Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (482)

Search Parameters:
Keywords = Halogen bonds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4011 KiB  
Article
Multitarget Design of Steroidal Inhibitors Against Hormone-Dependent Breast Cancer: An Integrated In Silico Approach
by Juan Rodríguez-Macías, Oscar Saurith-Coronell, Carlos Vargas-Echeverria, Daniel Insuasty Delgado, Edgar A. Márquez Brazón, Ricardo Gutiérrez De Aguas, José R. Mora, José L. Paz and Yovanni Marrero-Ponce
Int. J. Mol. Sci. 2025, 26(15), 7477; https://doi.org/10.3390/ijms26157477 - 2 Aug 2025
Viewed by 226
Abstract
Hormone-dependent breast cancer, particularly in its treatment-resistant forms, remains a significant therapeutic challenge. In this study, we applied a fully computational strategy to design steroid-based compounds capable of simultaneously targeting three key receptors involved in disease progression: progesterone receptor (PR), estrogen receptor alpha [...] Read more.
Hormone-dependent breast cancer, particularly in its treatment-resistant forms, remains a significant therapeutic challenge. In this study, we applied a fully computational strategy to design steroid-based compounds capable of simultaneously targeting three key receptors involved in disease progression: progesterone receptor (PR), estrogen receptor alpha (ER-α), and HER2. Using a robust 3D-QSAR model (R2 = 0.86; Q2_LOO = 0.86) built from 52 steroidal structures, we identified molecular features associated with high anticancer potential, specifically increased polarizability and reduced electronegativity. From a virtual library of 271 DFT-optimized analogs, 31 compounds were selected based on predicted potency (pIC50 > 7.0) and screened via molecular docking against PR (PDB 2W8Y), HER2 (PDB 7JXH), and ER-α (PDB 6VJD). Seven candidates showed strong binding affinities (ΔG ≤ −9 kcal/mol for at least two targets), with Estero-255 emerging as the most promising. This compound demonstrated excellent conformational stability, a robust hydrogen-bonding network, and consistent multitarget engagement. Molecular dynamics simulations over 100 nanoseconds confirmed the structural integrity of the top ligands, with low RMSD values, compact radii of gyration, and stable binding energy profiles. Key interactions included hydrophobic contacts, π–π stacking, halogen–π interactions, and classical hydrogen bonds with conserved residues across all three targets. These findings highlight Estero-255, alongside Estero-261 and Estero-264, as strong multitarget candidates for further development. By potentially disrupting the PI3K/AKT/mTOR signaling pathway, these compounds offer a promising strategy for overcoming resistance in hormone-driven breast cancer. Experimental validation, including cytotoxicity assays and ADME/Tox profiling, is recommended to confirm their therapeutic potential. Full article
Show Figures

Graphical abstract

14 pages, 1605 KiB  
Article
Supramolecular Switching by Substituent Tuning: A Crystal Engineering Study of 2-Amino- and 2,3-Diamino-5-Halogenopyridines
by Irina S. Konovalova and Guido J. Reiss
Crystals 2025, 15(8), 700; https://doi.org/10.3390/cryst15080700 - 31 Jul 2025
Viewed by 178
Abstract
The crystal structures of the 2-amino-5-halogenopyridines (halogen = Cl (1), Br (2)) and 2,3-diamino-5-halogenopyridines (halogen = Cl (3), Br (4)) were compared with respect to their intermolecular interactions. An ab-initio-based method for evaluating the interaction [...] Read more.
The crystal structures of the 2-amino-5-halogenopyridines (halogen = Cl (1), Br (2)) and 2,3-diamino-5-halogenopyridines (halogen = Cl (3), Br (4)) were compared with respect to their intermolecular interactions. An ab-initio-based method for evaluating the interaction energies between molecules was employed to estimate the driving forces of crystal formation. As a result, regularities in crystal structure organization were identified. For compounds 1 and 2, a dimeric building unit is formed by two N–H…Npyr hydrogen bonds. These dimers are further connected to neighboring units by C–H…π, C–H…N, N…X (X = Cl, Br), and non-specific interactions. The aforementioned intermolecular interactions give rise to layered structures that are similar but not isotypical. No significant contributions from π–π or N–H…N(H2) interactions are observed in 1 and 2. The structures of 3 and 4 are isotypical and crystallize in the non-centrosymmetric space group P212121. The most important intermolecular interactions are N–H…Npyr, N–H…N(H2), and stacking interactions. These interactions lead to identical columnar-layered structures in both 3 and 4. No significant contributions from halogen bonds of the type N…X (X = Cl, Br) are found in 3 and 4. Full article
(This article belongs to the Special Issue Analysis of Halogen and Other σ-Hole Bonds in Crystals (2nd Edition))
Show Figures

Figure 1

17 pages, 1633 KiB  
Article
Iodinated Salicylhydrazone Derivatives as Potent α-Glucosidase Inhibitors: Synthesis, Enzymatic Activity, Molecular Modeling, and ADMET Profiling
by Seema K. Bhagwat, Fabiola Hernandez-Rosas, Abraham Vidal-Limon, J. Oscar C. Jimenez-Halla, Balasaheb K. Ghotekar, Vivek D. Bobade, Enrique Delgado-Alvarado, Sachin V. Patil and Tushar Janardan Pawar
Chemistry 2025, 7(4), 117; https://doi.org/10.3390/chemistry7040117 - 23 Jul 2025
Viewed by 296
Abstract
Type 2 diabetes mellitus (T2DM) demands safer and more effective therapies to control postprandial hyperglycemia. Here, we report the synthesis and in vitro evaluation of ten salicylic acid-derived Schiff base derivatives (4a4j) as α-glucosidase inhibitors. Compounds 4e, 4g [...] Read more.
Type 2 diabetes mellitus (T2DM) demands safer and more effective therapies to control postprandial hyperglycemia. Here, we report the synthesis and in vitro evaluation of ten salicylic acid-derived Schiff base derivatives (4a4j) as α-glucosidase inhibitors. Compounds 4e, 4g, 4i, and 4j exhibited potent enzyme inhibition, with IC50 values ranging from 14.86 to 18.05 µM—substantially better than acarbose (IC50 = 45.78 µM). Molecular docking and 500 ns molecular dynamics simulations revealed stable enzyme–ligand complexes driven by π–π stacking, halogen bonding, and hydrophobic interactions. Density Functional Theory (DFT) calculations and molecular electrostatic potential (MEP) maps highlighted key electronic factors, while ADMET analysis confirmed favorable drug-like properties and reduced nephrotoxicity. Structure–activity relationship (SAR) analysis emphasized the importance of halogenation and aromaticity in enhancing bioactivity. Full article
Show Figures

Graphical abstract

45 pages, 7119 KiB  
Review
A Comprehensive Review of Radical-Mediated Intramolecular Cyano-Group Migration
by Jia-Liang Zhu and Mei-Lin Chen
Molecules 2025, 30(14), 2959; https://doi.org/10.3390/molecules30142959 - 14 Jul 2025
Viewed by 837
Abstract
The radical-mediated intramolecular translocation of cyano groups has been recognized as a useful tool for the site-selective functionalization of organic molecules. The process is believed to proceed through the addition of an in situ-generated carbon-centered radical to the nitrile triple bond, followed by [...] Read more.
The radical-mediated intramolecular translocation of cyano groups has been recognized as a useful tool for the site-selective functionalization of organic molecules. The process is believed to proceed through the addition of an in situ-generated carbon-centered radical to the nitrile triple bond, followed by the β-scission of the resulting cyclic iminyl radical intermediate to relocate the cyano group and produce a more stable carbon radical for further elaboration. Beginning in the early 1960s and continuing for the next forty years, the research in this particular area has seen a surge of growth during the past two decades with advancements in radical chemistry and photocatalysis. The present article attempts to conduct a comprehensive review of existing studies on this topic by covering the literature from 1961 to 2025. The procedures developed for the purpose are grouped and discussed in four sections according to the strategies used to generate the initial carbon radicals, which include (i) hydrogen-atom transfer (HAT), (ii) radical addition to the π system, (iii) halogen-atom transfer (XAT), and (iv) the homolytic fission of a C-C single bond. In each section, a specific emphasis will be placed on reaction conditions, substrate scopes, and mechanisms. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Organic Chemistry)
Show Figures

Graphical abstract

18 pages, 1822 KiB  
Article
Pyrrolopyrimidines: Design, Synthesis and Antitumor Properties of Novel Tricyclic Pyrrolo [2,3-d]pyrimidine Derivatives
by Buer Song, Zarifa Murtazaeva, Lifei Nie, Rustamkhon Kuryazov, Shukhrat Gaybullaev, Chao Niu, Khurshed Bozorov, Haji Akber Aisa and Jiangyu Zhao
Molecules 2025, 30(14), 2917; https://doi.org/10.3390/molecules30142917 - 10 Jul 2025
Viewed by 955
Abstract
The pyrrolo[2,3-d]pyrimidine (7-deazapurine) scaffold is a unique heterocyclic system included in the composition of most nucleotides. In this study, series of the pyrrolo[2,3-d]pyrimidine-imines and 3-halo-substituted pyrrolo[2,3-d]pyrimidines were designed and prepared in high yields. Condensed pyrimidines [...] Read more.
The pyrrolo[2,3-d]pyrimidine (7-deazapurine) scaffold is a unique heterocyclic system included in the composition of most nucleotides. In this study, series of the pyrrolo[2,3-d]pyrimidine-imines and 3-halo-substituted pyrrolo[2,3-d]pyrimidines were designed and prepared in high yields. Condensed pyrimidines are obtained via carbonyl-amine condensation and carbon-halogen bond formation. Pyrrolo[2,3-d]pyrimidine-imines containing a bromine substituent at position C-4 of the phenyl ring and azepine side-ring exhibited superior antitumor activity on the colon cancer HT-29 cell line; IC50 values were 4.55 and 4.01 µM, respectively. These results revealed an interesting pattern, where condensed pyrimidinones containing an azepine ring demonstrated selective antitumor activity on the colon cancer cell line HT-29. In addition, the molecular docking results suggest that compound 8g provided a thorough understanding of its interactions with the DDR2 active site. This could pave the way for further development and optimization of DDR-targeting drugs, contributing to advancements in cancer therapeutics. This lead compound may serve as design templates for further studies. Full article
Show Figures

Graphical abstract

18 pages, 2185 KiB  
Article
Halogen Migration in the Photofragmentation of Halothane
by Anna Rita Casavola, Filippo Morini, Mattea Carmen Castrovilli, Jacopo Chiarinelli, Laura Carlini, Antonella Cartoni, Daniele Catone, Paola Bolognesi, Robert Richter, Bratislav Marinkovic, Sanja Tosic and Lorenzo Avaldi
Molecules 2025, 30(14), 2902; https://doi.org/10.3390/molecules30142902 - 9 Jul 2025
Viewed by 267
Abstract
The photofragmentation of halothane (CF3CHBrCl) was studied with synchrotron radiation by photoionization efficiency (PIE) measurements and photoelectron–photoion coincidence (PEPICO) experiments, as well as by a theoretical exploration of potential energy surfaces. Among the other fragments, the formation of the CHClF+ [...] Read more.
The photofragmentation of halothane (CF3CHBrCl) was studied with synchrotron radiation by photoionization efficiency (PIE) measurements and photoelectron–photoion coincidence (PEPICO) experiments, as well as by a theoretical exploration of potential energy surfaces. Among the other fragments, the formation of the CHClF+ and CHBrF+ ions, which involves the transfer of a F atom between the two moieties of the parent molecule, was observed. To understand the mechanisms leading to the halogen migration, a detailed theoretical study of the production of CHClF+, m/z 67+, based on DFT calculations and natural bond orbital (NBO) analysis was conducted. The results contribute to the understanding of the photochemistry of halothane, its polluting behavior in the high atmosphere, and the formation of highly reactive species. Full article
Show Figures

Figure 1

25 pages, 1312 KiB  
Article
The Role of Exchange Energy in Modeling Core-Electron Binding Energies of Strongly Polar Bonds
by Feng Wang and Delano P. Chong
Molecules 2025, 30(13), 2887; https://doi.org/10.3390/molecules30132887 - 7 Jul 2025
Viewed by 375
Abstract
Accurate determination of carbon core-electron binding energies (C1s CEBEs) is crucial for X-ray photoelectron spectroscopy (XPS) assignments and predictive computational modeling. This study evaluates density functional theory (DFT)-based methods for calculating C1s core-electron binding energies (CEBEs), comparing three functionals—PW86x-PW91c (DFTpw), mPW1PW, and PBE50—across [...] Read more.
Accurate determination of carbon core-electron binding energies (C1s CEBEs) is crucial for X-ray photoelectron spectroscopy (XPS) assignments and predictive computational modeling. This study evaluates density functional theory (DFT)-based methods for calculating C1s core-electron binding energies (CEBEs), comparing three functionals—PW86x-PW91c (DFTpw), mPW1PW, and PBE50—across 68 C1s cases in small hydrocarbons and halogenated molecules (alkyl halides), using the delta self-consistent field ΔSCF (or ΔDFT) method developed by one of the authors over the past decade. The PW86x-PW91c functional achieves a root mean square deviation (RMSD) of 0.1735 eV, with improved accuracy for polar C-X bonds (X=O, F) using mPW1PW and PBE50, reducing the average absolute deviation (AAD) to ~0.132 eV. The study emphasizes the role of Hartree–Fock (HF) exchange in refining CEBE predictions and highlights the synergy between theoretical and experimental approaches. These insights lay the groundwork for machine learning (ML)-driven spectral analysis, advancing materials characterization, and catalysis through more reliable automated XPS assignments. Full article
Show Figures

Graphical abstract

26 pages, 5112 KiB  
Article
Mixed Halide Isothiocyanate Tin(II) Compounds, SnHal(NCS): Signs of Tetrel Bonds as Bifurcated Extensions of Long-Range Asymmetric 3c-4e Bonds
by Hans Reuter
Molecules 2025, 30(13), 2700; https://doi.org/10.3390/molecules30132700 - 23 Jun 2025
Viewed by 402
Abstract
As part of a systematic study on the structures of the mixed halide isothiocyanates, SnIIHal(NCS), their single crystals were grown and structurally characterized. For Hal = F (1), the SnClF structure type was confirmed, while with Hal = Cl [...] Read more.
As part of a systematic study on the structures of the mixed halide isothiocyanates, SnIIHal(NCS), their single crystals were grown and structurally characterized. For Hal = F (1), the SnClF structure type was confirmed, while with Hal = Cl (2), Br (3), and I (4), there are three isostructural compounds of a new structure type, and for Hal = Cl (5), there is a second modification of a third structure type. These structure types have been described with respect to the composition and coordination geometry of the first, second, and van der Waals crust coordination spheres and their dependence on the halogen size and thiocyanate binding modes. With respect to the first coordination spheres, all three structure types constitute one-dimensional coordination polymers. In 1, “ladder”-type double chains result from μ3-bridging fluorine atoms, and in 24, single-chains built up from μ2-halogen atoms are pairwise “zipper”-like interconnected via κ2NS-bridging NCS ligands, which manage the halogen-linked chain assembly in the double chains of 5. Based on the octet rule, short atom distances are interpreted in terms of 2c-2e and various (symmetrical, quasi-symmetrical, and asymmetrical) kinds of 3c-4e bonds. Weak contacts, the topology of which suggests the extension of the latter bonding concept, are identified as electron-deficient, bifurcated tetrel bonds. Full article
Show Figures

Graphical abstract

8 pages, 882 KiB  
Short Note
bis(2-Phenylpyridinato)-[4,4′-bis(iodoethynyl)-2,2′-bipyridine]-iridium(III) Hexafluorophosphate
by Patrick Endres, Nishi Singh, Andreas Winter, Helmar Görls and Ulrich S. Schubert
Molbank 2025, 2025(2), M2024; https://doi.org/10.3390/M2024 - 18 Jun 2025
Viewed by 411
Abstract
This work presents the synthesis and structural characterization of a novel type of biscyclometalated Ir(III) complex, which is equipped with two iodoethynyl moieties on its 2,2′-bipyridine (bpy) ligand. Iodoethynyl moieties represent prominent donor systems for the formation of supramolecular structures via halogen bonding [...] Read more.
This work presents the synthesis and structural characterization of a novel type of biscyclometalated Ir(III) complex, which is equipped with two iodoethynyl moieties on its 2,2′-bipyridine (bpy) ligand. Iodoethynyl moieties represent prominent donor systems for the formation of supramolecular structures via halogen bonding (X-bonding). The synthesis of bis(2-phenylpyridinato)-[4,4′-bis(iodoethynyl)-2,2′-bipyridine]iridium(III) hexafluorophosphate, (2)(PF6), is straightforward and involves post-complexation iodination, thus expanding the already rich toolbox for performing “chemistry on the complex”. The formation of the iodoethynyl moieties was unequivocally proven by 1H-NMR spectroscopy, ESI-TOF mass spectrometry, and single-crystal XRD analysis. Full article
Show Figures

Figure 1

24 pages, 1892 KiB  
Article
Construction of 1,2,3-Triazole-Embedded Polyheterocyclic Compounds via CuAAC and C–H Activation Strategies
by Antonia Iazzetti, Dario Allevi, Giancarlo Fabrizi, Yuri Gazzilli, Antonella Goggiamani, Federico Marrone, Francesco Stipa, Karim Ullah and Roberta Zoppoli
Molecules 2025, 30(12), 2588; https://doi.org/10.3390/molecules30122588 - 13 Jun 2025
Viewed by 489
Abstract
Over the past two decades, the copper(I)-catalyzed azide–alkyne 1,3-dipolar cycloaddition (CuAAC), commonly known as click chemistry, and C–H bond activation have gained significant attention and have emerged as key synthetic methodologies. In our efforts to synthesize fused nitrogen-containing heterocycles, we developed a palladium-catalyzed [...] Read more.
Over the past two decades, the copper(I)-catalyzed azide–alkyne 1,3-dipolar cycloaddition (CuAAC), commonly known as click chemistry, and C–H bond activation have gained significant attention and have emerged as key synthetic methodologies. In our efforts to synthesize fused nitrogen-containing heterocycles, we developed a palladium-catalyzed protocol for the synthesis of functionalized 7,10-dihydropyrrolo[3,2,1-ij][1,2,3]triazolo[4,5-c]quinolines and 5,8-dihydrobenzo[3,4][1,2,3]triazolo[4′,5′:5,6]azepino[1,2-a]indoles from suitable bromo-substituted N-propargyl-indoles. The reaction conditions demonstrate broad functional group compatibility including halogen, alkoxyl, cyano, ketone, and ester, affording the target compounds in good to high yields. Full article
Show Figures

Graphical abstract

16 pages, 1831 KiB  
Article
Finely Designing Dicarboxylic Acid-Based Protic Ionic Liquids System for Tailoring Lignin Structure via Demethylation Strategy
by Cheng Li, Xinyu Xiao, Qizhen Luo, Wanting Zhao, Wenzhe Xiao, Ling-Ping Xiao, Yao Tong, Shangru Zhai and Jian Sun
Molecules 2025, 30(11), 2445; https://doi.org/10.3390/molecules30112445 - 3 Jun 2025
Viewed by 575
Abstract
As one kind of renewable aromatic polymer, lignin is severely underused due to its chemical recalcitrance. Lignin can endure demethylation modification to improve its activation by releasing more active functional groups. However, the process suffers from expensive, corrosive, and toxic issues by employing [...] Read more.
As one kind of renewable aromatic polymer, lignin is severely underused due to its chemical recalcitrance. Lignin can endure demethylation modification to improve its activation by releasing more active functional groups. However, the process suffers from expensive, corrosive, and toxic issues by employing halogen-containing reagents, which has become an obstacle to industrial applications. Herein, a series of dicarboxylic acid-based protic ionic liquids (DAPILs) systems composed of ethanolamine and dibasic organic acids (e.g., aspartic acid (Asp), glutamic acid (Glu), succinic acid (SA), and glutaric acid (GA)) with 1~2:1 stoichiometric ratio, have been finely designed for the demethylation of industrial lignin. With [EOA][GA] treatment, the polyphenol content in lignin was favorably increased beyond 1.58 times. The structural tailoring and variation were fully characterized by 2D HSQC and 1H NMR. The analysis results indicated that, with the increase of phenolic hydroxyl content in lignin, the β-O-4′ bond was broken and the content of structural units (S, G) and the S/G ratio of lignin decreased accordingly. After the treatment, the used IL and tailored lignin can be recovered over 95%. This novel, halogen-free and environmentally friendly lignin-cutting strategy not only opens avenues for high-value utilization of lignin but also expands the field of application of dicarboxylic acid-based protic ionic liquids. Full article
Show Figures

Graphical abstract

9 pages, 1297 KiB  
Communication
Near-Infrared Emitting Chiral Tetranuclear Erbium Cluster Containing Soft-Base Bisthiazolate Linkers
by Vasily A. Ilichev, Anton F. Rogozhin, Roman V. Rumyantcev, Georgy K. Fukin and Mikhail N. Bochkarev
Molbank 2025, 2025(2), M2015; https://doi.org/10.3390/M2015 - 29 May 2025
Viewed by 1158
Abstract
A tetraerbium cluster containing soft-base dianionic 4,8-difluorobenzo [1,2-d:5,4-d′]bisthiazole-2,6-dithiol (H2L) ligands, μ-OH, and coordinated 1,2-dimethoxyethane (DME) of the general formula {Er4(μ-L)4(μ-OH)4(DME)4} (1) was synthesized using [...] Read more.
A tetraerbium cluster containing soft-base dianionic 4,8-difluorobenzo [1,2-d:5,4-d′]bisthiazole-2,6-dithiol (H2L) ligands, μ-OH, and coordinated 1,2-dimethoxyethane (DME) of the general formula {Er4(μ-L)4(μ-OH)4(DME)4} (1) was synthesized using a one-pot method. X-ray analysis revealed that 1 is an asymmetrical tetramer in which there are four μ2-bridging bisthiazole ligands and four μ2-bridging hydroxide anions per four erbium ions. The molecule of 1 has inherent chirality, and the geometry of intramolecular F…F short contacts implies the formation of a classical halogen bond. Upon excitation by a 375 nm diode laser, compound 1 shows the moderate metal-centered emission of Er3+ ions that peaked at 1530 nm. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

13 pages, 3342 KiB  
Article
Effects of Diverse Acrylates on the Electro-Optical Performance of Polymer-Dispersed Liquid Crystal Films
by Nan Sun, Zuowei Zhang and Huai Yang
Molecules 2025, 30(11), 2284; https://doi.org/10.3390/molecules30112284 - 23 May 2025
Viewed by 582
Abstract
This study investigated the influence of different functional groups on the electro-optical properties of polymer-dispersed liquid crystal (PDLC) films. Twelve acrylate monomers with functional groups like amino, halogen, and double-bond were introduced into PDLC films, and twelve samples were prepared. The electro-optical properties [...] Read more.
This study investigated the influence of different functional groups on the electro-optical properties of polymer-dispersed liquid crystal (PDLC) films. Twelve acrylate monomers with functional groups like amino, halogen, and double-bond were introduced into PDLC films, and twelve samples were prepared. The electro-optical properties and microstructure of the films were characterized. The results show that compared to films with amino and halogen groups, those with hydroxyl groups have the best balance of driving voltage and contrast, achieving higher contrast at lower driving voltage, making this preparation scheme ideal for low-voltage, high-contrast PDLC films. Also, in the presence of hydroxyl groups, introducing double bonds increases saturation voltage and decreases saturation. Hydrogen-bond engineering through strategically positioned hydroxyl groups in acrylate monomers optimizes PDLC performance by enabling compact polymer networks and controlled phase separation, achieving superior contrast ratios (163) and low saturation voltages (15.8 V), while amino groups induce steric limitations and dual-bond systems that disrupt hydrogen-bond efficacy, highlighting hydroxyl spatial design as critical for electro-optical optimization. Full article
Show Figures

Figure 1

15 pages, 2825 KiB  
Article
Metal-Involving Bifurcated Halogen Bonding with Iodide and Platinum(II) Center
by Mariya A. Kryukova, Margarita B. Kostareva, Anna M. Cheranyova, Marina A. Khazanova, Anton V. Rozhkov and Daniil M. Ivanov
Int. J. Mol. Sci. 2025, 26(10), 4555; https://doi.org/10.3390/ijms26104555 - 9 May 2025
Viewed by 526
Abstract
The cocrystallization of trans-[PtI2(NCR)2] (R = NMe21, NEt22, Ph 3, o-ClC6H44) with iodine and iodoform gave the crystalline adducts 1∙4I2, 2∙2CHI3 [...] Read more.
The cocrystallization of trans-[PtI2(NCR)2] (R = NMe21, NEt22, Ph 3, o-ClC6H44) with iodine and iodoform gave the crystalline adducts 1∙4I2, 2∙2CHI3, 3∙2CHI3, and 4∙4I2, whose structures were studied by single-crystal X-ray diffractometry (XRD). In the structures, apart from the rather predictable C–H⋯I hydrogen bonds (HBs) and I–I⋯I or C–I⋯I halogen bonds (XBs) with the iodide ligands, we identified bifurcated I–I⋯(I–Pt) and C–I⋯(I–Pt) metal-involving XBs, where the platinum center and iodide ligands function as simultaneous XB acceptors toward σ-holes of I atoms in I2 or CHI3. Appropriate density functional theory (DFT) calculations (PBE-D3/jorge-DZP-DKH with plane waves in the GAPW method) performed with periodic boundary conditions confirmed the existence of the bifurcated metal-involving I–I⋯(I–Pt) and C–I⋯(I–Pt) interactions and their noncovalent nature. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

17 pages, 5659 KiB  
Article
Supramolecular Organization of Diaryliodonium Dicyanoargentates(I) Provided by Iodine(III)–Cyanide Halogen Bonding
by Irina S. Aliyarova, Anastasiia V. Koziakova, Daniil M. Ivanov, Natalia S. Soldatova and Pavel S. Postnikov
Inorganics 2025, 13(5), 157; https://doi.org/10.3390/inorganics13050157 - 9 May 2025
Viewed by 864
Abstract
Three diaryliodonium dicyanoargentates(I), [MesIAr][Ag(CN)2] (Ar = Ph 1, Mes 2, 4-MeC6H4 3; Mes = 2,4,6-Me3C6H2), were prepared by anion metathesis. The X-ray structural analyses for these crystals revealed [...] Read more.
Three diaryliodonium dicyanoargentates(I), [MesIAr][Ag(CN)2] (Ar = Ph 1, Mes 2, 4-MeC6H4 3; Mes = 2,4,6-Me3C6H2), were prepared by anion metathesis. The X-ray structural analyses for these crystals revealed C–IIII∙∙∙N≡C halogen bonds (abbreviated as XB) between I atoms of diaryliodonium cations and N atoms of cyano groups, which provide different supramolecular organization. The noncovalent nature of these interactions was studied by density functional theory (DFT) calculations and topological analysis of the electron density distribution in the framework of the quantum theory of atoms in molecules (QTAIM) at the PBE-D3/jorge-DZP-DKH level of theory both in gas phase and crystal models. The philicities of partners in these contacts were confirmed by electron localization function (ELF) projections, electron density/electrostatic potential (ED/ESP) profiles, and Hirshfeld surfaces analysis. An analysis of the available crystallographic data from the literature allows us to find other examples of σ-hole interactions including the dicyanoargentate(I) anion, and the C–X∙∙∙N≡C (X = Br, I, Te) bonding were also confirmed theoretically. Full article
Show Figures

Graphical abstract

Back to TopTop