The Role of Potassium and KUP/KT/HAK Transporters in Regulating Strawberry (Fragaria × ananassa Duch.) Fruit Development
Abstract
1. Introduction
2. Results
2.1. Identification of KUP/KT/HAK in Strawberry
2.2. Phylogenetic and Motif Analysis of Predicted KUP/KT/HAK Proteins
2.3. Expression of KUP/KT/HAK in Strawberry Fruits
2.4. Mineral Composition of Strawberry Fruits
2.5. Cytosolic K+ Estimation by Electrophysiological Thecnique.
3. Discussion
3.1. KUP/KT/HAK Transporters Form a Large Family in Cultivated Strawberry
3.2. Expression of KUP/KT/HAK Genes Declined During Strawberry Ripening
3.3. K+ Content and Cytosol K+ Diminished During Fruit Ripening
4. Materials and Methods
4.1. Plant Material
4.2. Identification of KUP/KT/HAK
4.3. Phylogenetic and Motif Analysis
4.4. Promoter Region Analysis
4.5. Gene Expression Analysis
4.6. Mineral Composition of Strawberry Fruit
4.7. Electrophysiological Experiments
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gapper, N.E.; McQuinn, R.P.; Giovannoni, J.J. Molecular and genetic regulation of fruit ripening. Plant Mol. Biol. 2013, 82, 575–591. [Google Scholar] [CrossRef] [PubMed]
- Brummell, D.A.; Bowen, J.K.; Gapper, N.E. Biotechnological approaches for controlling postharvest fruit softening. Curr. Opin. Biotechnol. 2022, 78, 102786. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yeats, T.H.; Uluisik, S.; Rose, J.K.C.; Seymour, G.B. Fruit softening: Revisiting the role of pectin. Trends Plant Sci. 2018, 23, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Posé, S.; Paniagua, C.; Matas, A.J.; Gunning, A.P.; Morris, V.J.; Quesada, M.A.; Mercado, J.A. A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy. Trends Food Sci. Technol. 2019, 87, 47–58. [Google Scholar] [CrossRef]
- Uluisik, S.; Chapman, N.H.; Smith, R.; Poole, M.; Adams, G.; Gillis, R.B.; Besong, T.M.D.; Sheldon, J.; Stiegelmeyer, S.; Perez, L.; et al. Genetic improvement of tomato by targeted control of fruit softening. Nat. Biotechnol. 2016, 34, 950–952. [Google Scholar] [CrossRef] [PubMed]
- López-Casado, G.; Sánchez-Raya, C.; Ric-Varas, P.D.; Paniagua, C.; Blanco-Portales, R.; Muñoz-Blanco, J.; Pose, S.; Matas, A.J.; Mercado, J.A. CRISPR/Cas9 editing of the polygalacturonase FaPG1 gene improves strawberry fruit firmness. Hortic. Res. 2023, 10, uhad011. [Google Scholar] [CrossRef] [PubMed]
- Saladié, M.; Matas, A.J.; Isaacson, T.; Jenks, M.A.; Goodwin, S.M.; Niklas, K.J.; Ren, X.; Labavitch, J.M.; Shackel, K.A.; Fernie, A.R.; et al. A reevaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol. 2007, 144, 1012–1028. [Google Scholar] [CrossRef] [PubMed]
- Wada, H.; Matthews, M.A.; Shackel, K.A. Seasonal pattern of apoplastic solute accumulation and loss of cell turgor during ripening of Vitis vinifera fruit under field conditions. J. Exp. Bot. 2009, 60, 1773–1781. [Google Scholar] [CrossRef] [PubMed]
- Castellarin, S.D.; Gambetta, G.A.; Wada, H.; Krasnow, M.N.; Cramer, G.R.; Peterlunger, E.; Shackel, K.A.; Matthews, M.A. Characterization of major ripening events during softening in grape: Turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth. J. Exp. Bot. 2015, 67, 709–722. [Google Scholar] [CrossRef] [PubMed]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Moller, I.S.; White, P. Functions of Macronutrients. In Marschner’s Mineral Nutrition of Higher Plants: Third Editions Mineral Nutrition of Higher Plants; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; pp. 135–190. [Google Scholar]
- Mäser, P.; Thomine, S.; Schroeder, J.I.; Ward, J.M.; Hirschi, K.; Sze, H.; Talke, I.N.; Amtmann, A.; Maathuis, F.J.; Sanders, D.; et al. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 2001, 126, 1646–1667. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Wang, S.; Chai, L.; Zhang, S.; Shen, Y. Characterization of an ABA-Induced and K+ Channel Gene FaKAT1 that Regulates Strawberry Fruit Ripening. J. Plant Growth Regul. 2017, 36, 312–322. [Google Scholar] [CrossRef]
- Wang, S.; Song, M.; Guo, J.; Huang, Y.; Zhang, F.; Xu, C.; Xiao, Y.; Zhang, L. The potassium channel FaTPK1 plays a critical role in fruit quality formation in strawberry (Fragaria × ananassa). Plant Biotechnol. J. 2018, 16, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Wang, Y.; Sun, M.; Li, B.; Han, Y.; Zhao, Y.; Li, X.; Ding, N.; Li, C.; Ji, W.; et al. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytol. 2013, 198, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Rubio, F.; Santa-María, G.E.; Rodríguez-Navarro, A. Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol. Plant. 2000, 109, 34–43. [Google Scholar] [CrossRef]
- Davies, C.; Shin, R.; Liu, W.; Thomas, M.R.; Schachtman, D.P. Transporters expressed during grape berry (Vitis vinifera L.) development are associated with an increase in berry size and berry potassium accumulation. J. Exp. Bot. 2006, 57, 3209–3216. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.Z.; Ma, R.J.; Yu, M.L. Genome-wide analysis and identification of KT/HAK/KUP potassium transporter gene family in peach (Prunus persica). Genet. Mol. Res. 2015, 14, 774–787. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Guo, S.; Zhang, C.; Zhang, B.; Ma, R.; Korir, N.K.; Yu, M. KT/HAK/KUP potassium transporter genes differentially expressed during fruit development, ripening, and postharvest shelf-life of ‘Xiahui6’ peaches. Acta Physiol. Plant. 2015, 37, 131. [Google Scholar] [CrossRef]
- Shan, N.; Zhang, Y.; Xu, Y.; Yuan, X.; Wan, C.; Chen, C.; Chen, J.; Gan, Z. Ethylene-induced potassium transporter AcKUP2 gene is involved in kiwifruit postharvest ripening. BMC Plant Biol. 2022, 22, 108. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yu, C.; Zhang, K.; Zhang, H.; Zhang, S.; Song, Z. Identification and characterization of the strawberry KT/HAK/KUP transporter gene family in response to K+ deficiency. Acta Physiol. Plant. 2021, 43, 1. [Google Scholar] [CrossRef]
- Paniagua, C.; Ric-Varas, P.; García-Gago, J.A.; López-Casado, G.; Blanco-Portales, R.; Muñoz-Blanco, J.; Schückel, J.; Knox, J.P.; Matas, A.J.; Quesada, M.A.; et al. Elucidating the role of polygalacturonase genes in strawberry fruit softening. J. Exp. Bot. 2020, 71, 7103–7117. [Google Scholar] [CrossRef] [PubMed]
- Santa-María, G.E.; Oliferuk, S.; Moriconi, J.I. KT-HAK-KUP transporters in major terrestrial photosynthetic organisms: A twenty years tale. J. Plant Physiol. 2018, 226, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Nieves-Cordones, M.; Ródenas, R.; Chavanieu, A.; Rivero, R.M.; Martinez, V.; Gaillard, I.; Rubio, F. Uneven HAK/KUP/KT protein diversity among angiosperms: Species distribution and perspectives. Front. Plant Sci. 2016, 7, 127. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Navarro, A. Potassium transport in fungi and plants. Biochim. Biophys. Acta Rev. Biomembr. 2000, 1469, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, M.; Liu, Z.; Ai, X.; Li, Y. Reannotation of the cultivated strawberry genome and establishment of a strawberry genome database. Hortic. Res. 2021, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Ric-Varas, P.; Paniagua, C.; López-Casado, G.; Molina-Hidalgo, F.J.; Schückel, J.; Knox, J.P.; Blanco-Portales, R.; Moyano, E.; Muñoz-Blanco, J.; Posé, S.; et al. Suppressing the rhamnogalacturonan lyase gene FaRGLyase1 preserves RGI pectin degradation and enhances strawberry fruit firmness. Plant Physiol. Biochem. 2024, 206, 108294. [Google Scholar] [CrossRef] [PubMed]
- Mithöfer, A.; Ebel, J.; Felle, H.H. Cation fluxes cause plasma membrane depolarization involved in beta-glucan elicitor-signaling in soybean roots. Mol. Plant Microbe Interact. 2005, 18, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Rogiers, S.Y.; Coetzee, Z.A.; Walker, R.R.; Deloire, A.; Tyerman, S.D. Potassium in the grape (Vitis vinifera L.) berry: Transport and function. Front. Plant Sci. 2017, 8, 1629. [Google Scholar] [CrossRef] [PubMed]
- Tohidloo, G.; Souri, M.K.; Eskandarpour, S. Growth and Fruit Biochemical Characteristics of Three Strawberry Genotypes under Different Potassium Concentrations of Nutrient Solution. Open Agric. 2018, 3, 356–362. [Google Scholar] [CrossRef]
- Ródenas, R.; Ragel, P.; Nieves-Cordones, M.; Martínez-Martínez, A.; Amo, J.; Lara, A.; Martínez, V.; Quintero, F.J.; Pardo, J.M.; Rubio, F. Insights into the mechanisms of transport and regulation of the Arabidopsis high-affinity K+ transporter HAK51. Plant Physiol. 2021, 185, 1860–1874. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, Y.; Arinaga, N.; Umezawa, T.; Katsura, S.; Nagamachi, K.; Tanaka, H.; Ohiraki, H.; Yamada, K.; Seo, S.-U.; Abo, M.; et al. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 2013, 25, 609–624. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.L.; Llewellyn, D.J.; Furbank, R.T. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 2001, 13, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Wada, H.; Shackel, K.A.; Matthews, M.A. Fruit ripening in Vitis vinifera: Apoplastic solute accumulation accounts for pre-veraison turgor loss in berries. Planta 2008, 227, 1351–1361. [Google Scholar] [CrossRef] [PubMed]
- Nakai, H.; Yasutake, D.; Hidaka, K.; Miyoshi, Y.; Eguchi, T.; Yokoyama, G.; Hirota, T. Sink Strength Dynamics Based on Potential Growth and Carbohydrate Accumulation in Strawberry Fruit. HortScience 2024, 59, 1505–1510. [Google Scholar] [CrossRef]
- Winkler, A.; Hurtado, G.; Knoche, M. Xylem, phloem and transpiration flows in developing strawberries. Sci. Hortic. 2021, 288, 110305. [Google Scholar] [CrossRef]
- White, P.J. Long-Distance Transport in the Xylem and Phloem. In Marschner’s Mineral Nutrition of Higher Plants: Third Editions Mineral Nutrition of Higher Plants; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; pp. 49–70. [Google Scholar]
- Chedhomme, F.; Rona, J.-P. Isolation and electrical characterization of tonoplast vesicles from the Kiwi fruit Actinidia chinensis. Physiol. Plant. 1986, 67, 29–36. [Google Scholar] [CrossRef]
- Blatt, M.R. A charged existence: A century of transmembrane ion transport in plants. Plant Physiol. 2024, 195, 79–110. [Google Scholar] [CrossRef] [PubMed]
- Li, C.L.; Fang, K.F.; Lei, H.; Xing, Y.; Shen, Y.Y. Phloem unloading follows an extensive apoplastic pathway in developing strawberry fruit. J. Hortic. Sci. Biotechnol. 2012, 87, 470–477. [Google Scholar] [CrossRef]
- McLeay, R.C.; Bailey, T.L. Motif Enrichment Analysis: A unified framework and an evaluation on ChIP data. BMC Bioinform. 2010, 11, 165. [Google Scholar] [CrossRef] [PubMed]
- Gambino, G.; Perrone, I.; Gribaudo, I. A Rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem. Anal. PCA 2008, 19, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Amil-Ruiz, F.; Garrido-Gala, J.; Blanco-Portales, R.; Folta, K.M.; Muñoz-Blanco, J.; Caballero, J.L. Identification and Validation of Reference Genes for Transcript Normalization in Strawberry (Fragaria × ananassa) Defense Responses. PLoS ONE 2013, 8, e70603. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.; Amtssygehus, A. Multiplex Relative Gene Expression Analysis by Real-Time RT-PCR Using the iCycler iQ Detection 486 System. BioRadiations 2001, 107, 10–11. [Google Scholar]
- Fernández, J.A.; García-Sánchez, M.J.; Felle, H.H. Physiological evidence for a proton pump and sodium exclusion mechanisms at the plasma membrane of the marine angiosperm Zostera marina L. J. Exp. Bot. 1999, 50, 1763–1768. [Google Scholar] [PubMed]
- Leidi, E.O.; Barragán, V.; Rubio, L.; El-Hamdaoui, A.; Ruiz, M.T.; Cubero, B.; Fernández, J.A.; Bressan, R.A.; Hasegawa, P.M.; Quintero, F.J.; et al. The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J. 2010, 61, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Manzano, C.; Pallero-Baena, M.; Silva-Navas, J.; Neila, S.N.; Casimiro, I.; Casero, P.; Garcia-Mina, J.M.; Baigorri, R.; Rubio, L.; Fernandez, J.A.; et al. A light-sensitive mutation in Arabidopsis LEW3 reveals the important role of N-glycosylation in root growth and development. J. Exp. Bot. 2017, 68, 5103–5116. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rosales, M.P.; Rubio, L.; Pedersen, J.T.; Aranda-Sicilia, M.N.; Fernández, J.A.; Venema, K. Chloroplast envelope K+/H+ antiporters are involved in cytosol pH regulation. Physiol. Plant. 2024, 176, e14376. [Google Scholar] [CrossRef] [PubMed]
Motif Name | Sequence |
---|---|
Motif 1 | SLIFWTLTLIPLLKYVFIVLRABDNGEGGTFALYSLJCRHA |
Motif 2 | CIKSVPVPKVPPEERFLVGRVGPKEYRMFRCIARYGYKD |
Motif 3 | IVASQAIISATFSIIKQSLALGCFPRVKVV |
Motif 4 | WISLGGIVLCITGTEAMFADLGHFSVRSIQIAFTCVVYPCLVLAYMGQAA |
Motif 5 | YIPEINWILMILCLAVTIGFRDTKQIGNA |
Motif 6 | LGIVRVPGIGLVYTELVSGIPAIFSHFVTNLPAFHSVVVFV |
Motif 7 | LAYQSLGVVYGDLGTSPLYVYKSTFSGGI |
Unripe | Ripe | ||
---|---|---|---|
Macroelements (g·kg−1 dw) | Potassium | 19.9 ± 0.6 a | 16.3 ± 3.1 a |
Calcium | 4.4 ± 1.7 a | 1.3 ± 0.2 b | |
Magnesium | 3.1 ± 0.4 a | 1.5 ± 0.2 b | |
Phosphorus | 3.3 ± 0.1 a | 2.5 ± 0.3 b | |
Microelements (mg·kg−1 dw) | Sodium | 281.3 ± 73.9 a | 175.2 ± 3.2 a |
Iron | 55.5 ± 3.7 a | 42.8 ± 4.8 b | |
Manganese | 18.7 ± 6.5 a | 10.7 ± 1.4 a | |
Boron | 18.4 ± 4.3 a | 12.2 ± 2.2 a | |
Zinc | 13.7 ± 4.5 a | 7.1 ± 1.1 a | |
Copper | 1.5 ± 0.09 a | 1.6 ± 0.3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercado-Hornos, J.A.; Rodríguez-Hiraldo, C.; Guerrero, C.; Posé, S.; Matas, A.J.; Rubio, L.; Mercado, J.A. The Role of Potassium and KUP/KT/HAK Transporters in Regulating Strawberry (Fragaria × ananassa Duch.) Fruit Development. Plants 2025, 14, 2241. https://doi.org/10.3390/plants14142241
Mercado-Hornos JA, Rodríguez-Hiraldo C, Guerrero C, Posé S, Matas AJ, Rubio L, Mercado JA. The Role of Potassium and KUP/KT/HAK Transporters in Regulating Strawberry (Fragaria × ananassa Duch.) Fruit Development. Plants. 2025; 14(14):2241. https://doi.org/10.3390/plants14142241
Chicago/Turabian StyleMercado-Hornos, José A., Claudia Rodríguez-Hiraldo, Consuelo Guerrero, Sara Posé, Antonio J. Matas, Lourdes Rubio, and José A. Mercado. 2025. "The Role of Potassium and KUP/KT/HAK Transporters in Regulating Strawberry (Fragaria × ananassa Duch.) Fruit Development" Plants 14, no. 14: 2241. https://doi.org/10.3390/plants14142241
APA StyleMercado-Hornos, J. A., Rodríguez-Hiraldo, C., Guerrero, C., Posé, S., Matas, A. J., Rubio, L., & Mercado, J. A. (2025). The Role of Potassium and KUP/KT/HAK Transporters in Regulating Strawberry (Fragaria × ananassa Duch.) Fruit Development. Plants, 14(14), 2241. https://doi.org/10.3390/plants14142241