Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,435)

Search Parameters:
Keywords = HTS analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 454 KiB  
Article
The Evaluation of Blood Prooxidant–Antioxidant Balance Indicators and Cortisol Pre- and Post-Surgery in Patients with Benign Parotid Gland Tumors: A Preliminary Study
by Sebastian Bańkowski, Jan Pilch, Bartosz Witek, Jarosław Markowski, Wirginia Likus, Michał Rozpara and Ewa Sadowska-Krępa
J. Clin. Med. 2025, 14(15), 5425; https://doi.org/10.3390/jcm14155425 (registering DOI) - 1 Aug 2025
Abstract
Background: The majority of parotid gland tumors are benign, e.g., pleomorphic adenoma (PA) and Warthin’s tumor (WT). From a biomedical point of view, oxidative stress is of significant importance due to its established association with the initiation and progression of various types of [...] Read more.
Background: The majority of parotid gland tumors are benign, e.g., pleomorphic adenoma (PA) and Warthin’s tumor (WT). From a biomedical point of view, oxidative stress is of significant importance due to its established association with the initiation and progression of various types of cancer, including parotid gland cancers. This study aimed to assess whether blood prooxidant–antioxidant markers could aid in diagnosing and guiding surgery for recurrent malignancies after parotid tumor treatment. Methods: We examined patients (n = 20) diagnosed with WT (n = 14) and PA (n = 6) using histopathological verification and computed tomography (CT) who qualified for surgical treatment. Blood samples were taken before the surgery and again 10 days later for biochemical analysis. The activities of the antioxidant enzymes (SOD, CAT and GPx), the non-enzymatic antioxidants (GSH and UA) and oxidative stress markers (MDA and TOS) were determined in the blood. The activities of CK and LDH and the concentrations of Cor and TAS were measured in the serum. Hb and Ht were determined in whole blood. Results: The patients’ SOD, CAT, and GPx activities after surgery did not differ significantly from their preoperative levels. However, following surgery, their serum TOS levels were significantly elevated in all the patients compared to baseline. In contrast, the plasma MDA concentrations were markedly reduced after surgery. Similarly, the GSH concentrations showed a significant decrease postoperatively. No significant changes were observed in the CK and LDH activities, TAS concentrations, or levels of Hb, Ht and Cor following surgery. Conclusions: The surgical removal of salivary gland tumors did not result in a reduction in oxidative stress at 10 days after surgery. Therefore, further studies are needed to determine the effectiveness of endogenous defense mechanisms in counteracting the oxidative stress induced by salivary gland tumors. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

17 pages, 4219 KiB  
Article
Identification of Differentially Expressed Genes and Pathways in Non-Diabetic CKD and Diabetic CKD by Integrated Human Transcriptomic Bioinformatics Analysis
by Clara Barrios, Marta Riera, Eva Rodríguez, Eva Márquez, Jimena del Risco, Melissa Pilco, Jorge Huesca, Ariadna González, Claudia Martyn, Jordi Pujol, Anna Buxeda and Marta Crespo
Int. J. Mol. Sci. 2025, 26(15), 7421; https://doi.org/10.3390/ijms26157421 (registering DOI) - 1 Aug 2025
Abstract
Chronic kidney disease (CKD) is a heterogeneous condition with various etiologies, including type 2 diabetes mellitus (T2D), hypertension, and autoimmune disorders. Both diabetic CKD (CKD_T2D) and non-diabetic CKD (CKD_nonT2D) share overlapping clinical features, but understanding the molecular mechanisms underlying each subtype and distinguishing [...] Read more.
Chronic kidney disease (CKD) is a heterogeneous condition with various etiologies, including type 2 diabetes mellitus (T2D), hypertension, and autoimmune disorders. Both diabetic CKD (CKD_T2D) and non-diabetic CKD (CKD_nonT2D) share overlapping clinical features, but understanding the molecular mechanisms underlying each subtype and distinguishing diabetic from non-diabetic forms remain poorly defined. To identify differentially expressed genes (DEGs) and enriched biological pathways between CKD_T2D and CKD_nonT2D cohorts, including autoimmune (CKD_nonT2D_AI) and hypertensive (CKD_nonT2D_HT) subtypes, through integrative transcriptomic analysis. Publicly available gene expression datasets from human glomerular and tubulointerstitial kidney tissues were curated and analyzed from GEO and ArrayExpress. Differential expression analysis and Gene Set Enrichment Analysis (GSEA) were conducted to assess cohort-specific molecular signatures. A considerable overlap in DEGs was observed between CKD_T2D and CKD_nonT2D, with CKD_T2D exhibiting more extensive gene expression changes. Hypertensive-CKD shared greater transcriptomic similarity with CKD_T2D than autoimmune-CKD. Key DEGs involved in fibrosis, inflammation, and complement activation—including Tgfb1, Timp1, Cxcl6, and C1qa/B—were differentially regulated in diabetic samples, where GSEA revealed immune pathway enrichment in glomeruli and metabolic pathway enrichment in tubulointerstitium. The transcriptomic landscape of CKD_T2D reveals stronger immune and metabolic dysregulation compared to non-diabetic CKD. These findings suggest divergent pathological mechanisms and support the need for tailored therapeutic approaches. Full article
Show Figures

Figure 1

18 pages, 2436 KiB  
Article
Integrated Cytotoxicity and Metabolomics Analysis Reveals Cell-Type-Specific Responses to Co-Exposure of T-2 and HT-2 Toxins
by Weihua He, Zuoyin Zhu, Jingru Xu, Chengbao Huang, Jianhua Wang, Qinggong Wang, Xiaohu Zhai and Junhua Yang
Toxins 2025, 17(8), 381; https://doi.org/10.3390/toxins17080381 (registering DOI) - 30 Jul 2025
Abstract
T-2 toxin and HT-2 toxin are commonly found in agricultural products and animal feed, posing serious effects to both humans and animals. This study employed combination index (CI) modeling and metabolomics to assess the combined cytotoxic effects of T-2 and HT-2 on four [...] Read more.
T-2 toxin and HT-2 toxin are commonly found in agricultural products and animal feed, posing serious effects to both humans and animals. This study employed combination index (CI) modeling and metabolomics to assess the combined cytotoxic effects of T-2 and HT-2 on four porcine cell types: intestinal porcine epithelial cells (IPEC-J2), porcine Leydig cells (PLCs), porcine ear fibroblasts (PEFs), and porcine hepatocytes (PHs). Cell viability assays revealed a dose-dependent reduction in viability across all cell lines, with relative sensitivities in the order: IPEC-J2 > PLCs > PEFs > PHs. Synergistic cytotoxicity was observed at low concentrations, while antagonistic interactions emerged at higher doses. Untargeted metabolomic profiling identified consistent and significant metabolic perturbations in four different porcine cell lines under co-exposure conditions. Notably, combined treatment with T-2 and HT-2 resulted in a uniform downregulation of LysoPC (22:6), LysoPC (20:5), and LysoPC (20:4), implicating disruption of membrane phospholipid integrity. Additionally, glycerophospholipid metabolism was the most significantly affected pathway across all cell lines. Ether lipid metabolism was markedly altered in PLCs and PEFs, whereas PHs displayed a unique metabolic response characterized by dysregulation of tryptophan metabolism. This study identified markers of synergistic toxicity and common alterations in metabolic pathways across four homologous porcine cell types under the combined exposure to T-2 and HT-2 toxins. These findings enhance the current understanding of the molecular mechanisms underlying mycotoxin-induced the synergistic toxicity. Full article
Show Figures

Graphical abstract

19 pages, 4058 KiB  
Article
Antitumor Activity of Ruditapes philippinarum Polysaccharides Through Mitochondrial Apoptosis in Cellular and Zebrafish Models
by Mengyue Liu, Weixia Wang, Haoran Wang, Shuang Zhao, Dongli Yin, Haijun Zhang, Chunze Zou, Shengcan Zou, Jia Yu and Yuxi Wei
Mar. Drugs 2025, 23(8), 304; https://doi.org/10.3390/md23080304 - 29 Jul 2025
Viewed by 91
Abstract
Colorectal cancer (CRC) remains a predominant cause of global cancer-related mortality, highlighting the pressing demand for innovative therapeutic strategies. Natural polysaccharides have emerged as promising candidates in cancer research due to their multifaceted anticancer mechanisms and tumor-suppressive potential across diverse malignancies. In this [...] Read more.
Colorectal cancer (CRC) remains a predominant cause of global cancer-related mortality, highlighting the pressing demand for innovative therapeutic strategies. Natural polysaccharides have emerged as promising candidates in cancer research due to their multifaceted anticancer mechanisms and tumor-suppressive potential across diverse malignancies. In this study, we enzymatically extracted a polysaccharide, named ERPP, from Ruditapes philippinarum and comprehensively evaluated its anti-colorectal cancer activity. We conducted in vitro assays, including CCK-8 proliferation, clonogenic survival, scratch wound healing, and Annexin V-FITC/PI apoptosis staining, and the results demonstrated that ERPP significantly inhibited HT-29 cell proliferation, suppressed colony formation, impaired migratory capacity, and induced apoptosis. JC-1 fluorescence assays provided further evidence of mitochondrial membrane potential (MMP) depolarization, as manifested by a substantial reduction in the red/green fluorescence ratio (from 10.87 to 0.35). These antitumor effects were further validated in vivo using a zebrafish HT-29 xenograft model. Furthermore, ERPP treatment significantly attenuated tumor angiogenesis and downregulated the expression of the vascular endothelial growth factor A (Vegfaa) gene in the zebrafish xenograft model. Mechanistic investigations revealed that ERPP primarily activated the mitochondrial apoptosis pathway. RT-qPCR analysis showed an upregulation of the pro-apoptotic gene Bax and a downregulation of the anti-apoptotic gene Bcl-2, leading to cytochrome c (CYCS) release and caspase-3 (CASP-3) activation. Additionally, ERPP exhibited potent antioxidant capacity, achieving an 80.2% hydroxyl radical scavenging rate at 4 mg/mL. ERPP also decreased reactive oxygen species (ROS) levels within the tumor cells, thereby augmenting anticancer efficacy through its antioxidant activity. Collectively, these findings provide mechanistic insights into the properties of ERPP, underscoring its potential as a functional food component or adjuvant therapy for colorectal cancer management. Full article
Show Figures

Figure 1

25 pages, 3515 KiB  
Article
Optimizing Sustainable Machining Conditions for Incoloy 800HT Using Twin-Nozzle MQL with Bio-Based Groundnut Oil Lubrication
by Ramai Ranjan Panigrahi, Ramanuj Kumar, Ashok Kumar Sahoo and Amlana Panda
Lubricants 2025, 13(8), 320; https://doi.org/10.3390/lubricants13080320 - 23 Jul 2025
Viewed by 615
Abstract
This study explores the machinability of Incoloy 800HT (high temperature) under a sustainable lubrication approach, employing a twin-nozzle minimum quantity lubrication (MQL) system with groundnut oil as a green cutting fluid. The evaluation focuses on key performance indicators, including surface roughness, tool flank [...] Read more.
This study explores the machinability of Incoloy 800HT (high temperature) under a sustainable lubrication approach, employing a twin-nozzle minimum quantity lubrication (MQL) system with groundnut oil as a green cutting fluid. The evaluation focuses on key performance indicators, including surface roughness, tool flank wear, power consumption, carbon emissions, and chip morphology. Groundnut oil, a biodegradable and nontoxic lubricant, was chosen to enhance environmental compatibility while maintaining effective cutting performance. The Taguchi L16 orthogonal array (three factors and four levels) was utilized to conduct experimental trials to analyze machining characteristics. The best surface quality (surface roughness, Ra = 0.514 µm) was obtained at the lowest depth of cut (0.2 mm), modest feed (0.1 mm/rev), and moderate cutting speed (160 m/min). The higher ranges of flank wear are found under higher cutting speed conditions (320 and 240 m/min), while lower wear values (<0.09 mm) were observed under lower speed conditions (80 and 160 m/min). An entropy-integrated multi-response optimization using the MOORA (multi-objective optimization based on ratio analysis) method was employed to identify optimal machining parameters, considering the trade-offs among multiple conflicting objectives. The entropy method was used to assign weights to each response. The obtained optimal conditions are as follows: cutting speed = 160 m/min, feed = 0.1 mm/rev, and depth of cut = 0.2 mm. Optimized outcomes suggest that this green machining strategy offers a viable alternative for sustainable manufacturing of difficult-to-machine alloys like Incoloy 800 HT. Full article
Show Figures

Figure 1

28 pages, 2072 KiB  
Review
Advances in Epstein–Barr Virus Detection: From Traditional Methods to Modern Technologies
by Yidan Sun, Shuyu Ling, Dani Tang, Meimei Yang and Chao Shen
Viruses 2025, 17(8), 1026; https://doi.org/10.3390/v17081026 - 22 Jul 2025
Viewed by 551
Abstract
The Epstein–Barr virus (EBV) is a prevalent virus linked to various diseases, including infectious mononucleosis (IM), nasopharyngeal carcinoma, and Hodgkin’s lymphoma. Over the past few decades, EBV diagnostic strategies have evolved significantly—progressing from traditional serological assays and histopathology to more sensitive and specific [...] Read more.
The Epstein–Barr virus (EBV) is a prevalent virus linked to various diseases, including infectious mononucleosis (IM), nasopharyngeal carcinoma, and Hodgkin’s lymphoma. Over the past few decades, EBV diagnostic strategies have evolved significantly—progressing from traditional serological assays and histopathology to more sensitive and specific molecular techniques such as nucleic acid amplification and high-throughput sequencing (HTS). While conventional methods remain valuable for their accessibility and established clinical use, they are often limited by sensitivity, speed, and multiplexing capability. In contrast, emerging technologies, including isothermal amplification, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based diagnostics, multi-omics integration, and AI-assisted analysis, have demonstrated great promise in improving diagnostic accuracy, speed, and applicability in diverse clinical settings, including point-of-care testing (POCT). This review systematically explores the historical development of EBV diagnostic technologies, highlighting key milestones and future trends in precision medicine and global health readiness. Full article
(This article belongs to the Special Issue EBV and Disease: New Perspectives in the Post COVID-19 Era)
Show Figures

Figure 1

21 pages, 2702 KiB  
Article
Piperine Induces Apoptosis and Cell Cycle Arrest via Multiple Oxidative Stress Mechanisms and Regulation of PI3K/Akt and MAPK Signaling in Colorectal Cancer Cells
by Wan-Ling Chang, Jyun-Yu Peng, Chain-Lang Hong, Pei-Ching Li, Soi Moi Chye, Fung-Jou Lu, Huei-Yu Lin and Ching-Hsein Chen
Antioxidants 2025, 14(7), 892; https://doi.org/10.3390/antiox14070892 - 21 Jul 2025
Viewed by 400
Abstract
Piperine, a phytochemical alkaloid, exhibits notable anticancer properties in several cancer cell types. In this study, we investigated the mechanisms by which piperine induces cell death and apoptosis in colorectal cancer (CRC) cells, focusing on oxidative stress and key signaling pathways. Using MTT [...] Read more.
Piperine, a phytochemical alkaloid, exhibits notable anticancer properties in several cancer cell types. In this study, we investigated the mechanisms by which piperine induces cell death and apoptosis in colorectal cancer (CRC) cells, focusing on oxidative stress and key signaling pathways. Using MTT assay, flow cytometry, gene overexpression, and Western blot analysis, we observed that piperine significantly reduced cell viability, triggered G1 phase cell cycle arrest, and promoted apoptosis in DLD-1 cells. In addition, piperine effectively suppressed cell viability and induced apoptosis in other CRC cell lines, including SW480, HT-29, and Caco-2 cells. These effects were associated with increased intracellular reactive oxygen species (ROS) generation, mediated by the regulation of mitochondrial complex III, NADPH oxidase, and xanthine oxidase. Additionally, piperine modulated signaling pathways by inhibiting phosphoinositide 3-kinase (PI3K)/Akt, activating p38 and p-extracellular signal-regulated kinase (ERK). Pretreatment with antimycin A, apocynin, allopurinol, and PD98059, and the overexpression of p-Akt significantly recovered cell viability and reduced apoptosis, confirming the involvement of these pathways. This study is the first to demonstrate piperine induces apoptosis in CRC cells through a multifaceted oxidative stress mechanism and by critically modulating PI3K/Akt and ERK signaling pathways. Full article
Show Figures

Figure 1

14 pages, 2027 KiB  
Article
The Role of Potassium and KUP/KT/HAK Transporters in Regulating Strawberry (Fragaria × ananassa Duch.) Fruit Development
by José A. Mercado-Hornos, Claudia Rodríguez-Hiraldo, Consuelo Guerrero, Sara Posé, Antonio J. Matas, Lourdes Rubio and José A. Mercado
Plants 2025, 14(14), 2241; https://doi.org/10.3390/plants14142241 - 20 Jul 2025
Viewed by 322
Abstract
Potassium is the most abundant macronutrient in plants, participating in essential physiological processes such as turgor maintenance. A reduction in cell turgor is a hallmark of the ripening process associated with fruit softening. The dynamic of K+ fluxes in fleshy fruits is [...] Read more.
Potassium is the most abundant macronutrient in plants, participating in essential physiological processes such as turgor maintenance. A reduction in cell turgor is a hallmark of the ripening process associated with fruit softening. The dynamic of K+ fluxes in fleshy fruits is largely unknown; however, the reallocation of K+ into the apoplast has been proposed as a contributing factor to the decrease in fruit turgor, contributing to fruit softening. High-affinity K+ transporters belonging to the KUP/HT/HAK transporter family have been implicated in this process in some fruits. In this study, a comprehensive genome-wide analysis of the KUP/KT/HAK family of high-affinity K+ transporters in strawberry (Fragaria × ananassa Duch.) was conducted, identifying 60 putative transporter genes. The chromosomal distribution of the FaKUP gene family and phylogenetic relationship and structure of predicted proteins were thoroughly examined. Transcriptomic profiling revealed the expression of 19 FaKUP genes within the fruit receptacle, with a predominant downregulation observed during ripening, particularly in FaKUP14, 24 and 47. This pattern suggests their functional relevance in early fruit development and turgor maintenance. Mineral composition analyses confirmed that K+ is the most abundant macronutrient in strawberry fruits, exhibiting a slight decrease as ripening progressed. Membrane potential (Em) and diffusion potentials (ED) at increasing external K+ concentrations were measured by electrophysiology in parenchymal cells of green and white fruits. The results obtained suggest a significant diminution in cytosolic K+ levels in white compared to green fruits. Furthermore, the slope of change in ED at increasing external K+ concentration indicated a lower K+ permeability of the plasma membrane in white fruits, aligning with transcriptomic data. This study provides critical insights into the regulatory mechanisms of K+ transport during strawberry ripening and identifies potential targets for genetic modifications aimed at enhancing fruit firmness and shelf life. Full article
(This article belongs to the Special Issue Postharvest Quality and Physiology of Vegetables and Fruits)
Show Figures

Figure 1

21 pages, 1115 KiB  
Article
Non-Contact Oxygen Saturation Estimation Using Deep Learning Ensemble Models and Bayesian Optimization
by Andrés Escobedo-Gordillo, Jorge Brieva and Ernesto Moya-Albor
Technologies 2025, 13(7), 309; https://doi.org/10.3390/technologies13070309 - 19 Jul 2025
Viewed by 342
Abstract
Monitoring Peripheral Oxygen Saturation (SpO2) is an important vital sign both in Intensive Care Units (ICUs), during surgery and convalescence, and as part of remote medical consultations after of the COVID-19 pandemic. This has made the development of new SpO2 [...] Read more.
Monitoring Peripheral Oxygen Saturation (SpO2) is an important vital sign both in Intensive Care Units (ICUs), during surgery and convalescence, and as part of remote medical consultations after of the COVID-19 pandemic. This has made the development of new SpO2-measurement tools an area of active research and opportunity. In this paper, we present a new Deep Learning (DL) combined strategy to estimate SpO2 without contact, using pre-magnified facial videos to reveal subtle color changes related to blood flow and with no calibration per subject required. We applied the Eulerian Video Magnification technique using the Hermite Transform (EVM-HT) as a feature detector to feed a Three-Dimensional Convolutional Neural Network (3D-CNN). Additionally, parameters and hyperparameter Bayesian optimization and an ensemble technique over the dataset magnified were applied. We tested the method on 18 healthy subjects, where facial videos of the subjects, including the automatic detection of the reference from a contact pulse oximeter device, were acquired. As performance metrics for the SpO2-estimation proposal, we calculated the Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and other parameters from the Bland–Altman (BA) analysis with respect to the reference. Therefore, a significant improvement was observed by adding the ensemble technique with respect to the only optimization, obtaining 14.32% in RMSE (reduction from 0.6204 to 0.5315) and 13.23% in MAE (reduction from 0.4323 to 0.3751). On the other hand, regarding Bland–Altman analysis, the upper and lower limits of agreement for the Mean of Differences (MOD) between the estimation and the ground truth were 1.04 and −1.05, with an MOD (bias) of −0.00175; therefore, MOD ±1.96σ = −0.00175 ± 1.04. Thus, by leveraging Bayesian optimization for hyperparameter tuning and integrating a Bagging Ensemble, we achieved a significant reduction in the training error (bias), achieving a better generalization over the test set, and reducing the variance in comparison with the baseline model for SpO2 estimation. Full article
(This article belongs to the Section Assistive Technologies)
Show Figures

Figure 1

15 pages, 3585 KiB  
Article
Surface Hardness of Polished Dental Zirconia: Influence of Polishing and Yttria Content on Morphology, Phase Composition, and Microhardness
by Andrea Labetić, Teodoro Klaser, Željko Skoko, Marko Jakovac and Mark Žic
Materials 2025, 18(14), 3380; https://doi.org/10.3390/ma18143380 - 18 Jul 2025
Viewed by 268
Abstract
This study examined the relationship between microhardness, morphology, and phase composition of dental yttria-stabilized tetragonal zirconia polycrystals (Y-TZP), which directly impact their long-term clinical performance and durability. The primary objective was to investigate the effects of yttria content and polishing on the surface [...] Read more.
This study examined the relationship between microhardness, morphology, and phase composition of dental yttria-stabilized tetragonal zirconia polycrystals (Y-TZP), which directly impact their long-term clinical performance and durability. The primary objective was to investigate the effects of yttria content and polishing on the surface properties and hardness of these materials. Samples from ZirCAD Prime, Cercon ht ML, ZIRCONIA YML, and ZirCAD LT were analyzed using Vickers hardness testing, Powder X-ray Diffraction (PXRD), and Scanning Electron Microscopy (SEM). SEM analysis revealed a gradual increase in grain size and porosity with higher yttria content in unpolished samples. Polishing resulted in a relatively uniform surface morphology with observable striations across all samples, subsequently leading to similar Vickers hardness values for all polished samples. PXRD and SEM analyses identified that these similar hardness values were likely due to the predominant monoclinic phase on the surface, induced by polishing. These findings underscore the significant influence of yttria content and polishing on Y-TZP microstructure and surface hardness, highlighting their critical role in the long-term success and clinical applicability of dental restorations. Full article
Show Figures

Figure 1

11 pages, 419 KiB  
Article
Comparative Evaluation of Classic Mechanical and Digital Goldmann Applanation Tonometers
by Assaf Kratz, Ronit Yagev, Avner Belkin, Mordechai Goldberg, Alon Zahavi, Ivan Goldberg and Ahed Imtirat
Diagnostics 2025, 15(14), 1813; https://doi.org/10.3390/diagnostics15141813 - 18 Jul 2025
Viewed by 296
Abstract
Objectives: The objective of this study was to evaluate the agreement and clinical interchangeability of intraocular pressure (IOP) measurements obtained with the mechanical Haag-Streit AT900 Goldmann applanation tonometer (mGAT) and the digital Huvitz HT5000 applanation tonometer (dGAT). Methods: This retrospective comparative [...] Read more.
Objectives: The objective of this study was to evaluate the agreement and clinical interchangeability of intraocular pressure (IOP) measurements obtained with the mechanical Haag-Streit AT900 Goldmann applanation tonometer (mGAT) and the digital Huvitz HT5000 applanation tonometer (dGAT). Methods: This retrospective comparative study included 53 eyes of 28 patients undergoing routine ophthalmologic evaluation. Each eye underwent IOP measurement using both mGAT and dGAT in a randomized sequence. Central corneal thickness (CCT) was also recorded. Pearson’s correlation coefficient was used to determine correlation between paired IOP measurements. Bland–Altman plots were graphed for the analysis of differences for IOP between the instruments. Results: A total of 53 eyes of 28 patients (15 males) were included in the study. The mean age of the patients was 62.6 years. The mean mGAT and dGAT measurements were 16.3 ± 6.6 mmHg (range 9–50) and 16.4 ± 6.2 mmHg (range 8.8–45.9), respectively (p = 0.53). A strong, significant positive correlation was found for paired IOP measurements by the two instruments (r = 0.98; p < 0.0001). Bland–Altman analysis revealed 95% limits of agreement from −2.5 to +2.3 mmHg, with a small but statistically significant proportional bias favoring mGAT at higher IOP levels. Additionally, 91% of paired measurements were within ±2 mmHg. CCT-related differences were statistically and clinically insignificant. Conclusions: IOP measurements obtained with mGAT and dGAT were highly correlated and clinically interchangeable for the range tested. The Huvitz HT5000 may serve as a reliable alternative to the classic Goldmann tonometer in routine clinical settings. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

18 pages, 3691 KiB  
Article
A Field Study on Sampling Strategy of Short-Term Pumping Tests for Hydraulic Tomography Based on the Successive Linear Estimator
by Xiaolan Hou, Rui Hu, Huiyang Qiu, Yukun Li, Minhui Xiao and Yang Song
Water 2025, 17(14), 2133; https://doi.org/10.3390/w17142133 - 17 Jul 2025
Viewed by 206
Abstract
Hydraulic tomography (HT) based on the successive linear estimator (SLE) offers the high-resolution characterization of aquifer heterogeneity but conventionally requires prolonged pumping to achieve steady-state conditions, limiting its applicability in contamination-sensitive or low-permeability settings. This study bridged theoretical and practical gaps (1) by [...] Read more.
Hydraulic tomography (HT) based on the successive linear estimator (SLE) offers the high-resolution characterization of aquifer heterogeneity but conventionally requires prolonged pumping to achieve steady-state conditions, limiting its applicability in contamination-sensitive or low-permeability settings. This study bridged theoretical and practical gaps (1) by identifying spatial periodicity (hole effect) as the mechanism underlying divergences in steady-state cross-correlation patterns between random finite element method (RFEM) and first-order analysis, modeled via an oscillatory covariance function, and (2) by validating a novel short-term sampling strategy for SLE-based HT using field experiments at the University of Göttingen test site. Utilizing early-time drawdown data, we reconstructed spatially congruent distributions of hydraulic conductivity, specific storage, and hydraulic diffusivity after rigorous wavelet denoising. The results demonstrate that the short-term sampling strategy achieves accuracy comparable to that of long-term sampling strategy in characterizing aquifer heterogeneity. Critically, by decoupling SLE from steady-state requirements, this approach minimizes groundwater disturbance and time costs, expanding HT’s feasibility to challenging environments. Full article
(This article belongs to the Special Issue Hydrogeophysical Methods and Hydrogeological Models)
Show Figures

Figure 1

17 pages, 3883 KiB  
Article
Effects of Feather-Pecking Phenotype on Physiological and Neurobiological Characteristics and Gut Microbiota Profile of Goslings
by Mingfeng Wang, Yujiao Guo, Zhengfeng Cao, Qi Xu, Guohong Chen and Yang Chen
Animals 2025, 15(14), 2122; https://doi.org/10.3390/ani15142122 - 17 Jul 2025
Viewed by 197
Abstract
FP is a detrimental behavior for chickens, ducks, and geese associated with numerous physiological and neurobiological characteristics, which have been identified in many species as regulated by the gut microbiota. However, it is unknown whether and how gut microbiota influences FP by regulating [...] Read more.
FP is a detrimental behavior for chickens, ducks, and geese associated with numerous physiological and neurobiological characteristics, which have been identified in many species as regulated by the gut microbiota. However, it is unknown whether and how gut microbiota influences FP by regulating neurotransmitter systems in geese. This study aimed to investigate the phenotypic correlation between feather pecking and changes in physiological, neurobiological, and gut microbiota profiles in gosling. Three behavioral phenotypes were observed in goslings, including severe feather peckers (SFPs), victims of SFPs, and non-peckers (NFPs). The significantly lower feather scores and body weights were observed in victims compared to both SFPs and NFPs (p < 0.05). Regarding the physiological phenotype, victims had higher dopamine (DA) levels than NFPs, and SFPs had lower 5-hydroxytryptamine (5-HT) in the serum than NFPs (p < 0.001), with intermediate 5-HT levels in victims. Victims had lower glutathione peroxidase (GSH-Px) compared to SFPs and NFPs (p < 0.05). Moreover, higher mRNA expression levels of HTR1A, SLC6A4, and TPH2 in the 5-HT metabolic pathway were detected in NFPs than those in SFPs and victims (p < 0.05). In addition, regarding gut microbiota measured by 16S rRNA sequencing, SFPs had lower diversity and comparable cecal microbiota compared to victims and NFPs. Proteobacteria, Verrucomicrobia, Ruminococcus spp., and Bilophila spp. were enriched in SFPs, while Bacteroides and Parabacteroides were enriched in NFPs. From the predicted bacterial functional genes, the cAMP signaling pathway, cGMP–PKG signaling pathway, and pyruvate metabolism were activated in SFPs. The correlation analysis revealed that the genera Bacteroides spp. were associated with differences in 5-HT metabolism between the SFPs and NFPs. In summary, differences in the cecal microbiota profile and 5-HT metabolism drive FP phenotypes, which could be associated with the reduced gut abundance of the genera Bacteroides spp. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

18 pages, 5095 KiB  
Article
Fusarium Species Infecting Greenhouse-Grown Cannabis (Cannabis sativa) Plants Show Potential for Mycotoxin Production in Inoculated Inflorescences and from Natural Inoculum Sources
by Zamir K. Punja, Sheryl A. Tittlemier and Sean Walkowiak
J. Fungi 2025, 11(7), 528; https://doi.org/10.3390/jof11070528 - 16 Jul 2025
Viewed by 815
Abstract
Several species of Fusarium are reported to infect inflorescences of high-THC-containing cannabis (Cannabis sativa L.) plants grown in greenhouses in Canada. These include F. graminearum, F. sporotrichiodes, F. proliferatum, and, to a lesser extent, F. oxysporum and F. solani. [...] Read more.
Several species of Fusarium are reported to infect inflorescences of high-THC-containing cannabis (Cannabis sativa L.) plants grown in greenhouses in Canada. These include F. graminearum, F. sporotrichiodes, F. proliferatum, and, to a lesser extent, F. oxysporum and F. solani. The greatest concern surrounding the infection of cannabis by these Fusarium species, which cause symptoms of bud rot, is the potential for the accumulation of mycotoxins that may go undetected. In the present study, both naturally infected and artificially infected inflorescence tissues were tested for the presence of fungal-derived toxins using HPLC-MS/MS analysis. Naturally infected cannabis tissues were confirmed to be infected by both F. avenaceum and F. graminearum using PCR. Pure cultures of these two species and F. sporotrichiodes were inoculated onto detached inflorescences of two cannabis genotypes, and after 7 days, they were dried and assayed for mycotoxin presence. In these assays, all Fusarium species grew prolifically over the tissue surface. Tissues infected by F. graminearum contained 3-acetyl DON, DON, and zearalenone in the ranges of 0.13–0.40, 1.18–1.91, and 31.8 to 56.2 μg/g, respectively, depending on the cannabis genotype. In F. sporotrichiodes-infected samples, HT2 and T2 mycotoxins were present at 13.9 and 10.9 μg/g in one genotype and were lower in the other. In F. avenaceum-inoculated tissues, the mycotoxins enniatin A, enniatin A1, enniatin B, and enniatin B1 were produced at varying concentrations, depending on the isolate and cannabis genotype. Unexpectedly, these tissues also contained detectable levels of 3-acetyl DON, DON, and zearalenone, which was attributed to apre-existing natural infection by F. graminearum that was confirmed by RT-qPCR. Beauvericin was detected in tissues infected by F. avenaceum and F. sporotrichiodes, but not by F. graminearum. Naturally infected, dried inflorescences from which F. avenaceum was recovered contained beauvericin, enniatin A1, enniatin B, and enniatin B1 as expected. Uninoculated cannabis inflorescences were free of mycotoxins except for culmorin at 0.348 μg/g, reflecting pre-existing infection by F. graminearum. The mycotoxin levels were markedly different between the two cannabis genotypes, despite comparable mycelial colonization. Tall fescue plants growing in the vicinity of the greenhouse were shown to harbor F. avenaceum and F. graminearum, suggesting a likely external source of inoculum. Isolates of both species from tall fescue produced mycotoxins when inoculated onto cannabis inflorescences. These findings demonstrate that infection by F. graminearum and F. avenaceum, either from artificial inoculation or natural inoculum originating from tall fescue plants, can lead to mycotoxin accumulation in cannabis inflorescences. However, extensive mycelial colonization following prolonged incubation of infected tissues under high humidity conditions is required. Inoculations with Penicillium citrinum and Aspergillus ochraceus under these conditions produced no detectable mycotoxins. The mycotoxins alternariol and tentoxin were detected in several inflorescence samples, likely as a result of natural infection by Alternaria spp. Fusarium avenaceum is reported to infect cannabis inflorescences for the first time and produces mycotoxins in diseased tissues. Full article
(This article belongs to the Special Issue Plant Pathogens and Mycotoxins)
Show Figures

Figure 1

27 pages, 7413 KiB  
Article
The Effect of the Ethanolic Extracts from Syzygium aromaticum and Syzygium nervosum on Antiproliferative Activity and Apoptosis in HCT116 and HT-29 Cells
by Thunyatorn Yimsoo, Weerakit Taychaworaditsakul, Sunee Chansakaow, Sumet Kongkiatpaiboon, Ngampuk Tayana, Teera Chewonarin, Parirat Khonsung and Seewaboon Sireeratawong
Int. J. Mol. Sci. 2025, 26(14), 6826; https://doi.org/10.3390/ijms26146826 - 16 Jul 2025
Viewed by 207
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer worldwide, and p53 dysfunction plays a significant role in its pathogenesis by impairing cell cycle control and apoptosis. This study aimed to elucidate the phytochemical composition and anticancer potential of extract of residue from [...] Read more.
Colorectal cancer (CRC) is the third most diagnosed cancer worldwide, and p53 dysfunction plays a significant role in its pathogenesis by impairing cell cycle control and apoptosis. This study aimed to elucidate the phytochemical composition and anticancer potential of extract of residue from clove hydrodistillation (Syzygium aromaticum, SA) and seed extract from Syzygium nervosum (SN). LC-DAD-MS/MS analysis identified gallic acid (2.68%) and ellagic acid (6.70%) as major constituents in SA, while SN contained gallic acid (0.26%), ellagic acid (3.06%), and 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC) as major constituents. Both extracts exhibited potent antioxidant effects as evidenced by DPPH and ABTS assays. In vitro assays showed that SA and SN significantly inhibited the proliferation of HCT116 (p53 wild-type) colorectal cancer cells, with minimal effects on HT-29 (p53 mutant) cells. Apoptosis was confirmed in HCT116 via Annexin V-FITC/PI staining and increased caspase-3/7 activity. Cell cycle analysis revealed sub-G1 accumulation, accompanied by upregulated p21 and concurrently downregulated cyclin D1 expression, both hallmarks of p53-mediated checkpoint activation. These molecular effects were not observed in HT-29 cells. In conclusion, SA and SN extracts selectively induce apoptosis and cell cycle arrest in p53-functional CRC cells, likely mediated by their phenolic constituents. These findings support their potential as promising plant-derived therapeutic agents for targeted colorectal cancer treatment. Full article
(This article belongs to the Special Issue Molecular Research and Potential Effects of Medicinal Plants)
Show Figures

Figure 1

Back to TopTop