Advances in Epstein–Barr Virus Detection: From Traditional Methods to Modern Technologies
Abstract
1. Introduction
2. EBV Virology
2.1. Overview
2.2. The Latent and Lytic Cycles
2.3. Clinical Manifestations
2.3.1. Tumor Diseases
2.3.2. Infectious Diseases
2.3.3. Immune-Related and Comorbid Disorders
2.4. Diagnostic Significance of EBV Positivity
3. Diagnostic Methods
3.1. The Last Century—2000: The Basis of Modern Testing Techniques
3.1.1. Electron Microscopy (EM)
3.1.2. Immunofluorescence (IF)
3.1.3. In Situ Hybridization (ISH)
3.1.4. ELISA
3.1.5. PCR
3.1.6. Sequencing Technology
3.1.7. Immunohistochemical Staining (IHC)
3.2. 2000–2019: The Proposition of Innovative Detection Methods
3.2.1. Microarray Technology
3.2.2. High-Throughput Sequencing (HTS)
3.2.3. Isothermal Amplification
3.3. 2019–Now: Multidisciplinary Application in the Post-COVID-19 Era
3.3.1. CRISPR-Cas Technology
3.3.2. Artificial Intelligence (AI)
3.3.3. Point-of-Care Testing (POCT)
3.3.4. Multi-Omics Analysis
3.4. Summary
4. Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Jouanguy, E.; Béziat, V.; Mogensen, T.H.; Casanova, J.-L.; Tangye, S.G.; Zhang, S.-Y. Human inborn errors of immunity to herpes viruses. Curr. Opin. Immunol. 2020, 62, 106–122. [Google Scholar] [CrossRef]
- Cohen, J.I. Epstein–Barr Virus Infection. N. Engl. J. Med. 2000, 343, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Pellett, P.E.; Roizman, B. The Family Herpesviridae: A Brief Introduction. In Fields Virology; Lippincott: Philadelphia, PA, USA, 2007. [Google Scholar]
- Tarbouriech, N.; Buisson, M.; Géoui, T.; Daenke, S.; Cusack, S.; Burmeister, W.P. Structural genomics of the Epstein–Barr virus. Acta Crystallogr. Sect. D 2006, 62, 1276–1285. [Google Scholar] [CrossRef] [PubMed]
- Womack, J.; Jimenez, M. Common questions about infectious mononucleosis. Am. Fam. Physician 2015, 91, 372–376. [Google Scholar] [PubMed]
- Pattengale, P.; Smith, R.; Gerber, P. Selective transformation of B Lymphocytes by E.B. Virus. Lancet 1973, 302, 93–94. [Google Scholar] [CrossRef]
- Valent, S.C.; Yasmin, E. Epstein-Barr Virus Infections in Families: The Role of Children with Infectious Mononucleosis. J. Infect. Dis. 1986, 154, 824–850. [Google Scholar] [CrossRef]
- Damania, B.; Kenney, S.C.; Raab-Traub, N. Epstein-Barr virus: Biology and clinical disease. Cell 2022, 185, 3652–3670. [Google Scholar] [CrossRef]
- Huang, W.; Bai, L.; Tang, H. Epstein-Barr virus infection: The micro and macro worlds. Virol. J. 2023, 20, 22. [Google Scholar] [CrossRef]
- Tsao, S.; Tsang, C.M.; To, K.; Lo, K. The role of Epstein–Barr virus in epithelial malignancies. J. Pathol. 2015, 235, 323–333. [Google Scholar] [CrossRef]
- Gulley, M.L. Molecular diagnosis of Epstein-Barr virus-related diseases. J. Mol. Diagn. 2001, 3, 1–10. [Google Scholar] [CrossRef]
- Zhao, M.; Nanbo, A.; Sun, L.; Lin, Z. Extracellular Vesicles in Epstein-Barr Virus’ Life Cycle and Pathogenesis. Microorganisms 2019, 7, 48. [Google Scholar] [CrossRef]
- Hutt-Fletcher, L.M. Epstein–Barr virus replicating in epithelial cells. Proc. Natl. Acad. Sci. USA 2014, 111, 16242–16243. [Google Scholar] [CrossRef]
- Sinclair, A.J. bZIP proteins of human gammaherpesviruses. J. Gen. Virol. 2003, 84, 1941–1949. [Google Scholar] [CrossRef]
- Reusch, J.A.; Nawandar, D.M.; Wright, K.L.; Kenney, S.C.; Mertz, J.E.; Hutt-Fletcher, L.M. Cellular differentiation regulator BLIMP1 induces Epstein-Barr virus lytic reactivation in epithelial and B cells by activating transcription from both the R and Z promoters. J. Virol. 2015, 89, 1731–1743. [Google Scholar] [CrossRef]
- McKenzie, J.; El-Guindy, A. Epstein-Barr Virus Lytic Cycle Reactivation. In Epstein Barr Virus Volume 2: One Herpes Virus: Many Diseases; Münz, C., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 237–261. [Google Scholar]
- Macsween, K.F.; Crawford, D.H. Epstein-Barr virus—Recent advances. Lancet Infect. Dis. 2003, 3, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.; Meehan, M.T.; Burrows, S.R.; Doolan, D.L.; Miles, J.J. Estimating the global burden of Epstein–Barr virus-related cancers. J. Cancer Res. Clin. Oncol. 2022, 148, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Ayee, R.; Ofori, M.E.; Wright, E.; Quaye, O. Epstein Barr Virus Associated Lymphomas and Epithelia Cancers in Humans. J. Cancer 2020, 11, 1737–1750. [Google Scholar] [CrossRef]
- Volaric, A.K.; Saleem, A.; Younes, S.F.; Zhao, S.; Natkunam, Y. Epstein-Barr virus latency patterns in polymorphic lymphoproliferative disorders and lymphomas in immunodeficiency settings: Diagnostic implications. Ann. Diagn. Pathol. 2024, 70, 152286. [Google Scholar] [CrossRef]
- Yin, H.; Qu, J.; Peng, Q.; Gan, R. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis. Med. Microbiol. Immunol. 2019, 208, 573–583. [Google Scholar] [CrossRef]
- Jin, J.; Mao, X.; Zhang, D. A differential diagnosis method for systemic CAEBV and the prospect of EBV-related immune cell markers via flow cytometry. Ann. Med. 2024, 56, 2329136. [Google Scholar] [CrossRef]
- Kimura, H. Chronic active Epstein-Barr virus infection. Uirusu 2011, 61, 163–173. [Google Scholar] [CrossRef]
- Veillette, A.; Pérez-Quintero, L.-A.; Latour, S. X-linked lymphoproliferative syndromes and related autosomal recessive disorders. Curr. Opin. Allergy Clin. Immunol. 2013, 13, 614–622. [Google Scholar] [CrossRef]
- Ross, A.M.; Leahy, C.I.; Neylon, F.; Steigerova, J.; Flodr, P.; Navratilova, M.; Urbankova, H.; Vrzalikova, K.; Mundo, L.; Lazzi, S.; et al. Epstein–Barr Virus and the Pathogenesis of Diffuse Large B-Cell Lymphoma. Life 2023, 13, 521. [Google Scholar] [CrossRef] [PubMed]
- Shalem, O.; Sanjana, N.E.; Hartenian, E.; Shi, X.; Scott, D.A.; Mikkelsen, T.S.; Heckl, D.; Ebert, B.L.; Root, D.E.; Doench, J.G.; et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014, 343, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Tang, D.; Li, N.; Wang, Y.; Yang, M.; Shen, C. Development of a Rapid Epstein–Barr Virus Detection System Based on Recombinase Polymerase Amplification and a Lateral Flow Assay. Bio Protoc. 2024, 14, e5122. [Google Scholar] [CrossRef] [PubMed]
- Niller, H.; Bauer, G. Epstein-Barr Virus: Clinical Diagnostics. In Epstein Barr Virus: Methods and Protocols; Minarovits, J., Niller, H.H., Eds.; Springer: New York, NY, USA, 2017; pp. 33–55. [Google Scholar]
- Epstein, M.; Achong, B.; Barr, Y. Virus particles in cultured Lymphoblasts from Burkitt’s lymphoma. Lancet 1964, 1, 702–703. [Google Scholar] [CrossRef]
- Coons, A.H.; Creech, H.J.; Jones, R.N. Immunological properties of an antibody containing a fluorescent group. Proc. Soc. Exp. Biol. Med. 1941, 47, 200–202. [Google Scholar] [CrossRef]
- Diehl, V.; Henle, G.; Henle, W.; Kohn, G. Demonstration of a herpes group virus in cultures of peripheral leukocytes from patients with infectious mononucleosis. Proc. Soc. J. Virol. 1968, 2, 663. [Google Scholar] [CrossRef]
- Henle, W.; Henle, G.; Zajac, B.A.; Pearson, G.; Waubke, R.; Scriba, M. Differential Reactivity of Human Serums with Early Antigens Induced by Epstein-Barr Virus. Science 1970, 169, 188–190. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Jing, F.; Zhou, J.; Han, Y. Analysis of two laboratory tests for determination of EBV-IM in children. J. Med. Virol. 2022, 94, 2747–2754. [Google Scholar] [CrossRef]
- Ying, S.; Barry Kay, A. The technique of in situ hybridization. Methods Mol. Med. 2001, 56, 263–283. [Google Scholar]
- Bashir, R.; Hochberg, F.; Singer, R.H. Detection of Epstein-Barr virus by in situ hybridization. Progress toward development of a nonisotopic diagnostic test. Am. J. Pathol. 1989, 135, 1035–1044. [Google Scholar] [PubMed]
- Khan, G.; Coates, P.J.; Kangro, H.O.; Slavin, G. Epstein Barr virus (EBV) encoded small RNAs: Targets for detection by in situ hybridisation with oligonucleotide probes. J. Clin. Pathol. 1992, 45, 616–620. [Google Scholar] [CrossRef]
- Fan, H.; Gulley, M.L. Molecular Methods for Detecting Epstein-Barr Virus (Part I): In Situ Hybridization to Epstein-Barr Virus-Encoded RNA (EBER) Transcripts. Methods Mol. Med. 2001, 49, 301–311. [Google Scholar] [PubMed]
- Engvall, E.; Perlmann, P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 1971, 8, 871–874. [Google Scholar] [CrossRef] [PubMed]
- Wallen, W.C.; Mattson, J.M.; Levine, P.H. Detection of soluble antigen of epstein-barr virus by the enzyme-linked immunosorbent assay. J. Infect. Dis. 1977, 136, S324–S328. [Google Scholar] [CrossRef]
- Effros, R.B.; Zeller, E.; Dillard, L.; Walford, R.L. Detection of antibodies to cell surface antigens by a simplified cellular elisa (CELISA). Tissue Antigens 1985, 25, 204–211. [Google Scholar] [CrossRef]
- Uen, W.; Luka, J.; Pearson, G.R. Development of an enzyme-linked immunosorbent assay (ELISA) for detecting IgA antibodies to the epstein-barr virus. Int. J. Cancer 1988, 41, 479–482. [Google Scholar] [CrossRef]
- Saiki, R.K.; Scharf, S.; Faloona, F.; Mullis, K.B.; Horn, G.T.; Erlich, H.A.; Arnheim, N. Enzymatic Amplification of β-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia. Science 1985, 230, 1350–1354. [Google Scholar] [CrossRef]
- Saito, I.; Servenius, B.; Compton, T.; Fox, R.I. Detection of Epstein-Barr virus DNA by polymerase chain reaction in blood and tissue biopsies from patients with Sjogren’s syndrome. J. Exp. Med. 1989, 169, 2191–2198. [Google Scholar] [CrossRef]
- Tsai, S.-T.; Jin, Y.-T.; Wu, T.-C. Synthesis of PCR-derived, digoxigenin-labeled DNA probes for in situ detection of Epstein-Barr early RNAs in Epstein-Barr virus-infected cells. J. Virol. Methods 1995, 54, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Merkelbach, S.; Gehlen, J.; Handt, S.; Füzesi, L. Novel enzyme immunoassay and optimized DNA extraction for the detection of polymerase-chain-reaction-amplified viral DNA from paraffin-embedded tissue. Am. J. Pathol. 1997, 150, 1537–1546. [Google Scholar] [PubMed]
- Takeuchi, H.; Kobayashi, R.; Hasegawa, M.; Hirai, K. Detection of latent infection by Epstein-Barr virus in peripheral blood cells of healthy individuals and in non-neoplastic tonsillar tissue from patients by reverse transcription-polymerase chain reaction. J. Virol. Methods 1996, 58, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Rowe, D.T.; Qu, L.; Reyes, J.; Jabbour, N.; Yunis, E.; Putnam, P.; Todo, S.; Green, M. Use of quantitative competitive PCR to measure Epstein-Barr virus genome load in the peripheral blood of pediatric transplant patients with lymphoproliferative disorders. J. Clin. Microbiol. 1997, 35, 1612–1615. [Google Scholar] [CrossRef]
- Roberts, T.C.; Storch, G.A. Multiplex PCR for diagnosis of AIDS-related central nervous system lymphoma and toxoplasmosis. J. Clin. Microbiol. 1997, 35, 268–269. [Google Scholar] [CrossRef]
- Tamaki, H.; Byron, K.S.; Sullivan, J.L.; Somasundaran, M. Detection and differentiation of Epstein-Barr virus strains by in situ polymerase chain reaction. Mol. Cell Probes 1997, 11, 237–241. [Google Scholar] [CrossRef]
- Lucas, K.G.; Burton, R.L.; Zimmerman, S.E.; Wang, J.; Cornetta, K.G.; Robertson, K.A.; Lee, C.H.; Emanuel, D.J. Semiquantitative Epstein-Barr virus (EBV) polymerase chain reaction for the determination of patients at risk for EBV-induced lymphoproliferative disease after stem cell transplantation. Blood 1998, 91, 3654–3661. [Google Scholar] [CrossRef]
- Kimura, H.; Morita, M.; Yabuta, Y.; Kuzushima, K.; Kato, K.; Kojima, S.; Matsuyama, T.; Morishima, T. Quantitative Analysis of Epstein-Barr Virus Load by Using a Real-Time PCR Assay. J. Clin. Microbiol. 1999, 37, 132–136. [Google Scholar] [CrossRef]
- Minjolle, S.; Michelet, C.; Jusselin, I.; Joannes, M.; Cartier, F.; Colimon, R. Amplification of the six major human herpesviruses from cerebrospinal fluid by a single PCR. J. Clin. Microbiol. 1999, 37, 950–953. [Google Scholar] [CrossRef]
- Pozo, F.; Tenorio, A. Detection and typing of lymphotropic herpesviruses by multiplex polymerase chain reaction. J. Virol. Methods 1999, 79, 9–19. [Google Scholar] [CrossRef]
- Casas, I.; Pozo, F.; Trallero, G.; Echevarría, J.M.; Tenorio, A. Viral diagnosis of neurological infection by RT multiplex PCR: A search for entero- and herpesviruses in a prospective study. J. Med. Virol. 1999, 57, 145–151. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [PubMed]
- Baer, R.; Bankier, A.T.; Biggin, M.D.; Deininger, P.L.; Farrell, P.J.; Gibson, T.J.; Hatfull, G.; Hudson, G.S.; Satchwell, S.C.; Séguin, C.; et al. DNA sequence and expression of the B95-8 Epstein—Barr virus genome. Nature 1984, 310, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Kurstak, E.; de Thé, G.; Hurk, J.v.D.; Charpentier, G.; Kurstak, C.; Tijssen, P.; Morisset, R. Detection of Epstein-Barr virus antigens and antibodies by peroxidase-labeled specific immunoglobulins. J. Med. Virol. 1978, 2, 189–200. [Google Scholar] [CrossRef]
- Thoe, S.Y.S.; Sam, C.K.; Cheng, H.M.; Prasad, U. Improved sensitivity of detection by avidin-biotin complex (ABC) immunocytochemistry in Epstein-Barr virus serology. J. Med. Virol. 1989, 29, 311–314. [Google Scholar] [CrossRef]
- Hummel, M.; Anagnostopoulos, I.; Dallenbach, F.; Korbjuhn, P.; Dimmler, C.; Stein, H. EBV infection patterns in Hodgkin’s disease and normal lymphoid tissue: Expression and cellular localization of EBV gene products. Br. J. Haematol. 1992, 82, 689–694. [Google Scholar] [CrossRef]
- Reynolds, D.J.; Banks, P.M.; Gulley, M.L. New characterization of infectious mononucleosis and a phenotypic comparison with Hodgkin’s disease. Am. J. Pathol. 1995, 146, 379–388. [Google Scholar]
- Zhu, J.; Ma, J. Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for malignant lymphoma 2021 (English version). Chin. J. Cancer Res. 2021, 33, 289–301. [Google Scholar] [CrossRef]
- Schena, M.; Shalon, D.; Davis, R.W.; Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270, 467–470. [Google Scholar] [CrossRef]
- Chong, J.-M.; Sakuma, K.; Sudo, M.; Osawa, T.; Ohara, E.; Uozaki, H.; Shibahara, J.; Kuroiwa, K.; Tominaga, S.-I.; Hippo, Y.; et al. Interleukin-1β expression in human gastric carcinoma with Epstein-Barr virus infection. J. Virol. 2002, 76, 6825–6831. [Google Scholar] [CrossRef]
- Swanson-Mungerson, M.; Ikeda, M.; Lev, L.; Longnecker, R.; Portis, T. Identification of latent membrane protein 2A (LMP2A) specific targets for treatment and eradication of Epstein-Barr virus (EBV)-associated diseases. J. Antimicrob. Chemother. 2003, 52, 152–154. [Google Scholar] [CrossRef]
- Földes-Papp, Z.; Egerer, R.; Birch-Hirschfeld, E.; Striebel, H.-M.; Demel, U.; Tilz, G.P.; Wutzler, P. Detection of Multiple Human Herpes Viruses by DNA Microarray Technology. Mol. Diagn. 2004, 8, 1–9. [Google Scholar] [CrossRef]
- Duburcq, X.; Olivier, C.; Malingue, F.; Desmet, R.; Bouzidi, A.; Zhou, F.; Auriault, C.; Gras-Masse, H.; Melnyk, O. Peptide−Protein Microarrays for the Simultaneous Detection of Pathogen Infections. Bioconjug. Chem. 2004, 15, 307–316. [Google Scholar] [CrossRef]
- Fujimuro, M.; Nakaso, K.; Nakashima, K.; Sadanari, H.; Hisanori, I.; Teishikata, Y.; Hayward, S.D.; Yokosawa, H. Multiplex PCR-based DNA array for simultaneous detection of three human herpesviruses, EVB, CMV and KSHV. Exp. Mol. Pathol. 2006, 80, 124–131. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Y.; Yu, X.; Shang, S. DNA microarray technology for simultaneous detection and species identification of seven human herpes viruses. J. Med. Virol. 2008, 80, 1042–1050. [Google Scholar] [CrossRef]
- Müller, R.; Ditzen, A.; Hille, K.; Stichling, M.; Ehricht, R.; Illmer, T.; Ehninger, G.; Rohayem, J. Detection of herpesvirus and adenovirus co-infections with diagnostic DNA-microarrays. J. Virol. Methods 2009, 155, 161–166. [Google Scholar] [CrossRef]
- Leveque, N.; Van Haecke, A.; Renois, F.; Boutolleau, D.; Talmud, D.; Andreoletti, L. Rapid virological diagnosis of central nervous system infections by use of a multiplex reverse transcription-PCR DNA microarray. J. Clin. Microbiol. 2011, 49, 3874–3879. [Google Scholar] [CrossRef]
- Zeng, M.-S.; Li, D.-J.; Liu, Q.-L.; Song, L.-B.; Li, M.-Z.; Zhang, R.-H.; Yu, X.-J.; Wang, H.-M.; Ernberg, I.; Zeng, Y.-X. Genomic sequence analysis of Epstein-Barr virus strain GD1 from a nasopharyngeal carcinoma patient. J. Virol. 2005, 79, 15323–15330. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Fang, X.; Feng, Z.; Guo, Y.-M.; Peng, R.-J.; Liu, T.; Huang, Z.; Feng, Y.; Sun, X.; Xiong, Z.; et al. Direct sequencing and characterization of a clinical isolate of Epstein-Barr virus from nasopharyngeal carcinoma tissue by using next-generation sequencing technology. J. Virol. 2011, 85, 11291–11299. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Li, T.; Hung, G.-C.; Li, B.; Tsai, S.; Lo, S.-C. Identification and characterization of EBV genomes in spontaneously immortalized human peripheral blood B lymphocytes by NGS technology. BMC Genom. 2013, 14, 804. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xiong, H.; Yan, S.; Wu, N.; Lu, Z. Identification and Characterization of Epstein-Barr Virus Genomes in Lung Carcinoma Biopsy Samples by Next-Generation Sequencing Technology. Sci. Rep. 2016, 6, 26156. [Google Scholar] [CrossRef]
- Khan, A.S.; Ng, S.H.S.; Vandeputte, O.; Aljanahi, A.; Deyati, A.; Cassart, J.-P.; Charlebois, R.L.; Taliaferro, L.P.; McMahon, K. A Multicenter Study To Evaluate the Performance of High-Throughput Sequencing for Virus Detection. mSphere 2017, 2, e00307-17. [Google Scholar] [CrossRef]
- Jin, S.; Li, R.; Chen, M.-Y.; Yu, C.; Tang, L.-Q.; Liu, Y.-M.; Li, J.-P.; Liu, Y.-N.; Luo, Y.-L.; Zhao, Y.; et al. Single-cell transcriptomic analysis defines the interplay between tumor cells, viral infection, and the microenvironment in nasopharyngeal carcinoma. Cell Res. 2020, 30, 950–965. [Google Scholar] [CrossRef]
- SoRelle, E.D.; Reinoso-Vizcaino, N.M.; Dai, J.; Barry, A.P.; Chan, C.; Luftig, M.A. Epstein-Barr virus evades restrictive host chromatin closure by subverting B cell activation and germinal center regulatory loci. Cell Rep. 2023, 42, 112958. [Google Scholar] [CrossRef]
- Deiman, B.; van Aarle, P.; Sillekens, P. Characteristics and Applications of Nucleic Acid Sequence-Based Amplification (NASBA). Mol. Biotechnol. 2002, 20, 163–179. [Google Scholar] [CrossRef]
- Walker, G.T.; Fraiser, M.S.; Schram, J.L.; Little, M.C.; Nadeau, J.G.; Malinowski, D.P. Strand displacement amplification--an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 1992, 20, 1691–1696. [Google Scholar] [CrossRef] [PubMed]
- Nallur, G.; Luo, C.; Fang, L.; Cooley, S.; Dave, V.; Lambert, J.; Kukanskis, K.; Kingsmore, S.; Lasken, R.; Schweitzer, B. Signal amplification by rolling circle amplification on DNA microarrays. Nucleic Acids Res. 2001, 29, E118. [Google Scholar] [CrossRef] [PubMed]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef] [PubMed]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A.; Haber, J. DNA detection using recombination proteins. PLoS Biol. 2006, 4, e204. [Google Scholar] [CrossRef]
- Brink, A.A.T.P.; Vervoort, M.B.H.J.; Middeldorp, J.M.; Meijer, C.J.L.M.; Brule, A.J.C.v.D. Nucleic acid sequence-based amplification, a new method for analysis of spliced and unspliced Epstein-Barr virus latent transcripts, and its comparison with reverse transcriptase PCR. J. Clin. Microbiol. 1998, 36, 3164–3169. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Brandwein, M.; Hsuih, T.; Li, H.B. Ramification amplification: A novel isothermal DNA amplification method. Mol. Diagn. 2001, 6, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tang, J.; Wang, M.; Ma, Q.; Wang, Y. Visual detection and evaluation of latent and lytic gene expression during Epstein-Barr virus infection using one-step reverse transcription loop-mediated isothermal amplification. Int. J. Mol. Sci. 2013, 14, 23922–23940. [Google Scholar] [CrossRef] [PubMed]
- Abbott, T.R.; Dhamdhere, G.; Liu, Y.; Lin, X.; Goudy, L.; Zeng, L.; Chemparathy, A.; Chmura, S.; Heaton, N.S.; Debs, R.; et al. Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza. Cell 2020, 181, 865–876.e12. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Tong, X.; Han, Y.; Zhang, K.; Zhang, Y.; Chen, Q.; Duan, J.; Lei, X.; Huang, M.; Qiu, Y.; et al. Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a. Nat. Biomed. Eng. 2022, 6, 286–297. [Google Scholar] [CrossRef]
- Moon, J.; Kwon, H.J.; Yong, D.; Lee, I.C.; Kim, H.; Kang, H.; Lim, E.; Lee, K.S.; Jung, J.; Park, H.G.; et al. Colorimetric Detection of SARS-CoV-2 and Drug-Resistant pH1N1 Using CRISPR/dCas9. ACS Sens. 2020, 5, 4017–4026. [Google Scholar] [CrossRef]
- Wang, X.; Xiong, E.; Tian, T.; Cheng, M.; Lin, W.; Wang, H.; Zhang, G.; Sun, J.; Zhou, X. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-Mediated Lateral Flow Nucleic Acid Assay. ACS Nano 2020, 14, 2497–2508. [Google Scholar] [CrossRef]
- Koonin, E.V.; Makarova, K.S. Origins and evolution of CRISPR-Cas systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20180087. [Google Scholar] [CrossRef]
- Yuen, K.-S.; Chan, C.-P.; Wong, N.-H.M.; Ho, C.-H.; Ho, T.-H.; Lei, T.; Deng, W.; Tsao, S.W.; Chen, H.; Kok, K.-H.; et al. CRISPR/Cas9-mediated genome editing of Epstein–Barr virus in human cells. J. Gen. Virol. 2015, 96 Pt 3, 626–636. [Google Scholar] [CrossRef]
- Kanda, T.; Furuse, Y.; Oshitani, H.; Kiyono, T.; Longnecker, R.M. Highly Efficient CRISPR/Cas9-Mediated Cloning and Functional Characterization of Gastric Cancer-Derived Epstein-Barr Virus Strains. J. Virol. 2016, 90, 4383–4393. [Google Scholar] [CrossRef]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef]
- Li, J.; Cheng, H.; Wang, X.; Chen, N.; Chen, L.; Duan, L.; Tan, F.; Li, K.; Liao, D.; Rapid, Z.H. portable Epstein—Barr virus DNA detection using enzymatic recombinase amplification combined with the CRISPR–Cas12a system. Clin. Transl. Med. 2024, 14, e70028. [Google Scholar] [CrossRef]
- Jiang, C.; Zheng, X.; Lin, L.; Li, X.; Li, X.; Liao, Y.; Jia, W.; Shu, B. CRISPR Cas12a-mediated amplification-free digital DNA assay improves the diagnosis and surveillance of Nasopharyngeal carcinoma. Biosens. Bioelectron. 2023, 237, 115546. [Google Scholar] [CrossRef]
- Myhrvold, C.; Freije, C.A.; Gootenberg, J.S.; Abudayyeh, O.O.; Metsky, H.C.; Durbin, A.F.; Kellner, M.J.; Tan, A.L.; Paul, L.M.; Parham, L.A.; et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018, 360, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, S.-X.; Wang, F.; Zeng, M.-S. Room Temperature Detection of Plasma Epstein–Barr Virus DNA with CRISPR–Cas13. Clin. Chem. 2019, 65, 591–592. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Bai, L.; Wang, G.; Han, J.; Wu, L.; Chen, X.; Zhang, H.; Feng, J.; Wang, Y.; Wang, R.; et al. SATCAS: A CRISPR/Cas13a-based simultaneous amplification and testing platform for one-pot RNA detection and SNPs distinguish in clinical diagnosis. Biosens. Bioelectron. 2024, 263, 116636. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Sheng, Y.; Zhang, T.; Zhou, S.; Zhu, Y.; Qian, F.; Liu, M.; Xu, W.; Zhang, D.; Hu, J. The CRISPR-Cas13a Gemini System for noncontiguous target RNA activation. Nat. Commun. 2024, 15, 2901. [Google Scholar] [CrossRef]
- Moor, J. The Dartmouth College Artificial Intelligence Conference: The Next Fifty Years. AI Mag. 2006, 27, 87–91. [Google Scholar]
- Hou, X.; He, Y.; Fang, P.; Mei, S.-Q.; Xu, Z.; Wu, W.-C.; Tian, J.-H.; Zhang, S.; Zeng, Z.-Y.; Gou, Q.-Y.; et al. Using artificial intelligence to document the hidden RNA virosphere. Cell 2024, 187, 6929–6942.e16. [Google Scholar] [CrossRef]
- Carnevali, D.; Zhong, L.; González-Almela, E.; Viana, C.; Rotkevich, M.; Wang, A.; Franco-Barranco, D.; Gonzalez-Marfil, A.; Neguembor, M.V.; Castells-Garcia, A.; et al. A deep learning method that identifies cellular heterogeneity using nanoscale nuclear features. Nat. Mach. Intell. 2024, 6, 1021–1033. [Google Scholar] [CrossRef]
- Biswas, N.K.; Majumder, P.P. Analysis of RNA sequences of 3636 SARS-CoV-2 collected from 55 countries reveals selective sweep of one virus type. Indian J. Med. Res. 2020, 151, 450–458. [Google Scholar] [CrossRef]
- Venkatakrishnan, A.; Puranik, A.; Anand, A.; Zemmour, D.; Yao, X.; Wu, X.; Chilaka, R.; Murakowski, D.K.; Standish, K.; Raghunathan, B.; et al. Knowledge synthesis of 100 million biomedical documents augments the deep expression profiling of coronavirus receptors. eLife 2020, 9, e58040. [Google Scholar] [CrossRef]
- Apostolopoulos, I.D.; Aznaouridis, S.I.; Tzani, M.A. Extracting Possibly Representative COVID-19 Biomarkers from X-ray Images with Deep Learning Approach and Image Data Related to Pulmonary Diseases. J. Med. Biol. Eng. 2020, 40, 462–469. [Google Scholar] [CrossRef]
- MacLean, A.; Gunson, R. Automation and standardisation of a quantitative multiplex PCR assay using PCR.Ai. J. Virol. Methods 2024, 329, 114981. [Google Scholar] [CrossRef]
- Zong, R.; Ma, X.; Shi, Y.; Geng, L. Can Machine Learning Models Based on Computed Tomography Radiomics and Clinical Characteristics Provide Diagnostic Value for Epstein-Barr Virus–Associated Gastric Cancer? J. Comput. Assist. Tomogr. 2024, 48, 859–867. [Google Scholar] [CrossRef]
- Khan, M.; Mehran, M.T.; Haq, Z.U.; Ullah, Z.; Naqvi, S.R.; Ihsan, M.; Abbass, H. Applications of artificial intelligence in COVID-19 pandemic: A comprehensive review. Expert Syst. Appl. 2021, 185, 115695. [Google Scholar] [CrossRef] [PubMed]
- Hinata, M.; Ushiku, T. Detecting immunotherapy-sensitive subtype in gastric cancer using histologic image-based deep learning. Sci. Rep. 2021, 11, 22636. [Google Scholar] [CrossRef] [PubMed]
- Vuong, T.T.L.; Song, B.; Kwak, J.T.; Kim, K. Prediction of Epstein-Barr Virus Status in Gastric Cancer Biopsy Specimens Using a Deep Learning Algorithm. JAMA Netw. Open 2022, 5, e2236408. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Dong, D.; Fang, M.-J.; Li, L.; Tang, L.-L.; Chen, L.; Li, W.-F.; Mao, Y.-P.; Fan, W.; Liu, L.-Z.; et al. Prognostic Value of Deep Learning PET/CT-Based Radiomics: Potential Role for Future Individual Induction Chemotherapy in Advanced Nasopharyngeal Carcinoma. Clin. Cancer Res. 2019, 25, 4271–4279. [Google Scholar] [CrossRef]
- Muti, H.S.; Heij, L.R.; Keller, G.; Kohlruss, M.; Langer, R.; Dislich, B.; Cheong, J.-H.; Kim, Y.-W.; Kim, H.; Kook, M.-C.; et al. Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: A retrospective multicentre cohort study. Lancet Digit. Health 2021, 3, e654–e664. [Google Scholar] [CrossRef]
- Zhang, B.; Yao, K.; Xu, M.; Wu, J.; Cheng, C. Deep Learning Predicts EBV Status in Gastric Cancer Based on Spatial Patterns of Lymphocyte Infiltration. Cancers 2021, 13, 6002. [Google Scholar] [CrossRef]
- Liang, J.; Cui, Z.; Wu, C.; Yu, Y.; Tian, R.; Xie, H.; Jin, Z.; Fan, W.; Xie, W.; Huang, Z.; et al. DeepEBV: A deep learning model to predict Epstein–Barr virus (EBV) integration sites. Bioinformatics 2021, 37, 3405–3411. [Google Scholar] [CrossRef]
- ISO 15189:2022; Medical Laboratories—Requirements for Quality and Competence. International Organization for Standardization: Geneva, Switzerland, 2022.
- St John, A.; Price, C.P. Existing and Emerging Technologies for Point-of-Care Testing. Clin. Biochem. Rev. 2014, 35, 155–167. [Google Scholar]
- Peeling, R.W.; Holmes, K.K.; Mabey, D.; Ronald, A. Rapid tests for sexually transmitted infections (STIs): The way forward. Sex. Transm. Infect. 2006, 82 (Suppl. 5), v1–v6. [Google Scholar] [CrossRef] [PubMed]
- Land, K.J.; Boeras, D.I.; Chen, X.-S.; Ramsay, A.R.; Peeling, R.W. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol. 2019, 4, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, F.; Perrone, A.; Della Noce, I.; Colombo, L.; Priore, S.L.; Romano, S. Application of a portable instrument for rapid and reliable detection of SARS-CoV-2 infection in any environment. Immunol. Rev. 2020, 295 (Suppl. 1), 4–10. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-S.; Lu, Y.-J.; Chang, R.; Tsai, M.-H.; Hung, J.-N.; Chen, W.-H.; Fan, Y.-J.; Wei, P.-K.; Sheen, H.-J. Investigation of DNA Hybridization on Nano-Structured Plasmonic Surfaces for Identifying Nasopharyngeal Viruses. Bioengineering 2023, 10, 1189. [Google Scholar] [CrossRef]
- Gong, R.; Yang, C.; Abbas, G.; Wang, D.; Zhang, X.; Nie, G.; Ding, H. Diagnosis of nasopharyngeal carcinoma using an ultrasensitive immunoassay method based on nanoparticles. Nanoscale 2023, 15, 3475–3481. [Google Scholar] [CrossRef]
- Bi, Z.-R.; Hu, M.-L.; Jiang, Y.-Z.; Xiong, E.-H.; Shu, B.-W.; Li, S.-Q.; Chen, H.-W.; Chen, X.-H.; Zhou, X.-M. Development of a Handheld Nano-centrifugal Device for Visual Virus Detection. J. Anal. Test. 2022, 6, 353–364. [Google Scholar] [CrossRef]
- Jia, X.; Zhou, J.; Xiao, F.; Huang, X.; He, W.; Hu, W.; Kong, Y.; Yan, W.; Ji, J.; Qi, Y.; et al. Multiple cross displacement amplification combined with nanoparticle-based lateral flow biosensor for rapid and sensitive detection of Epstein-Barr virus. Front. Cell. Infect. Microbiol. 2024, 13, 1321394. [Google Scholar] [CrossRef]
- Xu, Y.; Li, M.; Lin, M.; Lv, Y.; Cui, D.; Wang, Y.; Xie, J. A Multiplex Fluorescence of Loop Primer Upon Self-Dequenching Loop-Mediated Isothermal Amplification Assay for the Detection of Epstein–Barr Virus and Human Parvovirus B19 in Clinical Transplant Samples. Viral Immunol. 2024, 37, 177–185. [Google Scholar] [CrossRef]
- Yu, M.; Liu, M.; Li, Y.; Zheng, Y. Point-of-Care Based Electrochemical Immunoassay for Epstein-Barr Virus Detection. J. Anal. Methods Chem. 2022, 2022, 5711384. [Google Scholar] [CrossRef]
- Rong, G.; Zheng, Y.; Chen, Y.; Zhang, Y.; Zhu, P.; Sawan, M. COVID-19 Diagnostic Methods and Detection Techniques. Encycl. Sens. Biosens. 2023, 3, 17–32. [Google Scholar]
- Maguire, C.; Chen, J.; Rouphael, N.; Pickering, H.; Van Phan, H.; Glascock, A.; Chu, V.; Dandekar, R.; Corry, D.; Kheradmand, F.; et al. Chronic Viral Reactivation and Associated Host Immune Response and Clinical Outcomes in Acute COVID-19 and Post-Acute Sequelae of COVID-19. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.J.; Kim, J.Y.; Long, N.P.; Min, J.E.; Kim, H.M.; Yoon, J.H.; Anh, N.H.; Park, M.C.; Kwon, S.W.; Lee, S.K. Comprehensive Multi-Omics Analysis Reveals Aberrant Metabolism of Epstein–Barr-Virus-Associated Gastric Carcinoma. Cells 2019, 8, 1220. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xiong, F.; Hu, Z.; Tao, Q.; Yang, Y.; Qiao, X.; Peng, C.; Jiang, Y.; Han, M.; Dong, K.; et al. A novel biomarker associated with EBV infection improves response prediction of immunotherapy in gastric cancer. J. Transl. Med. 2024, 22, 9. [Google Scholar] [CrossRef]
- Ye, X.; Yuan, J.; Bai, Y.; Chen, Y.; Jiang, H.; Cao, Y.; Ge, Q.; Wang, Z.; Pan, W.; Wang, S.; et al. Appraising the life-course impact of Epstein-Barr virus exposure and its genetic signature on periodontitis. J. Periodontol. 2024. [Google Scholar] [CrossRef]
- Yang, M.; Zheng, G.; Chen, F.; Tang, H.; Liu, Y.; Gao, X.; Huang, Y.; Lv, Z.; Li, B.; Yang, M. Molecular characterization of EBV-associated primary pulmonary lymphoepithelial carcinoma by multiomics analysis. BMC Cancer 2025, 25, 85. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, H.; Ye, Z.; Huang, Y.; Li, P.; Jiang, Z.; Han, S.; Ma, L. Multi-omic analyses reveal aberrant DNA methylation patterns and the associated biomarkers of nasopharyngeal carcinoma and its cancer stem cells. Sci. Rep. 2025, 15, 9733. [Google Scholar] [CrossRef]
- Zeng, Y.; Luo, C.-L.; Lin, G.-W.; Li, F.; Bai, X.; Ko, J.M.-Y.; Xiong, L.; Liu, Y.; He, S.; Jiang, J.-X.; et al. Whole-exome sequencing association study reveals genetic effects on tumor microenvironment components in nasopharyngeal carcinoma. J. Clin. Invest. 2025, 135, e182768. [Google Scholar] [CrossRef]
- Mashamba-Thompson, T.P.; Crayton, E.D. Blockchain and Artificial Intelligence Technology for Novel Coronavirus Disease 2019 Self-Testing. Diagnostics 2020, 10, 198. [Google Scholar] [CrossRef]
- Chen, H.; Qi, X.; Zhang, L.; Li, X.; Ma, J.; Zhang, C.; Feng, H.; Yao, M. COVID-19 screening using breath-borne volatile organic compounds. J. Breath Res. 2021, 15, 047104. [Google Scholar] [CrossRef]
- Leong, S.X.; Leong, Y.X.; Tan, E.X.; Sim, H.Y.F.; Koh, C.S.L.; Lee, Y.H.; Chong, C.; Ng, L.S.; Chen, J.R.T.; Pang, D.W.C.; et al. Noninvasive and Point-of-Care Surface-Enhanced Raman Scattering (SERS)-Based Breathalyzer for Mass Screening of Coronavirus Disease 2019 (COVID-19) under 5 min. ACS Nano 2022, 16, 2629–2639. [Google Scholar] [CrossRef]
- Lv, J.; Xu, L.-X.; Li, Z.-X.; Lin, L.; Wu, C.-F.; Quan, T.-Q.; Zhen, Z.-C.; Li, W.-F.; Tang, L.-L.; Mao, Y.-P.; et al. Longitudinal on-treatment circulating tumor DNA as a biomarker for real-time dynamic risk monitoring in cancer patients: The EP-SEASON study. Cancer Cell 2024, 42, 1401–1414.e4. [Google Scholar] [CrossRef]
Types | Advantages | Disadvantages |
---|---|---|
Cas9 | Discovered earlier and well-developed; sgRNA is synthesized from crRNA and tracrRNA, which is more accurate for locating the PAM sites of target genes. | Only dsDNA could be cleaved, so the detection range is limited; No trans-cleavage activity, so it is difficult to detect in vitro. |
Cas12 | Only crRNA binding to Cas12 protein is required for the method, which is not difficult to detect; Trans-cleavage activity, this type could be independently detected in vitro. | PAM site sequence is TTTV (V is A, G or C), so crRNA design is difficult; Only dsDNA and sSDNA can be cleaved, and RNA cannot be recognized and detected. |
Cas13 | Having a PFS sequence comparable in action to the PAM sequence, which is composed of sequences located at the 3′ end of the spacer sequence consisting of an A, U, or C, thus increasing the error tolerance of the Cas13 protein; Tolerates single base mismatches between rRNA and target sequences without affecting cleavage efficiency; Trans-cleavage activity, this type could be independently detected in vitro. | Only RNA can be cleaved, and if DNA detection is required, DNA needs to be transcribed into RNA in vitro and then detected, which increases the risk of contamination in the experimental process. |
Methods | Samples | Sample Preparation | Applicable Environment | Sensitivity | Cost | Advantages | Disadvantages |
---|---|---|---|---|---|---|---|
EM | Tissue, cells | Samples need to be fixed and sectioned into thin slices; requires high-end electron microscopy equipment | Laboratory | Low, but can observe viral morphology | High, expensive equipment and complex operation | Can directly observe virus morphology, suitable for virology studies | Complex operation, expensive equipment, low sensitivity, limited application range |
IF | Tissue, cells | Samples need to be fixed, stained, and labeled with specific antibodies | Laboratory | Moderate, usually lower than PCR | High, expensive equipment and complex operation | Results are visualized, suitable for qualitative and quantitative detection of specific antigens | Lower sensitivity, background interference may affect results, antibody specificity required, quantitative analysis may require advanced image processing software and rigorous standardization |
ISH | Tissue, cells | Samples need to be fixed, cleaned, and hybridized with probes targeting specific RNA or DNA | Laboratory | High, detects specific viral RNA/DNA | High, depends on lab equipment and reagents | Allows localization of viral gene expression in tissue sections, high sensitivity | Complex operation, long sample preparation time, limited application |
ELISA | Serum, plasma, tissue | Samples need to be extracted and added to a plate, incubated, washed, and reacted with substrate for color change | Laboratory | Moderate, suitable for large-scale screening | Low, equipment and reagents are inexpensive | Simple operation, suitable for large-scale screening, can quantify specific antibodies or antigens | Lower sensitivity, possible cross-reactivity leading to false positives, cannot provide viral load data |
PCR | Blood, tissue, saliva, and other liquid samples | Nucleic acid extraction, reverse transcription (if needed), target sequence amplification | Laboratory | High | Moderate, requires high-quality reagents and equipment | High sensitivity, broad applicability, can quantify viral load | Complex sample preparation, long operation time, requires high-quality reagents and skilled operators |
Sequencing Technology | Blood, tissue, saliva, and other liquid samples | Requires high-quality DNA/RNA extraction, library preparation, sequencing process is complex | Laboratory | Very high, detects viral mutations at the genome level | High, expensive equipment and data analysis | Provides comprehensive viral genomic information, suitable for mutation and epidemiological studies | High cost, complex data analysis, limited by equipment and technology conditions |
IHC | Tissue, cells | Samples need to be fixed, sectioned, stained, and labeled with antibodies | Laboratory | Moderate, suitable for qualitative analysis | Moderate, higher reagent and equipment costs | Can observe the distribution of the virus in tissue, suitable for pathology studies | Time-consuming operation, high background interference, limited sensitivity, cannot provide quantitative analysis |
Microarray Technology | Blood, tissue | Samples need to be extracted, labeled, and hybridized with probes on a microarray chip | Laboratory | High, detects multiple genes or viruses simultaneously | High, equipment and chip costs are high | High-throughput, can detect multiple viruses or gene expressions simultaneously | High cost, complex operation, suitable for specific needs in large-scale screening |
HTS | Blood, tissue | Samples need to be extracted, sequenced, and analyzed with high-throughput sequencing methods | Laboratory | Very high, provides comprehensive viral genomic information | High, expensive equipment and data analysis | Can obtain comprehensive viral information and mutation data, suitable for studying new viral variants | High cost, complex data processing, limited application range, time-consuming |
Isothermal Amplification | Blood, saliva, urine, and other liquid samples | Nucleic acid extraction, isothermal amplification reaction | Laboratory or field environment | Moderate to high, depends on optimization | Moderate, equipment is inexpensive and reagents are expensive | Simple operation, rapid, suitable for on-site rapid detection, applicable in resource-limited areas | Amplification products may be affected by contamination or interference, limited applicability |
CRISPR-Cas Technology | Blood, tissue | Nucleic acid extraction, CRISPR-Cas system for editing or detection reaction | Laboratory | High, precise and specific | Moderate, equipment is inexpensive and reagents are expensive | High sensitivity, precise detection, potential for future use in viral detection | Technology is not yet mature, complex operation, requires high-quality reagents and equipment |
AI | High-throughput data, imaging data | Requires data collection and processing before applying AI algorithms for analysis | Laboratory environment, computational platform | High, depends on data quality and algorithm optimization | Low, data analysis cost is low | Provides automated data analysis and prediction, suitable for large-scale data processing | Dependent on data quality, may struggle with unknown variants or non-standard data |
POCT | Saliva, blood, throat swabs, and other liquid samples | Sample collection, then direct detection without complex processing | On-site detection, grassroots medical environments | Moderate, typically used for preliminary screening | Low, relatively inexpensive equipment, easy to operate | Suitable for on-site rapid detection, simple operation, suitable for large-scale screening | Lower sensitivity and specificity, suitable for screening rather than diagnosis, results may be affected by sample quality |
Multi-Omics Analysis | Blood, tissue, cells, and various samples | Requires multi-omics data collection and processing (e.g., genomics, transcriptomics, proteomics) | Laboratory, high-throughput equipment | High, provides comprehensive viral and host response information | High, expensive equipment and analysis | Provides comprehensive viral and host interaction information, suitable for in-depth study of viral mechanisms | Complex data processing, high cost, relies on large sample sizes and multidisciplinary team support |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Ling, S.; Tang, D.; Yang, M.; Shen, C. Advances in Epstein–Barr Virus Detection: From Traditional Methods to Modern Technologies. Viruses 2025, 17, 1026. https://doi.org/10.3390/v17081026
Sun Y, Ling S, Tang D, Yang M, Shen C. Advances in Epstein–Barr Virus Detection: From Traditional Methods to Modern Technologies. Viruses. 2025; 17(8):1026. https://doi.org/10.3390/v17081026
Chicago/Turabian StyleSun, Yidan, Shuyu Ling, Dani Tang, Meimei Yang, and Chao Shen. 2025. "Advances in Epstein–Barr Virus Detection: From Traditional Methods to Modern Technologies" Viruses 17, no. 8: 1026. https://doi.org/10.3390/v17081026
APA StyleSun, Y., Ling, S., Tang, D., Yang, M., & Shen, C. (2025). Advances in Epstein–Barr Virus Detection: From Traditional Methods to Modern Technologies. Viruses, 17(8), 1026. https://doi.org/10.3390/v17081026