Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = HRESI MS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3635 KiB  
Article
A Study and In Vitro Evaluation of the Bioactive Compounds of Broad Bean Sprouts for the Treatment of Parkinson’s Syndrome
by Danni Hu, Guanglei Qing, Xuecheng Liu, Jianming Cheng, Kewei Zhang and Lingyun He
Molecules 2024, 29(21), 5160; https://doi.org/10.3390/molecules29215160 - 31 Oct 2024
Cited by 2 | Viewed by 1590
Abstract
Levodopa (LD) is the first discovered and the most promising and effective medication for Parkinson’s disease (PD). As the first identified natural source of LD, Vicia faba L. (broad beans), especially its sprouts, has been confirmed to contain many other potential bioactive compounds [...] Read more.
Levodopa (LD) is the first discovered and the most promising and effective medication for Parkinson’s disease (PD). As the first identified natural source of LD, Vicia faba L. (broad beans), especially its sprouts, has been confirmed to contain many other potential bioactive compounds that could also be therapeutic for PD. In this study, the bioactive components obtained from broad bean sprout extraction (BSE) that could be beneficial for PD treatment were screened, and the related mechanisms were explored. Solvent extraction combined with column chromatography was used to isolate bioactive fractions and monomer compounds, while UPLC-ESI-MS/MS, HRESI-MS and (1H, 13C) NMR were employed for compound identification. Network pharmacology techniques were applied to screen for potential mechanisms. A total of 52 compounds were identified in a 50% MeOH extract of broad bean sprouts. Moreover, twelve compounds were isolated and identified from ethyl acetate and n-butanol portions, including caffeic acid (1), trans-3-indoleacrylic acid (2), p-coumaric acid (3), protocatechualdehyde (4), isovitexin (5), isoquercetin (6), grosvenorine (7), kaempferol-3-O-rutinoside (8), isoschaftoside (9), narcissin (10), kaempferitrin (11) and trigonelline HCl (12). Compounds 2, 4, 7, 8 and 12 were isolated from Vicia faba L. for the first time. The potential mechanisms were determined by analyzing 557 drug targets, 2334 disease targets and 199 intersections between them using a protein–protein interaction (PPI) network, gene ontology (GO) analysis and Kyoto encyclopedia of genes and genomes (KEGG) enrichment. Further in vitro experiments confirmed that caffeic acid (compound 1) and p-coumaric acid (compound 3) have neuroprotective effects in 6-hydroxydopamine-treated SH-SY5Y cells and lipopolysaccharide-treated PC-12 cells through anti-inflammatory and antioxidant mechanisms. In conclusion, this study explored effective components in broad bean sprouts and performed in vitro evaluations. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

5 pages, 402 KiB  
Short Note
rac-2-(2′-Ferrocenyl-2′-hydroxy-n-propyl)-1,3-benzothiazole
by Martin G. Zhen, Kathleen L. May and Robert A. Gossage
Molbank 2024, 2024(4), M1893; https://doi.org/10.3390/M1893 - 30 Sep 2024
Viewed by 1063
Abstract
The synthesis and characterisation (UV-Vis, IR, HRESI-MS, 1H and 13C NMR spectroscopies, electrochemistry) is reported of the novel title material (1: alternatively named rac-1-(2′-benzothiazolyl)-2-ferrocenyl-2-propanol): a rare example of a ferrocenyl-benzothiazole hybrid species. Compound 1 is produced by the [...] Read more.
The synthesis and characterisation (UV-Vis, IR, HRESI-MS, 1H and 13C NMR spectroscopies, electrochemistry) is reported of the novel title material (1: alternatively named rac-1-(2′-benzothiazolyl)-2-ferrocenyl-2-propanol): a rare example of a ferrocenyl-benzothiazole hybrid species. Compound 1 is produced by the low temperature reaction of acetylferrocene (3) with a solution of the methyl anion derived via the deprotonation of 2-methyl-1,3-benzothiazole. The yield of 1 is moderate (34%) after purification and is an air and thermally stable solid under ambient conditions. Attempts to sublime 1, however, result in decomposition with one of the products being identified (NMR) as 3. The spectroscopic features of 1 are presented. Attempts to obtain suitable crystalline material of 1 for a single crystal X-ray diffraction study were unfortunately unsuccessful. Compound 1 also does not form stable coordination complexes with various metal salts (e.g., Ni[2+], Co[2+], etc.) under the conditions tested. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Scheme 1

18 pages, 5254 KiB  
Article
Metabolite Profiling of Allium hookeri Leaves Using UHPLC-qTOF-MS/MS and the Senomorphic Activity of Phenolamides
by Thi-Phuong Doan, Mi Zhang, Jin-Pyo An, Jorge-Eduardo Ponce-Zea, Van-Hieu Mai, Byeol Ryu, Eun-Jin Park and Won-Keun Oh
Nutrients 2023, 15(24), 5109; https://doi.org/10.3390/nu15245109 - 14 Dec 2023
Cited by 4 | Viewed by 2277
Abstract
The plant Allium hookeri, a member of the Allium genus, has a rich history of culinary and medicinal use. Recent studies have unveiled its potent antioxidant and anti-inflammatory properties. While research on A. hookeri has demonstrated its neuroprotective and anti-neuroinflammatory effects, the [...] Read more.
The plant Allium hookeri, a member of the Allium genus, has a rich history of culinary and medicinal use. Recent studies have unveiled its potent antioxidant and anti-inflammatory properties. While research on A. hookeri has demonstrated its neuroprotective and anti-neuroinflammatory effects, the specific bioactive compounds responsible for these effects remain unidentified in prior research. This study utilized an untargeted metabolomic approach, employing HRESI-qTOF MS/MS-based molecular networking, to comprehensively profile the chemical composition of metabolites in A. hookeri and identify new compounds within the plant. As a result, ten compounds, comprising one novel flavonoid (2) and nine known compounds (1 and 310), were isolated and identified through NMR analysis. The inhibitory effects of all isolated compounds on the senescent cell-associated secretory phenotype (SASP), which is pivotal in neuroprotective actions, were evaluated. Biological activity testing revealed N-trans-feruloyltyramine (7) to be the most potent compound, effectively inhibiting SASP markers and contributing to the senomorphic activities of A. hookeri. These findings underscore the potential of phenolamides from A. hookeri as a promising source of bioactive compounds for mitigating senescence-associated diseases. Full article
Show Figures

Graphical abstract

15 pages, 5354 KiB  
Article
Aggregation, Cytotoxicity and DNA Binding in a Series of Calix[4]arene Amphiphile Containing Aminotriazole Groups
by Diana Mironova, Egor Makarov, Islamiya Bilyukova, Kevser Akyol, Elsa Sultanova, Vladimir Evtugyn, Damir Davletshin, Elvina Gilyazova, Emil Bulatov, Vladimir Burilov, Svetlana Solovieva and Igor Antipin
Pharmaceuticals 2023, 16(5), 699; https://doi.org/10.3390/ph16050699 - 5 May 2023
Cited by 7 | Viewed by 2731
Abstract
The present work focuses on the study of the aggregation and complexing properties of calixarenes as potential DNA condensation agents for gene delivery. In the current study, 1,4-triazole derivatives of calix[4]arenes 7 and 8 containing monoammonium fragments were synthesized. The synthesized compound’s structure [...] Read more.
The present work focuses on the study of the aggregation and complexing properties of calixarenes as potential DNA condensation agents for gene delivery. In the current study, 1,4-triazole derivatives of calix[4]arenes 7 and 8 containing monoammonium fragments were synthesized. The synthesized compound’s structure was characterized by using various spectroscopic techniques (FTIR, HRESI MS, ¹H NMR and ¹³C NMR). The interactions between a series of calix[4]arene-containing aminotriazole groups (triazole-containing macrocycles with diethylenetriammonium fragments (3 and 4) and triazole-containing macrocycles with monoammonium fragments (7 and 8)) and calf thymus DNA were carried out via UV absorption, fluorescence spectroscopy, dynamic light scattering and zeta potential measurements. The role of the binding forces of calixarene–DNA complexes was analyzed. Photophysical and morphological studies revealed the interaction of the calixarenes 3, 4 and 8 with ct-DNA, which transformed the fibrous structure of ct-DNA to completely condensed compact structures that are 50 nm in diameter. The cytotoxic properties of calixarenes 3, 4, 7 and 8 against cancerous cells (MCF7, PC-3) as well as a healthy cell line (HSF) were investigated. Compound 4 was found to have the highest toxic effect on MCF7 breast adenocarcinoma (IC50 3.3 μM). Full article
(This article belongs to the Special Issue Self-Assembled Nanoparticles: An Emerging Delivery Platform for Drugs)
Show Figures

Graphical abstract

13 pages, 2524 KiB  
Article
Antineoplastic and Antitrypanosomal Properties of Propolis from Tetragonula biroi Friese
by Samyah Alanazi
Molecules 2022, 27(21), 7463; https://doi.org/10.3390/molecules27217463 - 2 Nov 2022
Cited by 6 | Viewed by 2441
Abstract
Propolis, popularly known as bee glue, is a resinous, sticky substance produced by different bee species across the globe. Studies on the biological properties of propolis from the Philippines are rare. Hence, the current study aims at the chemical characterization of propolis produced [...] Read more.
Propolis, popularly known as bee glue, is a resinous, sticky substance produced by different bee species across the globe. Studies on the biological properties of propolis from the Philippines are rare. Hence, the current study aims at the chemical characterization of propolis produced by the stingless bees Tetragonula biroi Friese from the Philippines and to investigate its antitrypanosomal and anticancer properties. The determination of the chemical composition and characterization of propolis samples was achieved using liquid chromatography–mass spectrometry (LC-MS), -high-performance liquid chromatography–evaporative light scattering detector (HPLC-ELSD), and nuclear magnetic resonance (NMR) spectroscopy. Three major triterpenes were isolated and identified using HRESI-MS and 1H/13C NMR techniques. The spectral studies confirmed the presence of compounds such as isomangiferolic acid, 27-hydoxymangiferonic acid, and 27-hydroxyisomangiferolic acid. All crude propolis samples, isolated fractions, and pure compounds demonstrated moderate antitrypanosomal and anticancer properties compared to control drugs. Amongst the tested compounds, 27-hydoxymangiferonic acid exhibited the highest antitrypanosomal activity at a concentration of 11.6 µg/mL. The highest anticancer effect was demonstrated by the Ph-2 fraction, followed by 27-hydroxyisomangiferolic acid, with IC50 values of 129.6 and 153.3 µg/mL. Thus, it can be concluded that the observed biological activity of Philippine propolis is due to the combinatorial effect or synergistic action of the active compounds 27-hydoxymangiferonic acid and 27-hydroxyisomangiferolic acid. Full article
(This article belongs to the Special Issue Propolis in Human and Bee Health)
Show Figures

Figure 1

11 pages, 371 KiB  
Article
In Vitro Antileishmanial and Antitrypanosomal Activities of Plicataloside Isolated from the Leaf Latex of Aloe rugosifolia Gilbert & Sebsebe (Asphodelaceae)
by Gete Chemeda, Daniel Bisrat, Mariamawit Y. Yeshak and Kaleab Asres
Molecules 2022, 27(4), 1400; https://doi.org/10.3390/molecules27041400 - 18 Feb 2022
Cited by 8 | Viewed by 2102
Abstract
Trypanosomiasis and leishmaniasis are among the major neglected diseases that affect poor people, mainly in developing countries. In Ethiopia, the latex of Aloe rugosifolia Gilbert & Sebsebe is traditionally used for the treatment of protozoal diseases, among others. In this study, the in [...] Read more.
Trypanosomiasis and leishmaniasis are among the major neglected diseases that affect poor people, mainly in developing countries. In Ethiopia, the latex of Aloe rugosifolia Gilbert & Sebsebe is traditionally used for the treatment of protozoal diseases, among others. In this study, the in vitro antitrypanosomal activity of the leaf latex of A. rugosifolia was evaluated against Trypanosoma congolense field isolate using in vitro motility and in vivo infectivity tests. The latex was also tested against the promastigotes of Leishmania aethiopica and L. donovani clinical isolates using alamar blue assay. Preparative thin-layer chromatography of the latex afforded a naphthalene derivative identified as plicataloside (2,8-O,O-di-(β-D-glucopyranosyl)-1,2,8-trihydroxy-3-methyl-naphthalene) by means of spectroscopic techniques (HRESI-MS, 1H, 13C-NMR). Results of the study demonstrated that at 4.0 mg/mL concentration plicataloside arrested mobility of trypanosomes within 30 min of incubation period. Furthermore, plicataloside completely eliminated subsequent infectivity in mice for 30 days at concentrations of 4.0 and 2.0 mg/mL. Plicataloside also displayed antileishmanial activity against the promastigotes of L. aethopica and L. donovani with IC50 values 14.22 ± 0.41 µg/mL (27.66 ± 0.80 µM) and 18.86 ± 0.03 µg/mL (36.69 ± 0.06 µM), respectively. Thus, plicataloside may be used as a scaffold for the development of novel drugs effective against trypanosomiasis and leishmaniasis. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

12 pages, 825 KiB  
Article
Dianthiamides A–E, Proline-Containing Orbitides from Dianthus chinensis
by Jin Woo Lee, Jun Gu Kim, Jae Sang Han, Yong Beom Cho, Yu Jin Lee, Dongho Lee, Dae Hwan Shin, Jin Tae Hong, Mi Kyeong Lee and Bang Yeon Hwang
Molecules 2021, 26(23), 7275; https://doi.org/10.3390/molecules26237275 - 30 Nov 2021
Cited by 5 | Viewed by 2258
Abstract
Orbitides are plant-derived small cyclic peptides with a wide range of biological activities. Phytochemical investigation of the whole plants of Dianthus chinensis was performed with the aim to discover new bioactive orbitides. Five undescribed proline-containing orbitides, dianthiamides A–E (15), [...] Read more.
Orbitides are plant-derived small cyclic peptides with a wide range of biological activities. Phytochemical investigation of the whole plants of Dianthus chinensis was performed with the aim to discover new bioactive orbitides. Five undescribed proline-containing orbitides, dianthiamides A–E (15), were isolated from a methanolic extract of Dianthus chinensis. Their structures were elucidated by extensive analysis of 1D and 2D NMR and HRESI–TOF–MS as well as ESI–MS/MS fragmentation data. The absolute configuration of the amino acid residues of compounds 15 was determined by Marfey’s method. All compounds were tested for their cytotoxic activity, and dianthiamide A (1) exhibited weak activity against A549 cell line with IC50 value of 47.9 μM. Full article
Show Figures

Figure 1

13 pages, 4052 KiB  
Article
Azocalix[4]arene-Rhodamine Supramolecular Hypoxia-Sensitive Systems: A Search for the Best Calixarene Hosts and Rhodamine Guests
by Diana Mironova, Vladimir Burilov, Farida Galieva, Mohamed Ali Mohamed Khalifa, Sofia Kleshnina, Alsu Gazalieva, Ramil Nugmanov, Svetlana Solovieva and Igor Antipin
Molecules 2021, 26(18), 5451; https://doi.org/10.3390/molecules26185451 - 7 Sep 2021
Cited by 11 | Viewed by 3298
Abstract
A potential hypoxia-sensitive system host-guest complex of three calixarenes (including two with four anionic carboxyl and sulphonate azo fragments on the upper rim and a newly synthesized bis-azo adduct of calixarene in the cone configuration with azo fragments on the lower rim with [...] Read more.
A potential hypoxia-sensitive system host-guest complex of three calixarenes (including two with four anionic carboxyl and sulphonate azo fragments on the upper rim and a newly synthesized bis-azo adduct of calixarene in the cone configuration with azo fragments on the lower rim with the most widespread cationic and zwitterionic rhodamine dyes (123, 6G and B)) was studied using UV-VIS spectrometry and fluorescence as well as 1D and 2D NMR techniques. It was found that all three calixarenes form a complex with rhodamine dyes with a 1:1 composition. The association constants of calixarene-dye complexes with sulfonate calixarenes, especially in the case of tetra-anionic calixarene, turned out to be higher compared with carboxyl calixarene due to the more intense electrostatic interactions. For the first time using an HRESI MS technique, it was shown that the treatment of rhodamine 6G and 123 with sodium dithionite (SDT) produces a non-fluorescent leuco form of the dye, and only rhodamine B can be used with SDT without the occurrence of a side reduction. Moreover, it was identified that in addition to the reduction in the azo groups, SDT causes partial cleavage of the aryl ether bonds. The found features of SDT should be taken into account when SDT is used as an azoreductase mimic. Full article
(This article belongs to the Special Issue Molecular Recognition of Host/Guest Molecules)
Show Figures

Graphical abstract

11 pages, 3681 KiB  
Communication
Phytochemical Analysis of the Fruits of Sea Buckthorn (Hippophae rhamnoides): Identification of Organic Acid Derivatives
by Yong Hoon Lee, Hee Joo Jang, Kun Hee Park, Seon-Hee Kim, Jung Kyu Kim, Jin-Chul Kim, Tae Su Jang and Ki Hyun Kim
Plants 2021, 10(5), 860; https://doi.org/10.3390/plants10050860 - 24 Apr 2021
Cited by 20 | Viewed by 3955
Abstract
Hippophae rhamnoides L. (Elaeagnaceae), commonly known as “Sea buckthorn” and “Vitamin tree”, is a spiny deciduous shrub whose fruit is known for its nutritional composition, such as vitamin C, and is consumed as a dietary supplement worldwide. As part of our ongoing efforts [...] Read more.
Hippophae rhamnoides L. (Elaeagnaceae), commonly known as “Sea buckthorn” and “Vitamin tree”, is a spiny deciduous shrub whose fruit is known for its nutritional composition, such as vitamin C, and is consumed as a dietary supplement worldwide. As part of our ongoing efforts to identify structurally new and bioactive constituents from natural resources, the phytochemical investigation of the extract of H. rhamnoides fruits led to the isolation of one malate derivative (1), five citrate derivatives (2–6), and one quinate derivative (7). The structures of the isolated compounds were elucidated by analysis of 1D and 2D nuclear magnetic resonance (NMR) spectroscopic data and high-resolution electrospray ionization (HR-ESI) liquid chromatography–mass spectrometry (LC/MS) data. Three of the citrate derivatives were identified as new compounds: (S)-1-butyl-5-methyl citrate (3), (S)-1-butyl-1′-methyl citrate (4), and (S)-1-methyl-1′-butyl citrate (6), which turned out to be isolation artifacts. The absolute configurations of the new compounds were established by quantum chemical electronic circular dichroism (ECD) calculation, which is an informative tool for verifying the absolute configuration of organic acid derivatives. The isolated compounds 1–7 were evaluated for their stimulatory effects on osteogenesis. Compounds 1, 3, 4, 6, and 7 stimulated osteogenic differentiation up to 1.4 fold, compared to the negative control. These findings provide experimental evidence that active compounds 1, 3, 4, 6, and 7 induce the osteogenesis of mesenchymal stem cells and activate bone formation. Full article
Show Figures

Figure 1

18 pages, 3345 KiB  
Article
Molecular Network and Culture Media Variation Reveal a Complex Metabolic Profile in Pantoea cf. eucrina D2 Associated with an Acidified Marine Sponge
by Giovanni Andrea Vitale, Martina Sciarretta, Chiara Cassiano, Carmine Buonocore, Carmen Festa, Valerio Mazzella, Laura Núñez Pons, Maria Valeria D’Auria and Donatella de Pascale
Int. J. Mol. Sci. 2020, 21(17), 6307; https://doi.org/10.3390/ijms21176307 - 31 Aug 2020
Cited by 15 | Viewed by 3824
Abstract
The Gram-negative Pantoea eucrina D2 was isolated from the marine sponge Chondrosia reniformis. Sponges were collected in a shallow volcanic vents system in Ischia island (South Italy), influenced by CO2 emissions and lowered pH. The chemical diversity of the secondary metabolites [...] Read more.
The Gram-negative Pantoea eucrina D2 was isolated from the marine sponge Chondrosia reniformis. Sponges were collected in a shallow volcanic vents system in Ischia island (South Italy), influenced by CO2 emissions and lowered pH. The chemical diversity of the secondary metabolites produced by this strain, under different culture conditions, was explored by a combined approach including molecular networking, pure compound isolation and NMR spectroscopy. The metabolome of Pantoea cf. eucrina D2 yielded a very complex molecular network, allowing the annotation of several metabolites, among them two biosurfactant clusters: lipoamino acids and surfactins. The production of each class of metabolites was highly dependent on the culture conditions, in particular, the production of unusual surfactins derivatives was reported for the first time from this genus; interestingly the production of these metabolites only arises by utilizing inorganic nitrogen as a sole nitrogen source. Major components of the extract obtained under standard medium culture conditions were isolated and identified as N-lipoamino acids by a combination of 1D and 2D NMR spectroscopy and HRESI-MS analysis. Assessment of the antimicrobial activity of the pure compounds towards some human pathogens, indicated a moderate activity of leucine containing N-lipoamino acids towards Staphylococcus aureus, Staphylococcus epidermidis and a clinical isolate of the emerging food pathogen Listeria monocytogenes. Full article
(This article belongs to the Special Issue Microbial Biosurfactants, Current Research Trends and Applications)
Show Figures

Figure 1

19 pages, 2365 KiB  
Article
NOx-, IL-1β-, TNF-α-, and IL-6-Inhibiting Effects and Trypanocidal Activity of Banana (Musa acuminata) Bracts and Flowers: UPLC-HRESI-MS Detection of Phenylpropanoid Sucrose Esters
by Louis P. Sandjo, Marcus V. P. dos Santos Nascimento, Milene de H. Moraes, Luiza Manaut Rodrigues, Eduardo M. Dalmarco, Maique W. Biavatti and Mario Steindel
Molecules 2019, 24(24), 4564; https://doi.org/10.3390/molecules24244564 - 13 Dec 2019
Cited by 12 | Viewed by 4809
Abstract
Banana inflorescences are a byproduct of banana cultivation consumed in various regions of Brazil as a non-conventional food. This byproduct represents an alternative food supply that can contribute to the resolution of nutritional problems and hunger. This product is also used in Asia [...] Read more.
Banana inflorescences are a byproduct of banana cultivation consumed in various regions of Brazil as a non-conventional food. This byproduct represents an alternative food supply that can contribute to the resolution of nutritional problems and hunger. This product is also used in Asia as a traditional remedy for the treatment of various illnesses such as bronchitis and dysentery. However, there is a lack of chemical and pharmacological data to support its consumption as a functional food. Therefore, this work aimed to study the anti-inflammatory action of Musa acuminata blossom by quantifying the cytokine levels (NOx, IL-1β, TNF-α, and IL-6) in peritoneal neutrophils, and to study its antiparasitic activities using the intracellular forms of T. cruzi, L. amazonensis, and L. infantum. This work also aimed to establish the chemical profile of the inflorescence using UPLC-ESI-MS analysis. Flowers and the crude bract extracts were partitioned in dichloromethane and n-butanol to afford four fractions (FDCM, FNBU, BDCM, and BNBU). FDCM showed moderate trypanocidal activity and promising anti-inflammatory properties by inhibiting IL-1β, TNF-α, and IL-6. BDCM significantly inhibited the secretion of TNF-α, while BNBU was active against IL-6 and NOx. LCMS data of these fractions revealed an unprecedented presence of arylpropanoid sucroses alongside flavonoids, triterpenes, benzofurans, stilbenes, and iridoids. The obtained results revealed that banana inflorescences could be used as an anti-inflammatory food ingredient to control inflammatory diseases. Full article
Show Figures

Graphical abstract

9 pages, 1992 KiB  
Article
N,O Chelating Ligands Construct Five-Coordinated Zn(II) Exclusive {Zn6} Clusters: Decomposition, Stepwise Assembly and Photoluminescence Study
by Qian-Jun Deng, Min Chen, Dong-Chu Chen and Chang-Ai Chen
Crystals 2019, 9(8), 416; https://doi.org/10.3390/cryst9080416 - 12 Aug 2019
Viewed by 2783
Abstract
N-methylbenzimidazole-2-methanol (Hmbm) and Zn(NO3)2·6H2O were reacted in acetonitrile solvothermal at 80 °C for 48 h to obtain a six-nuclear Zn(II) cluster ([ZnII6(Hmbm)2(mbm)8(NO3 [...] Read more.
N-methylbenzimidazole-2-methanol (Hmbm) and Zn(NO3)2·6H2O were reacted in acetonitrile solvothermal at 80 °C for 48 h to obtain a six-nuclear Zn(II) cluster ([ZnII6(Hmbm)2(mbm)8(NO3)4]·12H2O·2CH3CN (Zn6)). Structural analysis indicated that Zn(II) in the above Zn6 clusters showed pentacoordinates. The metal centers Zn1 and Zn2 are both in the N2O3 coordination environment, and both show a triangular bipyramid configuration. Zn3 is in a NO4 coordination environment, which is also shown as a triangular bipyramid configuration. The ion source voltage of high-resolution electrospray ionization mass spectrometry (HRESI-MS) was further adjusted to bombard the Zn6 cluster, and seven major key intermediates were identified. Furthermore, we proposed that the gradual fragmentation mechanism is Zn6 → [ZnII6(mbm)8(NO3)3]+ → [ZnII5(mbm)7(NO3)2]+ → [ZnII4(mbm)6(NO3)]+ → [ZnII3(mbm)4(NO3)]+ → [ZnII2(mbm)3]+ → [ZnII2(mbm)2(OH)(H2O)2(DMSO)]+ → [ZnII(mbm)]+. In order to understand the gradual formation of Zn6 clusters, herein, we track the changes of species in the solution in different time periods by HRESI-MS. The nine key intermediates were identified and further combined with its gradual fragmentation mechanism. We proposed the gradual assembly mechanism of [ZnII(mbm)]+ → [ZnII(mbm)(Hmbm)]+ → [ZnII2(mbm)2(NO3)]+ → [ZnII2(mbm)3]+ → [ZnII3(mbm)4(NO3)]+ → [ZnII4(mbm)5(NO3)2]+ → [ZnII4(mbm)6(NO3)]+ → [ZnII5(mbm)7(NO3)2]+ → [ZnII6(mbm)8(NO3)3]+Zn6. To the best of our knowledge, this is the first time that a decomposition and assembly binding strategy has been used to resolve the stepwise formation of Zn(II) clusters. Photoluminescence measurements indicate that the cluster Zn6 exhibits a strong emission peak at 300 nm and an emission shoulder at 600 nm. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Graphical abstract

11 pages, 1841 KiB  
Short Note
N-(Isobutyl)-3,4-methylenedioxy Cinnamoyl Amide
by Aboagye Kwarteng Dofuor, Samuel Kwain, Enoch Osei, Gilbert Mawuli Tetevi, Laud Kenneth Okine, Mitsuko Ohashi, Theresa Manful Gwira and Kwaku Kyeremeh
Molbank 2019, 2019(3), M1070; https://doi.org/10.3390/M1070 - 5 Jul 2019
Cited by 11 | Viewed by 3385
Abstract
The plant Zanthoxylum zanthoxyloides (Lam.) Zepern. & Timler is one of the most important medicinal species of the genus Zanthoxylum on the African continent. It is used in the treatment and management of parasitic diseases in sub-Saharan Africa. These properties have inspired scientists [...] Read more.
The plant Zanthoxylum zanthoxyloides (Lam.) Zepern. & Timler is one of the most important medicinal species of the genus Zanthoxylum on the African continent. It is used in the treatment and management of parasitic diseases in sub-Saharan Africa. These properties have inspired scientists to investigate species within the genus for bioactive compounds. However, a study, which details a spectroscopic, spectrometric and bioactivity guided extraction and isolation of antiparasitic compounds from the genus Zanthoxylum is currently non-existent. Tortozanthoxylamide (1), which is a derivative of the known compound armatamide was isolated from Z. zanthoxyloides and the full structure determined using UV, IR, 1D/2D-NMR and high-resolution liquid chromatography tandem mass spectrometry (HRESI-LC-MS) data. When tested against Trypanosoma brucei subsp. brucei, the parasite responsible for animal African trypanosomiasis in sub-Saharan Africa, 1 (IC50 7.78 µM) was just four times less active than the commercially available drug diminazene aceturate (IC50 1.88 µM). Diminazene aceturate is a potent drug for the treatment of animal African trypanosomiasis. Tortozanthoxylamide (1) exhibits a significant antitrypanosomal activity through remarkable alteration of the cell cycle in T. brucei subsp. brucei, but it is selectively non-toxic to mouse macrophages RAW 264.7 cell lines. This suggests that 1 may be considered as a scaffold for the further development of natural antitrypanosomal compounds. Full article
(This article belongs to the Section Natural Product Chemistry)
Show Figures

Graphical abstract

11 pages, 2680 KiB  
Short Note
α-d-Glucopyranosyl-(1→2)-[6-O-(l-tryptophanyl)-β-d-fructofuranoside]
by Kwaku Kyeremeh, Samuel Kwain, Gilbert Mawuli Tetevi, Anil Sazak Camas, Mustafa Camas, Aboagye Kwarteng Dofuor, Hai Deng and Marcel Jaspars
Molbank 2019, 2019(2), M1066; https://doi.org/10.3390/M1066 - 16 Jun 2019
Cited by 2 | Viewed by 4701
Abstract
The Mycobacterium sp. BRS2A-AR2 is an endophyte of the mangrove plant Rhizophora racemosa G. Mey., which grows along the banks of the River Butre, in the Western Region of Ghana. Chemical profiling using 1H-NMR and HRESI-LC-MS of fermentation extracts produced by the [...] Read more.
The Mycobacterium sp. BRS2A-AR2 is an endophyte of the mangrove plant Rhizophora racemosa G. Mey., which grows along the banks of the River Butre, in the Western Region of Ghana. Chemical profiling using 1H-NMR and HRESI-LC-MS of fermentation extracts produced by the strain led to the isolation of the new compound, α-d-Glucopyranosyl-(1→2)-[6-O-(l-tryptophanyl)-β-d–fructofuranoside] or simply tortomycoglycoside (1). Compound 1 is an aminoglycoside consisting of a tryptophan moiety esterified to a disaccharide made up of β-d-fructofuranose and α-d-glucopyranose sugars. The full structure of 1 was determined using UV, IR, 1D, 2D-NMR and HRESI-LC-MS data. When tested against Trypanosoma brucei subsp. brucei, the parasite responsible for Human African Trypanosomiasis in sub-Saharan Africa, 1 (IC50 11.25 µM) was just as effective as Coptis japonica (Thunb.) Makino. (IC50 8.20 µM). The extract of Coptis japonica (Thunb.) Makino. is routinely used as laboratory standard due to its powerful antitrypanosomal activity. It is possible that, compound 1 interferes with the normal uptake and metabolism of tryptophan in the T. brucei subsp. brucei parasite. Full article
(This article belongs to the Section Natural Product Chemistry)
Show Figures

Graphical abstract

24 pages, 862 KiB  
Article
Structures and Bioactivities of Six New Triterpene Glycosides, Psolusosides E, F, G, H, H1, and I and the Corrected Structure of Psolusoside B from the Sea Cucumber Psolus fabricii
by Alexandra S. Silchenko, Anatoly I. Kalinovsky, Sergey A. Avilov, Vladimir I. Kalinin, Pelageya V. Andrijaschenko, Pavel S. Dmitrenok, Roman S. Popov, Ekaterina A. Chingizova, Svetlana P. Ermakova and Olesya S. Malyarenko
Mar. Drugs 2019, 17(6), 358; https://doi.org/10.3390/md17060358 - 14 Jun 2019
Cited by 20 | Viewed by 3828
Abstract
Seven sulfated triterpene glycosides, psolusosides B (1), E (2), F (3), G (4), H (5), H1 (6), and I (7), along with earlier known psolusoside A and colochiroside [...] Read more.
Seven sulfated triterpene glycosides, psolusosides B (1), E (2), F (3), G (4), H (5), H1 (6), and I (7), along with earlier known psolusoside A and colochiroside D have been isolated from the sea cucumber Psolus fabricii collected in the Sea of Okhotsk. Herein, the structure of psolusoside B (1), elucidated by us in 1989 as a monosulfated tetraoside, has been revised with application of modern NMR and particularly MS data and proved to be a disulfated tetraoside. The structures of other glycosides were elucidated by 2D NMR spectroscopy and HR-ESI mass-spectrometry. Psolusosides E (2), F (3), and G (4) contain holostane aglycones identical to each other and differ in their sugar compositions and the quantity and position of sulfate groups in linear tetrasaccharide carbohydrate moieties. Psolusosides H (5) and H1 (6) are characterized by an unusual sulfated trisaccharide carbohydrate moiety with the glucose as the second sugar unit. Psolusoside I (7) has an unprecedented branched tetrasaccharide disulfated carbohydrate moiety with the xylose unit in the second position of the chain. The cytotoxic activities of the compounds 27 against several mouse cell lines—ascite form of Ehrlich carcinoma, neuroblastoma Neuro 2A, normal epithelial JB-6 cells, and erythrocytes—were quite different, at that hemolytic effects of the tested compounds were higher than their cytotoxicity against other cells, especially against the ascites of Ehrlich carcinoma. Interestingly, psolusoside G (4) was not cytotoxic against normal JB-6 cells but demonstrated high activity against Neuro 2A cells. The cytotoxic activity against human colorectal adenocarcinoma HT-29 cells and the influence on the colony formation and growth of HT-29 cells of compounds 13, 57 and psolusoside A was checked. The highest inhibitory activities were demonstrated by psolusosides E (2) and F (3). Full article
(This article belongs to the Special Issue Marine Glycoconjugates: Trends and Perspectives)
Show Figures

Graphical abstract

Back to TopTop