021, 123, 107838. [Google Scholar] [CrossRef]
MIC [mM] | ||||
---|---|---|---|---|
Serotype | 2 | 4 | 8 | Total |
Infantis | 19 | 44 | 1 | 64 |
Corvallis | 11 | 18 | 0 | 29 |
Senftenberg | 6 | 18 | 0 | 24 |
Agona | 0 | 18 | 0 | 18 |
Heidelberg | 4 | 12 | 0 | 16 |
Typhimurium | 0 | 4 | 0 | 4 |
Total | 40 | 114 | 1 | 155 |
Biofilms Formation | Formation Intensity | |||||
---|---|---|---|---|---|---|
Serotype | Formers | No Formers | 1 | 2 | 3 | 4 |
Infantis | 57 | 7 | 4 | 12 | 9 | 32 |
Corvallis | 19 | 10 | 6 | 3 | 2 | 8 |
Senftenberg | 14 | 10 | 2 | 3 | 3 | 6 |
Agona | 16 | 2 | 8 | 4 | 4 | 0 |
Heidelberg | 10 | 6 | 4 | 2 | 0 | 4 |
Typhimurium | 4 | 0 | 0 | 1 | 1 | 2 |
Total | 120 | 35 | 24 | 25 | 19 | 52 |
MICB | MBCB | |||||
---|---|---|---|---|---|---|
Serotypes | 4 mM | 8 mM | 4 mM | 8 mM | 16 mM | 32 mM |
Infantis | 8 | 24 | 0 | 21 | 2 | 1 |
Corvallis | 5 | 3 | 2 | 5 | 1 | 0 |
Senftenberg | 3 | 3 | 0 | 6 | 0 | 0 |
Agona | 0 | 0 | 0 | 0 | 0 | 0 |
Heidelberg | 4 | 0 | 1 | 3 | 0 | 0 |
Typhimurium | 0 | 2 | 0 | 1 | 1 | 0 |
Total | 20 | 32 | 3 | 36 | 4 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krüger, G.I.; Urbina, F.; Pardo-Esté, C.; Salinas, V.; Álvarez, J.; Avilés, N.; Oviedo, A.; Kusch, C.; Pavez, V.; Vernal, R.; et al. Resilient by Design: Environmental Stress Promotes Biofilm Formation and Multi-Resistance in Poultry-Associated Salmonella. Microorganisms 2025, 13, 1812. https://doi.org/10.3390/microorganisms13081812
Krüger GI, Urbina F, Pardo-Esté C, Salinas V, Álvarez J, Avilés N, Oviedo A, Kusch C, Pavez V, Vernal R, et al. Resilient by Design: Environmental Stress Promotes Biofilm Formation and Multi-Resistance in Poultry-Associated Salmonella. Microorganisms. 2025; 13(8):1812. https://doi.org/10.3390/microorganisms13081812
Chicago/Turabian StyleKrüger, Gabriel I., Francisca Urbina, Coral Pardo-Esté, Valentina Salinas, Javiera Álvarez, Nicolás Avilés, Ana Oviedo, Catalina Kusch, Valentina Pavez, Rolando Vernal, and et al. 2025. "Resilient by Design: Environmental Stress Promotes Biofilm Formation and Multi-Resistance in Poultry-Associated Salmonella" Microorganisms 13, no. 8: 1812. https://doi.org/10.3390/microorganisms13081812
APA StyleKrüger, G. I., Urbina, F., Pardo-Esté, C., Salinas, V., Álvarez, J., Avilés, N., Oviedo, A., Kusch, C., Pavez, V., Vernal, R., Tello, M., Alvarez-Thon, L., Castro-Severyn, J., Remonsellez, F., Hidalgo, A., & Saavedra, C. P. (2025). Resilient by Design: Environmental Stress Promotes Biofilm Formation and Multi-Resistance in Poultry-Associated Salmonella. Microorganisms, 13(8), 1812. https://doi.org/10.3390/microorganisms13081812