Optimizing Sustainable Machining Conditions for Incoloy 800HT Using Twin-Nozzle MQL with Bio-Based Groundnut Oil Lubrication
Abstract
1. Introduction
2. Materials and Methodology Details
3. Results and Discussion
3.1. Discussion on Surface Roughness and Surface Texture
3.2. Discussion on Tool Flank Wear
3.3. Discussion on Power Consumption
3.4. Discussion of Carbon Emission
3.5. Discussion of Chip Morphology
4. WASPAS Multi Objective Assessment
5. Conclusions
- Surface quality improved when using groundnut oil with twin-nozzle MQL, with Ra ranging from 0.514 to 1.984 µm. Favourable roughness (Ra < 0.7 µm) was achieved at cutting speeds ≤ 160 m/min, feed ≤ 0.1 mm/rev, and a depth of cut ≤ 0.3 mm. Feed rate had the strongest influence on surface finish.
- Tool flank wear progressed slowly due to effective cooling and lubrication from the twin-nozzle MQL system using groundnut oil. Wear ranged from 0.05 to 0.151 mm, with abrasion and adhesion as the main mechanisms. Cutting speed was the most influencing factor.
- Power consumption increased with cutting speed, feed rate, and depth of cut, with cutting speed having the greatest influence. The highest power (813.25 W) was recorded at maximum speed, while the lowest (321.41 W) occurred at the minimum levels of all parameters.
- Carbon emission, being a time-dependent factor, was higher at low speed and feed. It decreased with increasing feed and speed, with feed being the most influencing factor, while depth of cut had a marginal effect.
- Continuous helical chips with increasing curl radius and thickness were produced at higher feed rates and depths of cut.
- The entropy–MOORA approach identified the optimal cutting parameters as follows: cutting speed = 160 m/min; feed = 0.1 mm/rev, and depth of cut = 0.2 mm. The corresponding optimal response values were surface roughness = 0.514 µm, flank wear = 0.084 mm, power consumption = 448.33 W, and carbon emission = 0.0099 KgCO2.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasad, G.; Vijay, G.S.; Kamath, C.R. Evaluation of tool wear and surface roughness in high-speed dry turning of Incoloy 800. Cogent Eng. 2024, 11, 2376913. [Google Scholar] [CrossRef]
- Purzyńska, H.; Golański, G. Incoloy 800ht iron-based superalloy–preliminary characterization. J. Met. Mater. 2022, 74, 42–46. [Google Scholar] [CrossRef]
- ALI, S.H.; Yao, Y.; Wu, B.; Zhao, B.; Ding, W.; Jamil, M.; Khan, A.; Baig, A.; Liu, Q.; Xu, D. Recent developments in MQL machining of aeronautical materials: A comparative review. Chin. J. Aeronaut. 2025, 38, 102918. [Google Scholar] [CrossRef]
- Sharma, S.; Ladakhi, T.Y.; Pradhan, B.B.; Phipon, R. A review on MQL for the machining of titanium based alloy. AIP Conf. Proc. 2020, 2273, 050074. [Google Scholar] [CrossRef]
- Hadad, M.; Beigi, M. A novel approach to improve environmentally friendly machining processes using ultrasonic nozzle–minimum quantity lubrication system. Int. J. Adv. Manuf. Technol. 2021, 114, 741–756. [Google Scholar] [CrossRef]
- Sidabutar, R.A.; Ginting, A. System Design and Development of MQL Unit for Hard Machining Application: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 1003, 012060. [Google Scholar] [CrossRef]
- Sultana, N. A critical review on the progress of MQL in machining hardened steels. Adv. Mater. Process. Technol. 2022, 8, 3834–3858. [Google Scholar] [CrossRef]
- Kasim, M.S.; Hafiz, M.S.A.; Ghani, J.A.; Haron, C.H.C.; Izamshah, R.; Aziz, M.S.A.; Mohamad, W.N.F.; Wong, P.K.; Saedon, J. Chip Morphology in Ball Nose End Milling Process of Nickel-Based Alloy Material under MQL Condition. Int. J. Adv. Manuf. Technol. 2019, 103, 4621–4625. [Google Scholar] [CrossRef]
- Virdi, R.L.; Chatha, S.S.; Singh, H. Experimental investigations on the tribological and lubrication behaviour of minimum quantity lubrication technique in grinding of Inconel 718 alloy. Tribol. Int. 2021, 153, 106581. [Google Scholar] [CrossRef]
- Bhowmick, S.; Alpas, A.T. The role of diamond-like carbon coated drills on minimum quantity lubrication drilling of magnesium alloys. Surf. Coat. Technol. 2011, 205, 5302–5311. [Google Scholar] [CrossRef]
- Barik, E.S.; Jena, P.C.; Behera, R.K.; Sethy, S.; Das, S.R. Experimental Investigation and Sustainability Assessment in Turning of Newly Developed AMMC (Al–Mg–Si–Cu–SiC) Using Coated Carbide Tool Under Minimum Quantity Lubrication. Arab. J. Sci. Eng. 2025, 1–22. [Google Scholar] [CrossRef]
- Leppert, T. Surface layer properties of AISI 316L steel when turning under dry and with minimum quantity lubrication conditions. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2012, 226, 617–631. [Google Scholar] [CrossRef]
- Boswell, B.; Islam, M.N.; Davies, I.J.; Ginting, Y.R.; Ong, A.K. A review identifying the effectiveness of minimum quantity lubrication (MQL) during conventional machining. Int. J. Adv. Manuf. Technol. 2017, 92, 321–340. [Google Scholar] [CrossRef]
- Sankaranarayanan, R.A.; Rajesh Jesudoss Hynes, N.A.; Senthil Kumar, J.B.; Krolczyk, G.M. A comprehensive review on research developments of vegetable-oil based cutting fluids for sustainable machining challenges. J. Manuf. Processes 2021, 67, 286–313. [Google Scholar] [CrossRef]
- Caballero, B.; Finglas, P.; Toldra, F. Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2003; Available online: https://www.cabidigitallibrary.org (accessed on 21 July 2025).
- Singh, A.K.; Gupta, A.K. Metal working fluids from vegetable fluids. J. Synth. Lubr. 2006, 123, 167–176. [Google Scholar] [CrossRef]
- Saleem, M.Q.; Mehmood, A. Eco-friendly precision turning of superalloy Inconel 718 using MQL based vegetable oils: Tool wear and surface integrity evaluation. J. Manuf. Processes 2022, 73, 112–127. [Google Scholar] [CrossRef]
- Sarkar, S.; Datta, S. Machining performance of inconel 718 under dry, MQL, and nanofluid MQL conditions: Application of coconut oil (base fluid) and multi-walled carbon nanotubes as additives. Arab. J. Sci. Eng. 2021, 46, 2371–2395. [Google Scholar] [CrossRef]
- Ekinovic, S.; Prcanovic, H.; Begovic, E. Oil-on-water mql machining of nickel based super alloy Nimonic C263. Int. J. Adv. Res. 2017, 5, 2471–2486. [Google Scholar] [CrossRef] [PubMed]
- Tazehkandi, A.H.; Shabgard, M.; Pilehvarian, F. On the feasibility of a reduction in cutting fluid consumption via spray of biodegradable vegetable oil with compressed air in machining Inconel 706. J. Clean. Prod. 2015, 104, 422–435. [Google Scholar] [CrossRef]
- Tazehkandi, A.H.; Shabgard, M.; Pilehvarian, F. Application of liquid nitrogen and spray mode biodegradable vegetable cutting fluid with compressed air in order to reduce cutting fluid consumption in turning Inconel 740. J. Clean. Prod. 2015, 108, 90–103. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.F.; Wang, Y.W. Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions. J. Clean. Prod. 2012, 32, 81–87. [Google Scholar] [CrossRef]
- Tamang, S.K.; Chandrasekaran, M.; Sahoo, A.K. Sustainable machining: An experimental investigation and optimization of machining Inconel 825 with dry and MQL approach. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 374. [Google Scholar] [CrossRef]
- Gupta, M.K.; Boy, M.; Korkmaz, M.E.; Yasar, N.; Günay, M.; Krolczyk, G.M. Measurement and analysis of machining induced tribological characteristics in dual jet minimum quantity lubrication assisted turning of duplex stainless steel. Measurement 2022, 187, 110353. [Google Scholar] [CrossRef]
- Sohrabpoor, H.; Khanghah, S.P.; Teimouri, R. Investigation of lubricant condition and machining parameters while turning of AISI 4340. Int. J. Adv. Manuf. Technol. 2015, 76, 2099–2116. [Google Scholar] [CrossRef]
- Mia, M.; Dhar, N.R. Effects of duplex jets high-pressure coolant on machining temperature and machinability of Ti-6Al-4V superalloy. J. Mater. Process Technol. 2018, 252, 688–696. [Google Scholar] [CrossRef]
- Mia, M.; Dhar, N.R. Influence of single and dual cryogenic jets on machinability characteristics in turning of Ti-6Al-4V. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 711–726. [Google Scholar] [CrossRef]
- Thamizhmanii, S.; Rosli, S.H. A study of minimum quantity lubrication on Inconel 718 steel. Arch. Mater. Sci. Eng. 2009, 39, 38–44. Available online: www.archivesmse.org (accessed on 16 June 2025).
- Cai, L.; Feng, Y.; Liang, S.Y. Analytical Modelling of Cutting Force in End-Milling with Minimum Quantity Lubrication. Int. J. Precis. Eng. Manuf. 2024, 25, 899–912. [Google Scholar] [CrossRef]
- Cai, L.; Feng, Y.; Lu, Y.-T.; Lin, Y.-F.; Hung, T.-P.; Hsu, F.-C.; Liang, S.Y. Analytical Model for Temperature Prediction in Milling AISI D2 with Minimum Quantity Lubrication. Metals 2022, 12, 697. [Google Scholar] [CrossRef]
- Yıldırım, Ç.V.; Kıvak, T.; Sarıkaya, M.; Şirin, Ş. Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and CryoMQL. J. Mater. Res. Technol. 2020, 9, 2079–2092. [Google Scholar] [CrossRef]
- Kamata, Y.; Obikawa, T. High speed MQL finish-turning of Inconel 718 with different coated tools. J. Mater. Res. Technol. 2007, 192–193, 281–286. [Google Scholar] [CrossRef]
- Polvorosa, R.; Suárez, A.; de Lacalle, L.L.; Cerrillo, I.; Wretland, A.; Veiga, F. Tool wear on nickel alloys with different coolant pressures: Comparison of Alloy 718 and Waspaloy. J. Manuf. Processes 2017, 26, 44–56. [Google Scholar] [CrossRef]
- Jindal, P.C.; Santhanam, A.T.; Schleinkofer Shuster, A.F. Performance of PVD TiN, TiCN and TiAlN coated cemented carbide tools in turning. Int. J. Refract. Met. Hard Mater. 1999, 17, 163–170. [Google Scholar] [CrossRef]
- Prengel, H.G.; Jindal, P.C.; Wendt, K.H.; Santhanam, A.T.; Hedge, P.L.; Penich, R.M. A new class of high performance PVD coating for carbide cutting tools. Surf. Coat. Technol. 2001, 139, 25–34. [Google Scholar] [CrossRef]
- Bhatt, A.; Attia, H.; Vargas, R.; Thomson, V. Wear mechanisms of WC coated and uncoated tools in finish turning of Inconel 718. Tribol. Int. 2010, 43, 1113–1121. [Google Scholar] [CrossRef]
- Palanisamy, A.; Jeyaprakash, N.; Sivabharathi, V.; Sivasankaran, S. Effects of dry turning parameters of Incoloy 800H superalloy using Taguchi-based Grey relational analysis and modeling by response surface methodology. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 607–623. [Google Scholar] [CrossRef]
- Frifita, W.; Ben Salem, S.; Haddad, A.; Yallese, M.A. Optimization of machining parameters in turning of Inconel 718 nickel-base super alloy. Mech. Ind. 2020, 21, 203. [Google Scholar] [CrossRef]
- Panigrahi, R.R.; Panda, A.; Sahoo, A.K.; Kumar, R.; Mishra, R.R. Turning performance analysis and optimization of processing parameters using GRA-PSO approach in sustainable manufacturing. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022, 236, 2404–2419. [Google Scholar] [CrossRef]
- Jovicic, G.; Milosevic, A.; Kanovic, Z.; Sokac, M.; Simunovic, G.; Savkovic, B.; Vukelic, D. Optimization of dry turning of Inconel 601 alloy based on surface roughness, tool wear, and material removal rate. Metals 2023, 13, 1068. [Google Scholar] [CrossRef]
- Bhandarkar, L.; Mohanty, P.; Sarangi, S. Experimental study and multi-objective optimization of process parameters during turning of 100Cr6 using C-type advanced coated tools. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 7634–7654. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, A.K. Pulsating minimum quantity lubrication assisted high speed turning on bio-medical Ti-6Al-4V ELI Alloy: An experimental investigation. Mech. Ind. 2020, 21, 625. [Google Scholar] [CrossRef]
- Mallick, R.; Kumar, R.; Panda, A.; Sahoo, A.K.; Das, D. Synthesis of an Ionic Liquid-Based Cutting Lubricant and Its Performance Comparison with Mineral Oil in Hard Turning. Lubricants 2025, 13, 166. [Google Scholar] [CrossRef]
- Yan, L.; Yuan, S.; Liu, Q. Influence of minimum quantity lubrication parameters on tool wear and surface roughness in milling of forged steel. Chin. J. Mech. Eng. 2012, 25, 419–429. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, G.; Aggarwal, V. Analysis and optimization of nozzle distance during turning of EN 31 steel using minimum quantity lubrication. Mater. Today Proc. 2022, 49, 1360–1366. [Google Scholar] [CrossRef]
- Khatai, S.; Kumar, R.; Panda, A.; Sahoo, A.K. WASPAS Based Multi Response Optimization in Hard Turning of AISI 52100 Steel under ZnO Nanofluid Assisted Dual Nozzle Pulse-MQL Environment. Appl. Sci. 2023, 13, 10062. [Google Scholar] [CrossRef]
- Mallick, R.; Kumar, R.; Panda, A.; Sahoo, A.K. Hard Turning Performance Investigation of AISI D2 Steel under a Dual Nozzle MQL Environment. Lubricants 2023, 11, 16. [Google Scholar] [CrossRef]
- Hossain, S.; Abedin, M.Z.; Saha, R.K.; Touhiduzzaman, M.D.; Jakir Hossen, M.D. Optimization of cutting temperature and surface roughness in CNC turning of Ti-6Al-4V alloy using response surface methodology. Heliyon 2025, 11, e41051. [Google Scholar] [CrossRef] [PubMed]
- Khatai, S.; Sahoo, A.K.; Kumar, R.; Panda, A. Sustainable hard machining under zirconia nano-cutting fluid: A step towards a green and cleaner manufacturing process. Measurement 2025, 242, 116087. [Google Scholar] [CrossRef]
- Cui, Z.; Ni, J.; He, L.; Su, R.; Wu, C.; Xue, F.; Sun, J. Assessment of cutting performance and surface quality on turning pure polytetrafluoroethylene. J. Mater. Res. Technol. 2022, 20, 2990–2998. [Google Scholar] [CrossRef]
- Song, X.; He, W.; Ihara, T. A Novel Approach for Dry Cutting Inconel 718 in a More Sustainable and Low-Cost Way by Actively and Purposely Utilizing the Built-Up Layer. Micromachines 2023, 14, 1787. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, A.; Selvaraj, T. Optimization of machining parameters for dry turning of Incoloy 800H using Taguchi-based grey relational analysis. Mater. Today Proc. 2018, 5, 7708–7715. [Google Scholar] [CrossRef]
- Palanisamy, A.; Selvaraj, T.; Sivasankaran, S. Optimization of Turning Parameters of Machining Incoloy 800H Superalloy Using Cryogenically Treated Multilayer CVD-Coated Tool. Arab. J. Sci. Eng. 2018, 43, 4977–4990. [Google Scholar] [CrossRef]
- Zhu, S.; Huang, P. Influence mechanism of morphological parameters on tribological behaviors based on bearing ratio curve. Tribol. Int. 2017, 109, 10–18. [Google Scholar] [CrossRef]
- Anurag; Kumar, R.; Sahoo, A.K.; Panda, A. Comparative performance analysis of coated carbide insert in turning of Ti-6Al-4V ELI grade alloy under dry, minimum quantity lubrication and spray impingement cooling environments. J. Mater. Eng. Perform. 2022, 31, 709–732. [Google Scholar] [CrossRef]
- Sahoo, S.P.; Datta, S. Dry MQL, and Nanofluid MQL Machining of Ti–6Al–4V Using Uncoated WC–Co Insert: Application of Jatropha Oil as Base Cutting Fluid and Graphene Nanoplatelets as Additives. Arab. J. Sci. Eng. 2020, 45, 9599–9618. [Google Scholar] [CrossRef]
- Zheng, G.; Xu, R.; Cheng, X.; Zhao, G.; Li, L.; Zhao, J. Effect of cutting parameters on wear behavior of coated tool and surface roughness in high-speed turning of 300M. Measurement 2018, 125, 99–108. [Google Scholar] [CrossRef]
- Beake, B.D.; Endrino, J.L.; Kimpton, C.; Fox-Rabinovich, G.S.; Veldhuis, S.C. Elevated temperature repetitive micro-scratch testing of AlCrN, TiAlN and AlTiN PVD coatings. Int. J. Refract. Met. Hard Mater. 2017, 69, 215–226. [Google Scholar] [CrossRef]
- Veerappan, G.; Pritima, D.; Parthsarathy, N.R.; Ramesh, B.; Jayasathyakawin, S. Experimental investigation on machining behavior in dry turning of nickel based super alloy-Inconel 600 and analysis of surface integrity and tool wear in dry machining. Mater. Today Proc. 2022, 59, 1566–1570. [Google Scholar] [CrossRef]
- Bilga, P.S.; Singh, S.; Kumar, R. Optimization of energy consumption response parameters for turning operation using taguchi method. J. Clean. Prod. 2016, 137, 1406–1417. [Google Scholar] [CrossRef]
- Dash, L.; Padhan, S.; Das, A. Machinability investigation and sustainability assessment in hard turning of AISI D3 steel with coated carbide tool under nanofluid minimum quantity lubrication-cooling condition. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 6496–6528. [Google Scholar] [CrossRef]
- Angappan, P.; Thangiah, S.; Subbarayan, S. Taguchi-based grey relational analysis for modeling and optimizing machining parameters through dry turning of Incoloy 800H. J. Mech. Sci. Technol. 2017, 31, 4159–4165. [Google Scholar] [CrossRef]
- Nur, R.; Noordin, M.Y.; Izman, S. The effect of cutting parameters on power consumption during turning nickel based alloy. Adv. Mater. Res. 2013, 845, 799–802. [Google Scholar] [CrossRef]
- Muthuswamy, P. Comparison of machining forces, power consumption, and specific cutting energy in tools with grooved cutting edges for sustainable manufacturing. Adv. Mater. Process Technol. 2024, 1–15. [Google Scholar] [CrossRef]
- Abbas, A.T.; Anwar, S.; Abdelnasser, E.; Luqman, M.; Qudeiri, J.E.A.; Elkaseer, A. Effect of Different Cooling Strategies on Surface Quality and Power Consumption in Finishing End Milling of Stainless Steel 316. Materials 2021, 14, 903. [Google Scholar] [CrossRef] [PubMed]
- Ross, N.S.; Rai, R.; Ananth, M.B.J.; Srinivasan, D.; Ganesh, M.; Gupta, M.K.; Korkmaz, M.E.; Królczyk, G.M. Carbon emissions and overall sustainability assessment in eco-friendly machining of Monel-400 alloy. Sustain. Mater. Technol. 2023, 37, e00675. [Google Scholar] [CrossRef]
- Liu, Z.J.; Sun, D.P.; Lin, C.X.; Zhao, X.Q.; Yang, Y. Multi-objective optimization of the operating conditions in a cutting process based on low carbon emission costs. J. Clean. Prod. 2016, 124, 266–275. [Google Scholar] [CrossRef]
- Jiang, H.; Ren, Z.; He, L.; Yuan, S.; Zou, Z. Forming process and evaluation of chip in machining of high-strength steel by an independent-developed microgroove turning tool. Sci. Prog. 2021, 104, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Hamadi, B.; Chaour, M.; Cherrad, M.L.; Boucherma, D.; Achour, T.; Yallese, M.A. Chip formation analysis during dry turning of C45 steel. Stud. Eng. Exact. Sci. 2024, 5, 1–15. [Google Scholar] [CrossRef]
- Cui, X.; Zhao, B.; Jiao, F.; Zheng, J. Chip formation and its effects on cutting force, tool temperature, tool stress, and cutting edge wear in high- and ultra-high-speed milling. Int. J. Adv. Manuf. Technol. 2016, 83, 55–65. [Google Scholar] [CrossRef]
- Brauers, W.K.M.; Zavadskas, E.K. The MOORA method and its application to privatization in a transition economy. Control Cybern. 2006, 35, 445–469. [Google Scholar]
- Liang, Z.; Yun, T.J.; WB, O.H.; BR, L.; IS, K. A study on MOORA-based Taguchi method for optimization in automated GMA welding process. Mater. Today Proc. 2020, 22, 1778–1785. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, S.; Bilga, P.S.; Kumar, R.; Jatin Singh, J.; Singh, S.; Scutaru, M.L.; Pruncu, C.I. Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: A critical review. J. Mater. Res. Technol. 2021, 10, 1471–1492. [Google Scholar] [CrossRef]
Experimental Attributes | Characteristics |
---|---|
Machine tool | Computer Numerical Control (CNC) lathe with Fanuq operating system |
Test specimen | INCOLOY 800HT |
Specimen size | Φ 60 mm × 220 mm |
Lenth to be cut | 160 mm |
Inserts | PVD-coated (AlTiN) carbide tool (CNMG120408UF) |
Tool holder | PCLNR 2525 M12 |
Turning parameters | a (mm) = 0.2, 0.3, 0.4, 0.5 f (mm/rev) = 0.05, 0.1, 0.15, 0.2 v (m/min) = 80, 160, 240, 320 |
Lubricant | Groundnut oil |
Lubricant supply | MQL with two nozzles (twin nozzle) |
MQL lubricant | groundnut oil |
Responses | Surface roughness, surface texture, flank wear, cutting power, carbon emission, chip morphology |
Sl No. | Inputs Settings | Responses Studied | |||||
---|---|---|---|---|---|---|---|
a (mm) | f (mm/rev) | v (m/min) | Ra (µm) | VBc (mm) | Pc (W) | Ce (KgCO2) | |
1 | 0.2 | 0.05 | 80 | 0.568 | 0.076 | 323.41 | 0.0282 |
2 | 0.2 | 0.1 | 160 | 0.514 | 0.084 | 448.33 | 0.0099 |
3 | 0.2 | 0.15 | 240 | 1.378 | 0.112 | 538.65 | 0.0052 |
4 | 0.2 | 0.2 | 320 | 1.824 | 0.151 | 677.3 | 0.0036 |
5 | 0.3 | 0.05 | 160 | 0.534 | 0.066 | 468.11 | 0.0203 |
6 | 0.3 | 0.1 | 80 | 0.656 | 0.072 | 395.44 | 0.0174 |
7 | 0.3 | 0.15 | 320 | 1.549 | 0.119 | 754.45 | 0.0055 |
8 | 0.3 | 0.2 | 240 | 1.854 | 0.097 | 652.12 | 0.0046 |
9 | 0.4 | 0.05 | 240 | 0.815 | 0.102 | 606.5 | 0.0173 |
10 | 0.4 | 0.1 | 320 | 1.187 | 0.131 | 720.32 | 0.0078 |
11 | 0.4 | 0.15 | 80 | 1.518 | 0.08 | 409.45 | 0.0118 |
12 | 0.4 | 0.2 | 160 | 1.823 | 0.084 | 564.33 | 0.006 |
13 | 0.5 | 0.05 | 320 | 0.908 | 0.137 | 813.25 | 0.0172 |
14 | 0.5 | 0.1 | 240 | 1.082 | 0.106 | 725.34 | 0.0104 |
15 | 0.5 | 0.15 | 160 | 1.499 | 0.088 | 607.76 | 0.0086 |
16 | 0.5 | 0.2 | 80 | 1.984 | 0.085 | 518.11 | 0.0108 |
Term | DF | Adj SS | Adj MS | F | P | Contribution (%) | Significant |
---|---|---|---|---|---|---|---|
a | 3 | 0.24903 | 0.08301 | 15.00 | 0.003 | 6.21 | Yes |
f | 3 | 3.55254 | 1.18418 | 213.98 | 0.000 | 88.68 | Yes |
v | 3 | 0.17102 | 0.05701 | 10.30 | 0.009 | 4.27 | Yes |
Error | 6 | 0.03320 | 0.00553 | ||||
Sum | 15 | 4.00579 | |||||
S = 0.0743913; | R2 = 99.17%; | R2 (Adj) = 97.93%; | R2 (Pred) = 94.11% |
Term | DF | Adj SS | Adj MS | F | P | Contribution (%) | Significant |
---|---|---|---|---|---|---|---|
a | 3 | 0.00072 | 0.00024 | 9.91 | 0.010 | 7.76 | Yes |
f | 3 | 0.00017 | 0.00005 | 2.32 | 0.175 | 1.83 | No |
v | 3 | 0.00824 | 0.00274 | 113.27 | 0.000 | 88.89 | Yes |
Error | 6 | 0.00014 | 0.00002 | ||||
Sum | 15 | 0.00927 | |||||
S = 0.0049244; | R2 = 98.43%; | R2 (Adj) = 96.08%; | R2 (Pred) = 88.85% |
Term | DF | Adj SS | Adj MS | F | P | Contribution (%) | Significant |
---|---|---|---|---|---|---|---|
a | 3 | 57,783 | 19,260.9 | 49.71 | 0.000 | 18.87 | Yes |
f | 3 | 5118 | 1706.1 | 4.40 | 0.058 | 1.67 | No |
v | 3 | 240,994 | 80,331.2 | 207.32 | 0.000 | 78.70 | Yes |
Error | 6 | 2325 | 387.5 | ||||
Sum | 15 | 306,219 | |||||
S = 19.6843; | R2 = 99.24%; | R2 (Adj) = 98.10%; | R2 (Pred) = 94.60% |
Term | DF | Adj SS | Adj MS | F | P | Contribution (%) | Significant |
---|---|---|---|---|---|---|---|
a | 3 | 0.000004 | 0.000001 | 0.66 | 0.604 | 0.57 | No |
f | 3 | 0.000508 | 0.000169 | 92.71 | 0.000 | 72.57 | Yes |
v | 3 | 0.000177 | 0.000059 | 32.30 | 0.000 | 25.28 | Yes |
Error | 6 | 0.000011 | 0.000002 | ||||
Sum | 15 | 0.000700 | |||||
S = 0.0013515; | R2 = 98.43%; | R2 (Adj) = 96.08%; | R2 (Pred) = 88.86% |
Sl. No. | Normalized Value | Weighted Normalized Value | Resultant Value | Rank | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Ra | VBc | Pc | Ce | Ra | VBc | Pc | Ce | |||
1 | 0.1069 | 0.1858 | 0.1364 | 0.5301 | 0.0250 | 0.0517 | 0.0373 | 0.1138 | −0.2277 | 7 |
2 | 0.0967 | 0.2054 | 0.1891 | 0.1861 | 0.0226 | 0.0571 | 0.0517 | 0.0399 | −0.1714 | 1 |
3 | 0.2593 | 0.2738 | 0.2272 | 0.0978 | 0.0606 | 0.0761 | 0.0621 | 0.0210 | −0.2199 | 5 |
4 | 0.3432 | 0.3692 | 0.2856 | 0.0677 | 0.0802 | 0.1026 | 0.0781 | 0.0145 | −0.2756 | 15 |
5 | 0.1005 | 0.1614 | 0.1974 | 0.3816 | 0.0235 | 0.0449 | 0.0540 | 0.0819 | −0.2043 | 3 |
6 | 0.1234 | 0.1760 | 0.1668 | 0.3271 | 0.0289 | 0.0489 | 0.0456 | 0.0702 | −0.1936 | 2 |
7 | 0.2915 | 0.2910 | 0.3182 | 0.1034 | 0.0681 | 0.0809 | 0.0870 | 0.0222 | −0.2583 | 14 |
8 | 0.3489 | 0.2372 | 0.2750 | 0.0865 | 0.0816 | 0.0659 | 0.0752 | 0.0186 | −0.2413 | 9 |
9 | 0.1534 | 0.2494 | 0.2558 | 0.3252 | 0.0359 | 0.0693 | 0.0700 | 0.0698 | −0.2450 | 10 |
10 | 0.2234 | 0.3203 | 0.3038 | 0.1466 | 0.0522 | 0.0891 | 0.0831 | 0.0315 | −0.2558 | 13 |
11 | 0.2856 | 0.1956 | 0.1727 | 0.2218 | 0.0668 | 0.0544 | 0.0472 | 0.0476 | −0.2160 | 4 |
12 | 0.3430 | 0.2054 | 0.2380 | 0.1128 | 0.0802 | 0.0571 | 0.0651 | 0.0242 | −0.2266 | 6 |
13 | 0.1709 | 0.3350 | 0.3430 | 0.3234 | 0.0399 | 0.0931 | 0.0938 | 0.0694 | −0.2963 | 16 |
14 | 0.2036 | 0.2592 | 0.3059 | 0.1955 | 0.0476 | 0.0721 | 0.0837 | 0.0420 | −0.2453 | 11 |
15 | 0.2821 | 0.2152 | 0.2563 | 0.1617 | 0.0659 | 0.0598 | 0.0701 | 0.0347 | −0.2306 | 8 |
16 | 0.3733 | 0.2078 | 0.2185 | 0.2030 | 0.0873 | 0.0578 | 0.0598 | 0.0436 | −0.2484 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panigrahi, R.R.; Kumar, R.; Sahoo, A.K.; Panda, A. Optimizing Sustainable Machining Conditions for Incoloy 800HT Using Twin-Nozzle MQL with Bio-Based Groundnut Oil Lubrication. Lubricants 2025, 13, 320. https://doi.org/10.3390/lubricants13080320
Panigrahi RR, Kumar R, Sahoo AK, Panda A. Optimizing Sustainable Machining Conditions for Incoloy 800HT Using Twin-Nozzle MQL with Bio-Based Groundnut Oil Lubrication. Lubricants. 2025; 13(8):320. https://doi.org/10.3390/lubricants13080320
Chicago/Turabian StylePanigrahi, Ramai Ranjan, Ramanuj Kumar, Ashok Kumar Sahoo, and Amlana Panda. 2025. "Optimizing Sustainable Machining Conditions for Incoloy 800HT Using Twin-Nozzle MQL with Bio-Based Groundnut Oil Lubrication" Lubricants 13, no. 8: 320. https://doi.org/10.3390/lubricants13080320
APA StylePanigrahi, R. R., Kumar, R., Sahoo, A. K., & Panda, A. (2025). Optimizing Sustainable Machining Conditions for Incoloy 800HT Using Twin-Nozzle MQL with Bio-Based Groundnut Oil Lubrication. Lubricants, 13(8), 320. https://doi.org/10.3390/lubricants13080320