Halogen Migration in the Photofragmentation of Halothane
Abstract
1. Introduction
2. Results
3. Discussion: Halogen Migration
4. Materials and Methods
4.1. Experimental
4.2. Theoretical
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andersen, M.P.S.; Nielsen, O.J.; Sherman, J.D. Assessing the potential climate impact of anaesthetic gases. Lancet Planet. Health 2023, 7, e622–e629. [Google Scholar]
- Shiraishi, Y.; Ikeda, K. Uptake and biotransformation of sevoflurane in humans: A comparative study of sevof lurane with halothane, enflurane, and isoflurane. J. Clin. Anesth. 1990, 2, 381–386. [Google Scholar]
- Brown, A.C.; Canosa-Mas, C.E.; Parr, A.D.; Pierce, J.M.T.; Waine, R.P. Tropospheric lifetimes of halogenated anaesthetics. Nature 1989, 341, 635–637. [Google Scholar] [PubMed]
- Langbein, T.; Sonntag, H.; Trapp, D.; Hoffmann, A.; Malms, W.; Roth, E.-P.; Mörs, V.; Zellner, R. Volatile anaesthetics and the atmosphere: Atmospheric lifetimes and atmospheric effects of halothane, enflurane, isoflurane, desflurane and sevoflurane. Br. J. Anaesth. 1999, 82, 66–73. [Google Scholar] [PubMed]
- Ferreira da Silva, F.; Duflot, D.; Hoffmann, S.V.; Jones, N.C.; Rodrigues, F.N.; Ferreira-Rodriguez, A.M.; de Souza, G.G.B.; Mason, N.J.; Eden, S.; Limao-Vieira, P. Electronic State Spectroscopy of Halothane As Studied by ab Initio Calculations, Vacuum Ultraviolet Synchrotron Radiation, and Electron Scattering Methods. J. Phys. Chem. A 2015, 119, 8503–8511. [Google Scholar]
- Santos, A.C.F.; Lucas, C.A.; Lago, A.F.; Oliveira, R.R.; Rocha, A.B.; de Souza, G.G.B. Ionic Fragmentation of the Halothane Molecule Induced by EUV and Soft X-ray Radiation. J. Phys. Chem. A 2024, 128, 7407–7416. [Google Scholar]
- Santos, A.C.F.; Lucas, C.A.; Lago, A.F.; Rocha, A.B.; de Souza, G.G.B. Competition between the shake-off and knockout mechanisms in the double and triple photoionization of the halothane molecule (C2HBrClF3). J. Chem. Phys. 2020, 153, 074305. [Google Scholar]
- Marotta, E.; Bosa, E.; Scorrano, G.; Paradisi, C. Positive and Negative Ion Chemistry of the Anesthetic Halothane (1-Bromo-1-Chloro-2,2,2-Trifluoroethane) in Air Plasma at Atmospheric Pressure. Rapid Commun. Mass Spectrom. 2005, 19, 391–396. [Google Scholar] [PubMed]
- Marotta, E.; Bosa, E.; Scorrano, G.; Paradisi, C. Gas-phase positive ion chemistry of 1-bromo-1-chloro-2, 2,2-trifluoroethane (halothane) upon electron ionization within an ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 2005, 19, 1447–1453. [Google Scholar]
- Pitzer, M.; Kastirke, G.; Burzynski, P.; Weller, M.; Metz, D.; Neff, J.; Waitz, M.; Trinter, F.; Schmidt, L.P.H.; Williams, J.B.; et al. Stereochemical configuration and selective excitation of the chiral molecule halothane. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 234001. [Google Scholar]
- Pitzer, M.; Kunitski, M.; Johnson, A.S.; Jahnke, T.; Sann, H.; Sturm, F.; Schmidt, L.P.H.; Schmidt-Böcking, H.; Dörner, R.; Stohner, J.; et al. Direct Determination of Absolute Molecular Stereochemistry in Gas Phase by Coulomb Explosion Imaging. Science 2013, 413, 1096–1100. [Google Scholar]
- Feketeová, L.; Plekan, O.; Goonewardane, M.; Ahmed, M.; Albright, A.L.; White, J.; O’Hair, R.A.; Horsman, M.R.; Wang, F.; Prince, K.C. Photoelectron Spectra and Electronic Structures of the Radiosensitizer Nimorazole and Related Compounds. J. Phys. Chem. A 2015, 119, 9986–9995. [Google Scholar]
- Meißner, R.; Feketeová, L.; Ribar, A.; Fink, K.; Limão-Vieira, P.; Denifl, S. Electron Ionization of Imidazole and Its Derivative 2-Nitroimidazole. J. Am. Soc. Mass Spectrom. 2019, 30, 2678–2691. [Google Scholar]
- Dumas, J.-M.; Dupuis, P.; Sandorfy, C.; Pfister-Guillouzo, G. Ionization potentials and ultraviolet absorption spectra of fluorocarbon anesthetics. Can. J. Spectrosc. 1981, 26, 102–108. [Google Scholar]
- Carlini, L.; Casavola, A.R.; Chiarinelli, J.; Porcelli, F.; Molteni, E.; Mattioli, G.; Bolognesi, P.; Sangalli, D.; Vismarra, F.; Wu, Y.X.; et al. Fragmentation and charge transfer in cyclic dipeptides with an aromatic side chain induced by VUV radiation. J. Phys. B At. Mol. Opt. Phys. 2024, 57, 105401. [Google Scholar]
- Weinhold, F.; Landis, C.R. Natural bond orbitals and extensions of localized bonding concepts. Chem. Edu. Res. Pract. 2001, 2, 91–104. [Google Scholar]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar]
- Scharf, D.; Laasonen, K. Structure, effective pair potential and properties of halothane. Chem. Phys. Lett. 1996, 258, 276–282. [Google Scholar]
- Meléndez, F.J.; Alcolea Palafox, M. Geometry and frequencies of the halothane molecule. J. Mol. Struct. (THEOCHEM) 1999, 493, 179–185. [Google Scholar]
- Tang, P.; Zubryzcki, I.; Xu, Y. Ab Initio Calculation of structures and properties of halogenated general anesthetics: Halothane and sevoflurane. J. Comp. Chem. 2001, 22, 436–444. [Google Scholar]
- Liu, Z.; Xu, Y.; Saladino, A.C.; Wymore, T.; Tang, P. Parametrization of 2-Bromo-2-Chloro-1,1,1-Trifluoroethane (Halothane) and Hexafluoroethane for Nonbonded Interactions. J. Phys. Chem. A 2004, 108, 781–786. [Google Scholar]
- Czarnik-Matusewicz, B.; Michalska, D.; Sandorfy, C.; Zeegers-Huyskens, T. Experimental and theoretical study of the vibrational spectra of halothane. Chem. Phys. 2006, 322, 331–342. [Google Scholar]
- Yang, W.; Drueckhammer, D.G. Understanding the Relative Acyl-Transfer Reactivity of Oxoesters and Thioesters: Computational Analysis of Transition State Delocalization Effects. J. Am. Chem. Soc. 2001, 123, 11004–11009. [Google Scholar]
- Yadav, V.K.; Gupta, A.; Balamurugan, R.; Sriramurthy, V.; Kumar, N.V. Distinguishing the Early and Late Transition States and Exploring the Validity of σ → σ*, σ → σ*, and σ → π*CO Concepts in Diastereoselection from NBO Analysis. J. Org. Chem. 2006, 71, 4178–4182. [Google Scholar]
- Mullins, J.J. Hyperconjugation: A More Coherent Approach. J. Chem. Educ. 2012, 89, 834–836. [Google Scholar]
- Derossi, A.; Lama, F.; Piacentini, M.; Prosperi, T.; Zema, N. High flux and high resolution beamline for elliptically polarized radiation in the vacuum ultraviolet and soft x-ray regions. Rev. Sci. Instrum. 1995, 66, 1718–1720. [Google Scholar]
- Walker, R.P.; Diviacco, B. Studies of insertion devices for producing circularly polarized radiation with variable helicity in ELETTRA. Rev. Sci. Instrum. 1992, 63, 332–335. [Google Scholar]
- Marr, G.V.; West, J.B. Absolute photoionization cross-section tables for helium, neon argon, and krypton in the VUV spectral regions. At. Data Nucl. Data Tables 1976, 18, 497–508. [Google Scholar]
- Cautero, M.; Garzetti, F.; Lusardi, N.; Sergo, R.; Stagel, L.; Costa, A.; Bonanno, G.; Ronconi, E.; Geraci, A.; Pis, I.; et al. High Spatial Resolution Detector System Based on Reconfigurable Dual-FPGA Approach for Coincidence Measurements. Sensors 2024, 24, 5233. [Google Scholar] [CrossRef]
- Castrovilli, M.C.; Bolognesi, P.; Cartoni, A.; Catone, D.; O’Keeffe, P.K.; Casavola, A.; Turchini, S.; Zema, N.; Avaldi, L. Photofragmentation of halogenated pyrimidine molecules in the VUV range. J. Am. Soc. Mass Spect. 2014, 25, 351–367. [Google Scholar]
- O’Keeffe, P.; Bolognesi, P.; Coreno, M.; Moise, A.; Richter, R.; Cautero, G.; Stebel, L.; Sergo, R.; Pravica, L.; Ovcharenko, Y.; et al. A photoelectron velocity map imaging spectrometer for experiments combining synchrotron and laser radiations. Rev. Sci. Instr. 2011, 82, 033109. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian, version 16, revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar]
- Wong, M.W. Vibrational frequency prediction using density functional theory. Chem. Phys. Lett. 1996, 256, 391–399. [Google Scholar]
- Gonzalez, C.; Schlegel, H.B. An Improved Algorithm for Reaction Path Following. J. Chem. Phys. 1989, 90, 2154–2161. [Google Scholar]
- Gonzalez, C.; Schlegel, H.B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 1990, 94, 5523–5527. [Google Scholar]
- Raghavachary, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M.A. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989, 157, 479–483. [Google Scholar]
- Lee, T.J.; Taylor, P.R. A diagnostic for determining the quality of single-reference electron correlation methods. Int. J. Quantum Chem. 1989, 36, 199–207. [Google Scholar]
- Cartoni, A.; Casavola, A.R.; Bolognesi, P.; Castrovilli, M.C.; Catone, D.; Chiarinelli, J.; Richter, R.; Avaldi, L. Insights into 2- and 4(5)-Nitroimidazole Decomposition into Relevant Ions and Molecules Induced by VUV Ionization. J. Phys. Chem. A 2018, 122, 4031–4041. [Google Scholar]
- Satta, M.; Casavola, A.R.; Cartoni, A.; Castrovilli, M.C.; Catone, D.; Chiarinelli, J.; Borocci, S.; Avaldi, L.; Bolognesi, P. Ionization of 2- and 4(5)-Nitroimidazoles Radiosensitizers: A “Kinetic Competition” Between NO2 and NO Losses. Chem Phys Chem 2021, 22, 2387–2391. [Google Scholar]
- Foster, J.P.; Weinhold, F. Natural hybrid orbitals. J. Am. Chem. Soc. 1980, 102, 7211–7218. [Google Scholar]
- Woon, D.E.; Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J. Chem. Phys. 1994, 100, 2975–2988. [Google Scholar]
- Kendall, R.A.; Dunning, T.H., Jr.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar]
- Woon, D.E.; Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371. [Google Scholar]
- Glendening, E.D.; Reed, A.E.; Carpenter, J.E.; Weinhold, F. NBO Version 3.1; Gaussian Inc.: Pittsburgh, PA, USA, 2003. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian, version 09, revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2009.
- Ortiz, J.V. Electron binding energies of anionic alkali metal atoms from partial fourth order electron propagator theory calculations. J. Chem. Phys. 1988, 89, 6348–6352. [Google Scholar]
- von Niessen, W.; Schirmer, J.; Cederbaum, L.S. Computational methods for the one-particle Green’s function. Comput. Phys. Rep. 1984, 1, 57–125. [Google Scholar]
- Ortiz, J.V. Partial third-order quasiparticle theory: Comparisons for closed-shell ionization energies and an application to the Borazine photoelectron spectrum. J. Chem. Phys. 1996, 104, 7599–7605. [Google Scholar]
- Ferreira, A.M.; Seabra, G.; Dolgounitcheva, O.; Zakrzewski, V.G.; Ortiz, J.V. Application and Testing of Diagonal, Partial Third-Order Electron Propagator Approximations. In Quantum-Mechanical Prediction of Thermochemical Data; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 131–166. [Google Scholar]
- Van Hoomissen Daniel, J.; Vyas, S. 1,2-fluorine radical rearrangements: Isomerization events in perfluorinated radicals. J. Phys. Chem. A 2017, 121, 8675–8687. [Google Scholar]
- Monascal, Y.; Maldonado, A.; Cartaya, L.; Alvarez-Aular, A. Theoretical study for conformational analysis and kinetics on the internal halogen exchange thermally induced of trichloro-(1,1-difluoroethyl)silane in the gas phase. Comput. Theor. Chem. 2019, 1150, 102–109. [Google Scholar]
- Juliá, F.; Constantin, T.; Leonori, D. Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chem. Rev. 2022, 122, 2292–2352. [Google Scholar]
(m/z) | AEexp (eV) | AEth (eV) CCSD | AEth (eV) CCSD(T) | Assignment |
---|---|---|---|---|
198 | 11.05 ± 0.03 | 10.83 | 10.77 | M+ |
179 | 14.22 ± 0.27 | 13.30 | 13.28 | (M-F)+ |
129 | 11.98 ± 0.07 | 11.96 | 11.93 | BrClCH+ |
117 | 11.68 ± 0.08 | 11.77 | 11.81 | (M-Br)+ |
111 | 14.57± 0.06 | CHBrF+ | ||
69 | 14.20 ± 0.25 * | 12.93 | 12.97 | CF3+ |
67 | 14.04 ± 0.19 | 13.94 | 13.98 | CHClF+ |
Orbital | Energy (eV) P3/6-311++G** | Pole Strength | Energy (eV) OVGF/6-311++G** | Pole Strength |
---|---|---|---|---|
46a | 11.172 | 0.920 | 11.127 | 0.919 |
45a | 11.294 | 0.920 | 11.243 | 0.919 |
44a | 12.135 | 0.917 | 12.039 | 0.914 |
43a | 12.203 | 0.916 | 12.094 | 0.912 |
42a | 14.906 | 0.913 | 14.717 | 0.907 |
41a | 15.329 | 0.914 | 14.966 | 0.903 |
40a | 16.210 | 0.915 | 15.765 | 0.903 |
39a | 16.594 | 0.927 | 15.785 | 0.910 |
38a | 17.174 | 0.926 | 16.424 | 0.910 |
37a | 17.299 | 0.924 | 16.590 | 0.910 |
36a | 18.272 | 0.927 | 17.497 | 0.909 |
35a | 18.331 | 0.926 | 17.56 | 0.908 |
Donor NBO(i) | Acceptor NBO(j) | E(2) kcal/mol | E(j)-E(i) a.u. | F(i,j) a.u. |
---|---|---|---|---|
33.LP(2)F2 | 358.BD*(1)C1-C4 | 6.69 | 0.69 | 0.061 |
34.LP(3)F2 | 357.BD*(1)C1-F3 | 10.21 | 0.68 | 0.075 |
34.LP(3)F2 | 359.BD*(1)C1-F6 | 10.55 | 0.67 | 0.076 |
35.LP(1)F3 | 48.RY*(2)C1 | 8.18 | 2.37 | 0.124 |
36.LP(2)F3 | 358.BD*(1)C1-C4 | 7.55 | 0.69 | 0.065 |
37.LP(3)F3 | 356.BD*(1)C1-F2 | 10.71 | 0.67 | 0.076 |
37.LP(3)F3 | 359.BD*(1)C1-F6 | 11.23 | 0.67 | 0.078 |
40.LP(3)Br5 | 361.BD*(1)C4-Cl7 | 6.40 | 0.39 | 0.045 |
41.LP(1)F6 | 47.RY*(1)C1 | 6.61 | 2.36 | 0.112 |
42.LP(2)F6 | 358.BD*(1)C1-C4 | 6.69 | 0.69 | 0.061 |
43.LP(3)F6 | 356.BD*(1)C1-F2 | 10.36 | 0.67 | 0.075 |
43.LP(3)F6 | 357.BD*(1)C1-F3 | 10.54 | 0.68 | 0.076 |
46.LP(3)Cl7 | 360.BD*(1)C4-Br5 | 9.13 | 0.36 | 0.051 |
ALPHA SPIN | ||||
Donor NBO(i) | Acceptor NBO(j) | E(2) kcal/mol | E(j)-E(i) a.u. | F(i,j) a.u. |
34.LP(3)F1 | 358.BD*(1)C2-F7 | 6.32 | 0.68 | 0.084 |
34.LP(3)F1 | 359.BD*(1)C2-F8 | 5.82 | 0.69 | 0.08 |
43.LP(3)F7 | 359.BD*(1)C2-F8 | 6.63 | 0.69 | 0.086 |
45.LP(2)F8 | 356.BD*(1)F1-C2 | 7.67 | 0.68 | 0.092 |
BETA SPIN | ||||
Donor NBO(i) | Acceptor NBO(j) | E(2) kcal/mol | E(j)-E(i) a.u. | F(i,j) a.u. |
35.LP(3)F1 | 357.BD*(1)C2-F7 | 6.35 | 0.68 | 0.084 |
35.LP(3)F1 | 358.BD*(1)C2-F8 | 5.78 | 0.69 | 0.08 |
41.LP(2)F7 | 355.BD*(1)F1-C2 | 6.18 | 0.68 | 0.083 |
44.LP(2)F8 | 355.BD*(1)F1-C2 | 6.57 | 0.68 | 0.085 |
45.LP(3)F8 | 357.BD*(1)C2-F7 | 7.92 | 0.68 | 0.093 |
ALPHA SPIN | ||||
Donor NBO(i) | Acceptor NBO(j) | E(2) kcal/mol | E(j)-E(i) a.u. | F(i,j) a.u. |
5.BD(1)C2-Cl6 | 361.BD*(2)C2-Cl6 | 5.57 | 0.61 | 0.075 |
34.LP(3)F3 | 359.BD*(1)C1-Br7 | 5.78 | 0.41 | 0.063 |
36.LP(2)F4 | 357.BD*(1)C1-F3 | 7.70 | 0.60 | 0.086 |
361.BD*(2)C2-Cl6 | 360.BD*(1)C2-Cl6 | 7.49 | 0.12 | 0.118 |
BETA SPIN | ||||
Donor NBO(i) | Acceptor NBO(j) | E(2) kcal/mol | E(j)-E(i) a.u. | F(i,j) a.u. |
5.BD(1)C2-Cl6 | 360.BD*(2)C2-Cl6 | 5.79 | 0.60 | 0.077 |
35.LP(3)F3 | 357.BD*(1)C1-F4 | 5.38 | 0.61 | 0.073 |
35.LP(3)F3 | 358.BD*(1)C1-Br7 | 5.04 | 0.42 | 0.059 |
38.LP(3)F4 | 358.BD*(1)C1-Br7 | 6.69 | 0.41 | 0.067 |
360.BD*(2)C2-Cl6 | 359.BD*(1)C2-Cl6 | 11.59 | 0.10 | 0.123 |
ALPHA SPIN | ||||
Donor NBO(i) | Acceptor NBO(j) | E(2) kcal/mol | E(j)-E(i) a.u. | F(i,j) a.u. |
4.BD(1)F4-C5 | 31.LP*(1)C1 | 34.14 | 0.37 | 0.162 |
34.LP(3)F2 | 31.LP*(1)C1 | 29.46 | 0.25 | 0.124 |
37.LP(3)F3 | 31.LP*(1)C1 | 29.19 | 0.25 | 0.123 |
40.LP(3)F4 | 31.LP*(1)C1 | 20.27 | 0.19 | 0.090 |
40.LP(3)F4 | 360.BD*(1)F4-C5 | 5.98 | 0.33 | 0.058 |
43.LP(3)Cl6 | 360.BD*(1)F4-C5 | 15.64 | 0.24 | 0.079 |
BETA SPIN | ||||
Donor NBO(i) | Acceptor NBO(j) | E(2) kcal/mol | E(j)-E(i) a.u. | F(i,j) a.u. |
4.BD(1)C1-Br7 | 360.BD*(1)F4-C5 | 7.89 | 0.14 | 0.044 |
5.BD(1)F4-C5 | 359.BD*(1)C1-Br7 | 35.85 | 0.37 | 0.161 |
33.LP(2)F2 | 357.BD*(1)C1-F3 | 7.45 | 0.69 | 0.091 |
34.LP(3)F2 | 359.BD*(1)C1-Br7 | 26.87 | 0.26 | 0.117 |
36.LP(2)F3 | 356.BD*(1)C1-F2 | 7.35 | 0.69 | 0.09 |
37.LP(3)F3 | 359.BD*(1)C1-Br7 | 26.52 | 0.26 | 0.117 |
40.LP(3)F4 | 359.BD*(1)C1-Br7 | 20.10 | 0.20 | 0.089 |
40.LP(3)F4 | 360.BD*(1)F4-C5 | 6.01 | 0.33 | 0.059 |
43.LP(3)Cl6 | 360.BD*(1)F4-C5 | 15.02 | 0.24 | 0.078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casavola, A.R.; Morini, F.; Castrovilli, M.C.; Chiarinelli, J.; Carlini, L.; Cartoni, A.; Catone, D.; Bolognesi, P.; Richter, R.; Marinkovic, B.; et al. Halogen Migration in the Photofragmentation of Halothane. Molecules 2025, 30, 2902. https://doi.org/10.3390/molecules30142902
Casavola AR, Morini F, Castrovilli MC, Chiarinelli J, Carlini L, Cartoni A, Catone D, Bolognesi P, Richter R, Marinkovic B, et al. Halogen Migration in the Photofragmentation of Halothane. Molecules. 2025; 30(14):2902. https://doi.org/10.3390/molecules30142902
Chicago/Turabian StyleCasavola, Anna Rita, Filippo Morini, Mattea Carmen Castrovilli, Jacopo Chiarinelli, Laura Carlini, Antonella Cartoni, Daniele Catone, Paola Bolognesi, Robert Richter, Bratislav Marinkovic, and et al. 2025. "Halogen Migration in the Photofragmentation of Halothane" Molecules 30, no. 14: 2902. https://doi.org/10.3390/molecules30142902
APA StyleCasavola, A. R., Morini, F., Castrovilli, M. C., Chiarinelli, J., Carlini, L., Cartoni, A., Catone, D., Bolognesi, P., Richter, R., Marinkovic, B., Tosic, S., & Avaldi, L. (2025). Halogen Migration in the Photofragmentation of Halothane. Molecules, 30(14), 2902. https://doi.org/10.3390/molecules30142902