A Study and In Vitro Evaluation of the Bioactive Compounds of Broad Bean Sprouts for the Treatment of Parkinson’s Syndrome
Abstract
:1. Introduction
2. Results
2.1. Identification of Compounds from 50% MeOH Extract Through RP-UHPLC-ESI-MS/MS
2.2. Identification of Isolated Compounds
2.3. Screening of Potential Bioactive Compounds and Related Mechanisms Through Network Pharmacology-Based Analysis
2.3.1. Bioactive Compositions of Broad Bean Sprouts and Target Prediction
2.3.2. Prediction of PD Targets and the Intersections
2.3.3. Screening of Core Components
2.3.4. The PPI Network for Broad Bean Sprouts and Common PD Targets
2.3.5. GO Enrichment Analysis and KEGG Pathway Enrichment Analysis
2.4. Experimental Validation of Neuroprotective Effects of Caffeic Acid and P-Coumaric Acid
2.4.1. Results of Drug Administration Concentrations Investigation
2.4.2. Results of Cell Viability Evaluation
2.4.3. Results of Cell Apoptosis Assessment
2.4.4. Intracellular ROS Levels
2.4.5. Detection of Cellular Inflammatory Factors Using Enzyme-Linked Immunosorbent Assay (ELISA)
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Chemicals and Reagents
4.3. Analysis Using RP-UHPLC-ESI-MS/MS
4.4. Extraction, Isolation and Identification
4.5. Network Pharmacology-Based Analysis
4.5.1. Screening Bioactive Compositions and Prediction of Potential Drug Targets
4.5.2. Acquisition of PD Target Genes and Analysis of the Intersection
4.5.3. Core Component Screening and Construction of Component Target Network
4.5.4. Construction of PPI Network of Common Targets of Broad Bean Sprouts and PD
4.5.5. GO Analysis and KEGG Pathway Enrichment Analysis
4.6. In Vitro Evaluations of Caffeic Acid and P-Coumaric Acid
4.6.1. Cell Culture
4.6.2. Investigation of Drug Administration Concentrations
4.6.3. Evaluation of Cell Viability Using MTT Assay
4.6.4. Assessing Cell Apoptosis Through Annexin-V FITC/PI Staining
4.6.5. Intracellular ROS Levels
4.6.6. Enzyme-Linked Immunosorbent Assay (ELISA)
4.6.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hayes, M.T. Parkinson’s Disease and Parkinsonism. Am. J. Med. 2019, 132, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Dickson, D.W. Parkinson’s Disease and Parkinsonism: Neuropathology. Cold Spring Harb. Perspect. Med. 2012, 2, a009258. [Google Scholar] [CrossRef]
- Ramón, C. Parkinson’s Disease: From Pathogenesis to Pharmacogenomics. Int. J. Mol. Sci. 2017, 18, 551. [Google Scholar] [CrossRef]
- AlDakheel, A.; Kalia, L.V.; Lang, A.E. Pathogenesis-Targeted, Disease-Modifying Therapies in Parkinson Disease. Neurotherapeutics 2014, 11, 6–23. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA 2020, 323, 548. [Google Scholar] [CrossRef]
- Chou, K.L.; Stacy, M.; Simuni, T.; Miyasaki, J.; Oertel, W.H.; Sethi, K.; Fernandez, H.H.; Stocchi, F. The Spectrum of “off” in Parkinson’s Disease: What Have We Learned over 40 Years. Park. Relat. Disord. 2018, 51, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Turcano, P.; Mielke, M.M.; Bower, J.H.; Parisi, J.E.; Cutsforth-Gregory, J.K.; Ahlskog, J.E.; Savica, R. Levodopa-Induced Dyskinesia in Parkinson Disease: A Population-Based Cohort Study. Neurology 2018, 91, e2238–e2243. [Google Scholar] [CrossRef]
- Rabey, J.M.; Vered, Y.; Shabtai, H.; Graff, E.; Harsat, A.; Korczyn, A.D. Broad Bean (Vicia faba) Consumption and Parkinson’s Disease. Adv. Neurol. 1993, 60, 681–684. [Google Scholar] [PubMed]
- Apaydin, H.; Ertan, S.; Özekmekçi, S. Broad Bean (Vicia faba) A Natural Source ofL-Dopa Prolongs “on” Periods in Patients with Parkinson’s Disease Who Have “On-off” Fluctuations. Mov. Disord. 2000, 15, 164–166. [Google Scholar] [CrossRef]
- Mekky, R.H.; Thabet, M.M.; Rodríguez-Pérez, C.; Elnaggar, D.M.; Mahrous, E.A.; Segura-Carretero, A.; Abdel-Sattar, E. Essam Abdel-Sattar Comparative Metabolite Profiling and Antioxidant Potentials of Seeds and Sprouts of Three Egyptian Cultivars of Vicia faba L. Food Res. Int. 2020, 136, 109537. [Google Scholar] [CrossRef]
- Liu, X.C.; Jin, H.J.; Chen, B.H.; He, L.Y.; Liu, T.S. Protective Effect of Broad Bean Seedling Extract on Parkinson’s Disease. Sci. Technol. Food Ind. 2022, 43, 379–386. (In Chinese) [Google Scholar] [CrossRef]
- Li, S.; Zhang, B. Traditional Chinese Medicine Network Pharmacology: Theory, Methodology and Application. Chin. J. Nat. Med. 2013, 11, 110–120. [Google Scholar] [CrossRef]
- Kibble, M.; Saarinen, N.; Tang, J.; Wennerberg, K.; Mäkelä, S.; Aittokallio, T. Network Pharmacology Applications to Map the Unexplored Target Space and Therapeutic Potential of Natural Products. Nat. Prod. Rep. 2015, 32, 1249–1266. [Google Scholar] [CrossRef]
- Ru, J.L.; Li, P.; Wang, J.A.; Zhou, W.; Li, B.H.; Huang, C.; Li, P.D.; Guo, Z.H.; Tao, W.Y.; Yang, Y.F.; et al. TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef]
- Roskoski, R., Jr. Rule of Five Violations among the FDA-Approved Small Molecule Protein Kinase Inhibitors. Pharmacol. Res. 2023, 191, 106774. [Google Scholar] [CrossRef]
- Zhao, L. Network Pharmacology, a Promising Approach to Reveal the Pharmacology Mechanism of Chinese Medicine Formula. J. Ethnopharmacol. 2023, 309, 116306. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Wang, X.; Zhang, D.M.; Hu, Y.J.; Li, S. Traditional Chinese medicine network pharmacology: Development in new era under guidance of network pharmacology evaluation method guidance. China J. Chin. Mater. Medica. 2022, 47, 7–17. [Google Scholar] [CrossRef]
- Li, S. Network pharmacology evaluation method guidance-Draft. World J. Tradit. Chin. Med. 2021, 7, 146–154. [Google Scholar] [CrossRef]
- Björn, H.F.; Theodora, S.; Elisabeth, D. Cellular Models for Parkinson’s Disease. J. Neurochem. 2016, 139 (Suppl. S1), 120–130. [Google Scholar] [CrossRef]
- Ramirez, A.I.; De Hoz, R.; Salobrar-Garcia, E.; Salazar, J.J.; Rojas, B.; Ajoy, D.; López-Cuenca, I.; Rojas, P.; Triviño, A.; Ramírez, J.M. The Role of Microglia in Retinal Neurodegeneration: Alzheimer’s Disease, Parkinson, and Glaucoma. Front. Aging Neurosci. 2017, 9, 214. [Google Scholar] [CrossRef]
- Litvan, I.; Halliday, G.; Hallett, M.; Goetz, C.G.; Rocca, W.; Duyckaerts, C.; Ben-Shlomo, Y.; Dickson, D.W.; Lang, A.E.; Chesselet, M.-F.; et al. The Etiopathogenesis of Parkinson Disease and Suggestions for Future Research. Part I. J. Neuropathol. Exp. Neurol. 2007, 66, 251–257. [Google Scholar] [CrossRef]
- Valente, I.M.; Cabrita, A.R.J.; Malushi, N.; Oliveira, H.M.; Papa, L.; Rodrigues, J.A.; Fonseca, A.J.M.; Maia, M.R.G. Unravelling the Phytonutrients and Antioxidant Properties of European Vicia faba L. Seeds. Food Res. Int. 2019, 116, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.Y.; Wang, M.X.; Luo, K.K.; Hu, T.B.; Li, H.M.; Huo, S.H.; Hao, L.Y.; Si, N.; Gao, W.Y.; Liu, Y.Y.; et al. Evaluation of efficacy of Dihuang Baoyuan Granules for diabetes mellitus and composition analysis and in vivo distribution based on UHPLC-LTQ-Orbitrap MS. China J. Chin. Mater. Medica 2024, 49, 2783–2797. (In Chinese) [Google Scholar] [CrossRef]
- Xie, C.; Veitch, N.C.; Houghton, P.J.; Simmonds, M.S.J. Flavone C-Glycosides from Viola Yedoensis MAKINO. Chem. Pharm. Bull. 2003, 51, 1204–1207. [Google Scholar] [CrossRef]
- Hooper, A.M.; Tsanuo, M.K.; Chamberlain, K.; Tittcomb, K.; Scholes, J.; Hassanali, A.; Khan, Z.R.; Pickett, J.A. Isoschaftoside, a C-Glycosylflavonoid from Desmodium Uncinatum Root Exudate, Is an Allelochemical against the Development of Striga. Phytochemistry 2010, 71, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Wang, W.; Li, Y.; Jilany Khan, G.; Chen, Y.; Shen, T.; Bao, N.; Hua, J.; Xue, Z.; Zhai, K.; et al. Identification of Phytochemicals and Antioxidant Activity of Premna Microphylla Turcz. Stem through UPLC-LTQ-Orbitrap-MS. Food Chem. 2022, 373, 131482. [Google Scholar] [CrossRef] [PubMed]
- Deseo, M.A.; Elkins, A.; Rochfort, S.; Kitchen, B. Antioxidant Activity and Polyphenol Composition of Sugarcane Molasses Extract. Food Chem. 2020, 314, 126180. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; del Mar Contreras, M.; Arráez-Román, D.; Fernández-Gutiérrez, A.; Segura-Carretero, A. UHPLC-ESI-QTOF-MS-Based Metabolic Profiling of Vicia faba L. (Fabaceae) Seeds A Key Strategy for Characterization in Foodomics. Electrophoresis 2014, 35, 1571–1581. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, Y.F.; Liu, Z.Y.; Song, L.M.; Liu, Y.H.; Zhang, S.L.; Chu, H.B. Study on the Characteristic Spectra and Multi indicator Component Screening and Content Determination of Kidney and Pharynx Formula Substance Standards Based on UHPLC-MS/MS Method. Mod. Tradit. Chin. Med. Mater. Medica-World Sci. Technol. 2024, 26, 704–720. (In Chinese) [Google Scholar]
- Dou, L.L.; Duan, L.; Guo, L.; Liu, L.L.; Zhang, Y.D.; Li, P.; Liu, E.H. An UHPLC-MS/MS Method for Simultaneous Determination of Quercetin 3-O-Rutinoside, Kaempferol 3-O-Rutinoside, Isorhamnetin 3-O-Rutinoside, Bilobalide and Ligustrazine in Rat Plasma, and Its Application to Pharmacokinetic Study of Xingxiong Injection. Chin. J. Nat. Med. 2017, 15, 710–720. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, S.H.; He, Y.J.; Mo, C.M.; Wu, C.Q.; Zhang, R.Y.; Zheng, X.Y.; Tang, Q. Systematic Characterization of Flavonoids from Siraitia Grosvenorii Leaf Extract Using an Integrated Strategy of High-Speed Counter-Current Chromatography Combined with Ultra High Performance Liquid Chromatography and Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry. J. Sep. Sci. 2020, 43, 852–864. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Xing, S.; Luu, T.; Fan, M.; Li, X. The Gastrointestinal Tract Metabolism and Pharmacological Activities of Grosvenorine, a Major and Characteristic Flavonoid in the Fruits of Siraitia Grosvenorii. Chem. Biodivers. 2015, 12, 1652–1664. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhou, D.; Wu, D.; Liu, W.; Liu, X. TiO2 Nanotube Immobilised 5-Lipoxygenase-Mediated Screening and Isolation of Anti-Inflammatory Active Compounds from the Leaves of Lonicera Japonica Thunb. J. Enzym. Inhib. Med. Chem. 2022, 37, 2540–2550. [Google Scholar] [CrossRef]
- Bi, W.; Zhao, G.; Zhou, Y.; Xia, X.; Wang, J.; Wang, G.; Lu, S.; He, W.; Bi, T.; Li, J. Metabonomics Analysis of Flavonoids in Seeds and Sprouts of Two Chinese Soybean Cultivars. Sci. Rep. 2022, 12, 5541. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Arráez-Román, D.; Warad, I.; Fernández-Gutiérrez, A.; Segura-Carretero, A. UHPLC/MS 2 -Based Approach for the Comprehensive Metabolite Profiling of Bean (Vicia faba L.) by-Products: A Promising Source of Bioactive Constituents. Food Res. Int. 2017, 93, 87–96. [Google Scholar] [CrossRef]
- Pérez-Vásquez, A.; Díaz-Rojas, M.; Castillejos-Ramírez, E.V.; Pérez-Esquivel, A.; Montaño-Cruz, Y.; Rivero-Cruz, I.; Torres-Colín, R.; González-Andrade, M.; Rodríguez-Sotres, R.; Gutiérrez-González, J.A.; et al. Protein Tyrosine Phosphatase 1B Inhibitory Activity of Compounds from Justicia Spicigera (Acanthaceae). Phytochemistry 2022, 203, 113410. [Google Scholar] [CrossRef]
- Ji, Y.-L.; Feng, X.; Chang, Y.-Q.; Zheng, Y.-G.; Hou, F.-J.; Zhang, D.; Guo, L. Chemical Characterization of Different Parts of Forsythia Suspensa and α-Glucosidase and Pancreatic Lipase Inhibitors Screening Based on UPLC-QTOF-MS/MS and Plant Metabolomics Analysis. Arab. J. Chem. 2024, 17, 105723. [Google Scholar] [CrossRef]
- Sharaf, M.; El-Ansari, M.A.; Saleh, N.A.M. Flavonoids of Four Cleome and Three Capparis Species. Biochem. Syst. Ecol. 1997, 25, 161–166. [Google Scholar] [CrossRef]
- Wang, H.; Hou, X.M.; Li, B.Q.; Yang, Y.; Li, Q.; Si, Y.C. Study on Active Components of Cuscuta Chinensis Promoting Neural Stem Cells Proliferation: Bioassay-Guided Fractionation. Molecules 2021, 26, 6634. [Google Scholar] [CrossRef]
- Walewska, E.; Werner, J.; Strzelecka, H. Investigations of Phenolic and Flavonoid Glycosides in Pyrus Leaves. Part 1 [Folium Pyri]. Herba Pol. 1979, 25, 99–105. [Google Scholar]
- Xiao, H.B.; Krucker, M.; Albert, K.; Liang, X.M. Determination and Identification of Isoflavonoids in Radix Astragali by Matrix Solid-Phase Dispersion Extraction and High-Performance Liquid Chromatography with Photodiode Array and Mass Spectrometric Detection. J. Chromatogr. A 2004, 1032, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Valente, I.M.; Maia, M.R.G.; Malushi, N.; Oliveira, H.M.; Papa, L.; Rodrigues, J.A.; Fonseca, A.J.M.; Cabrita, A.R.J. Profiling of Phenolic Compounds and Antioxidant Properties of European Varieties and Cultivars of Vicia faba L. Pods. Phytochem. 2018, 152, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Zakharenko, A.M.; Razgonova, M.P.; Pikula, K.S.; Golokhvast, K.S. Simultaneous Determination of 78 Compounds of Rhodiola Rosea Extract by Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry. Biochem. Res. Int. 2021, 2021, 9957490. [Google Scholar] [CrossRef]
- Bendif, H.; Miara, M.D.; Peron, G.; Sut, S.; Dall’Acqua, S.; Flamini, G.; Maggi, F. NMR, HS-SPME-GC/MS, and HPLC/MSn Analyses of Phytoconstituents and Aroma Profile of Rosmarinus Eriocalyx. Chem. Biodivers. 2017, 14. [Google Scholar] [CrossRef]
- de Rijke, E.; Out, P.; Niessen, W.M.A.; Ariese, F.; Gooijer, C.; Brinkman, U.A. Analytical Separation and Detection Methods for Flavonoids. J. Chromatogr. A 2006, 1112, 31–63. [Google Scholar] [CrossRef]
- Gruz, J.; Novák, O.; Strnad, M. Rapid Analysis of Phenolic Acids in Beverages by UPLC–MS/MS. Food Chem. 2008, 111, 789–794. [Google Scholar] [CrossRef]
- Bourgou, S.; Bettaieb Rebey, I.; Mkadmini, K.; Isoda, H.; Ksouri, R.; Ksouri, W.M. LC-ESI-TOF-MS and GC-MS Profiling of Artemisia Herba-Alba and Evaluation of Its Bioactive Properties. Food Res. Int. 2017, 99, 702–712. [Google Scholar] [CrossRef]
- Cheng, J.; Di, L.Q.; Li, J.S.; Zhao, X.L.; Zhou, W. Simultaneous determination of ten effective components in Tongsaimai Pellets by UPLC-MS/MS. Chin. Tradit. Herb. Drugs 2014, 45, 659–664. (In Chinese) [Google Scholar]
- Rubab, F.; Ijaz, H.; Hussain, S.; Munir, A.; Stuppner, S.; Jakschitz, T.; Bonn, G.K.; Ishtiaq, S. Gastroprotective Effects of Caragana Ambigua Stocks on Ethanol-Induced Gastric Ulcer in Rats Supported by LC-MS/MS Characterization of Formononetin and Biochanin A. J. Sci. Food Agric. 2022, 102, 7030–7038. [Google Scholar] [CrossRef]
- Yang, X.-M.; Wang, Y.-F.; Li, Y.-Y.; Ma, H.-L. Thermal Stability of Ginkgolic Acids from Ginkgo Biloba and the Effects of Ginkgol C17:1 on the Apoptosis and Migration of SMMC7721 Cells. Fitoterapia 2014, 98, 66–76. [Google Scholar] [CrossRef]
- Selemani, M.A.; Kazingizi, L.F.; Manzombe, E.; Bishi, L.Y.; Mureya, C.; Gwata, T.T.; Rwere, F. Phytochemical Characterization and in Vitro Antibacterial Activity of Xeroderris Stuhlmannii (Taub.) Mendonca & E.P. Sousa Bark Extracts. S. Afr. J. Bot. 2021, 142, 344–351. [Google Scholar] [CrossRef]
- Rao, M.J.; Duan, M.Z.; Wei, X.S.; Zuo, H.; Ma, L.; Qamar, M.T.U.; Li, M.; Han, S.J.; Hu, L.H.; Wang, L.Q. LC-MS/MS-Based Metabolomics Approach Revealed Novel Phytocompounds from Sugarcane Rind with Promising Pharmacological Value. J. Sci. Food Agric. 2022, 102, 6632–6642. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.C.; Hullar, M.A.; Randolph, T.W.; Franke, A.A.; Monroe, K.R.; Cheng, I.; Wilkens, L.R.; Shepherd, J.A.; Madeleine, M.M.; Le Marchand, L.; et al. Associations of Plasma Trimethylamine N-Oxide, Choline, Carnitine, and Betaine with Inflammatory and Cardiometabolic Risk Biomarkers and the Fecal Microbiome in the Multiethnic Cohort Adiposity Phenotype Study. Am. J. Clin. Nutr. 2020, 111, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.H.; Liu, M.; Dai, G.L.; Li, C.Y.; Wu, T.; Zou, G.D.; Ju, W.Z.; Xu, M.J. Simultaneous Determination of Nicotinamide and N1 -Methylnicotinamide in Human Serum by LC-MS/MS to Associate Their Serum Concentrations with Obesity. Biomed. Chromatogr. 2022, 36, 5261. [Google Scholar] [CrossRef]
- Wang, D.W.; Luo, X.D.; Jiang, B. Chemical constituents in twigs and leaves of Melodinus fusiformis. Chin. Tradit. Herb. Drugs 2012, 43, 653–657. (In Chinese) [Google Scholar]
- Thorsteinsdottir, U.A.; Runolfsdottir, H.L.; Eiriksson, F.F.; Agustsdottir, I.M.; Edvardsson, V.O.; Palsson, R.; Thorsteinsdottir, M. Optimization and Validation of a UPLC-MS/MS Assay for Simultaneous Quantification of 2,8-Dihydroxyadenine, Adenine, Allopurinol, Oxypurinol and Febuxostat in Human Plasma. J. Chromatogr. B 2024, 1235, 124041. [Google Scholar] [CrossRef]
- Pavón-Pérez, J.; Oviedo, C.A.; Elso-Freudenberg, M.; Henríquez-Aedo, K.; Aranda, M.; Pavón-Pérez, J.; Oviedo, C.A.; Elso-Freudenberg, M.; Henríquez-Aedo, K.; Aranda, M. LC-MS/MS METHOD FOR L-DOPA QUANTIFICATION IN DIFFERENT TISSUES OF VICIA FABA. J. Chil. Chem. Soc. 2019, 64, 4651–4653. [Google Scholar] [CrossRef]
- Han, L.; Liu, E.; Kojo, A.; Zhao, J.; Li, W.; Zhang, Y.; Wang, T.; Gao, X. Qualitative and Quantitative Analysis of Eclipta Prostrata L. by LC/MS. Sci. World J. 2015, 2015, e980890. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Ji, J.; Li, N.; Yu, Y.; Duan, G.; Zhang, X. Fast Determination of Curcumol, Curdione and Germacrone in Three Species of Curcuma Rhizomes by Microwave-Assisted Extraction Followed by Headspace Solid-Phase Microextraction and Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 2006, 1117, 115–120. [Google Scholar] [CrossRef]
- Tolonen, A.; Pakonen, M.; Hohtola, A.; Jalonen, J. Phenylpropanoid Glycosides from Rhodiola Rosea. Chem. Pharm. Bull. 2003, 51, 467–470. [Google Scholar] [CrossRef]
- Xu, M.Y.; Xu, Z.L.; Xu, Q.Z.; Zhang, H.Y.; Liu, M.Y.; Geng, F.; Zhang, N. UPLC-MS/MS Method for the Determination of 14 Compounds in Rat Plasma and Its Application in a Pharmacokinetic Study of Orally Administered Xiaoyao Powder. Molecules 2018, 23, 2514. [Google Scholar] [CrossRef] [PubMed]
- Mata, R.; Molares, I.; Pérez, O.; Rivero-Cruz, I.; Acevedo, L.; Enriquez-Mendoza, I.; Bye, R.; Franzblau, S.; Timmermann, B. Antimycobacterial Compounds from Piper Sanctum. J. Nat. Prod. 2004, 67, 1961–1968. [Google Scholar] [CrossRef] [PubMed]
- Fiori, J.; Naldi, M.; Gotti, R. HS–SPME–GC–MS for the Quantitation and Chiral Characterization of Camphor and Menthol in Creams. Chroma 2010, 72, 941–947. [Google Scholar] [CrossRef]
- Arciszewska, Ż.; Gama, S.; Kalinowska, M.; Świderski, G.; Świsłocka, R.; Gołebiewska, E.; Naumowicz, M.; Worobiczuk, M.; Cudowski, A.; Pietryczuk, A.; et al. Caffeic Acid/Eu(III) Complexes: Solution Equilibrium Studies, Structure Characterization and Biological Activity. Int. J. Mol. Sci. 2022, 23, 888. [Google Scholar] [CrossRef] [PubMed]
- Kola, A.; Vigni, G.; Baratto, M.C.; Valenain, D. A Combined NMR and UV-Vis Approach to Evaluate Radical Scavenging Activity of Rosmarinic Acid and Other Polyphenols. Molecules 2023, 28, 6629. [Google Scholar] [CrossRef]
- Davyt, D.; Entz, W.; Fernandez, R.; Mariezcurrena, R.; Mombrú, A.M.; Saldaña, J.; Domínguez, L.; Coll, J.; Manta, E. A New Indole Derivative from the Red Alga Chondria Atropurpurea. Isolation, Structure Determination, and Anthelmintic Activity. J. Nat. Prod. 1998, 61, 1560–1563. [Google Scholar] [CrossRef]
- Karthikeyan, B.; Devadasu, C.; Babu, P.S. Isolation, Characterization, and RP-HPLC Estimation of P-Coumaric Acid from Methanolic Extract of Durva Grass (Cynodon Dactylon Linn.) (Pers.). Int. J. Anal. Chem. 2015, 2015, 201386. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.L.; Gong, L.M.; Huang, F.B.; Cao, M.R.; Liu, Y.B.; Yuan, H.W.; Li, B.; Jian, Y.Q.; Peng, C.Y.; Zhou, S.P.; et al. A Rapid and Accurate 1HNMR Method for the Identification and Quantification of Major Constituents in Qishen Yiqi Dripping Pills. J. AOAC Int. 2021, 104, 506–514. [Google Scholar] [CrossRef]
- Nam, T.-G.; Lee, S.M.; Park, J.-H.; Kim, D.-O.; Baek, N.-i.; Eom, S.H. Flavonoid Analysis of Buckwheat Sprouts. Food Chem. 2015, 170, 97–101. [Google Scholar] [CrossRef]
- Ajayi, O.S.; Aderogba, M.A.; Obuotor, E.M.; Majinda, R.R.T. Acetylcholinesterase Inhibitor from Anthocleista Vogelii Leaf Extracts. J. Ethnopharmacol. 2019, 231, 503–506. [Google Scholar] [CrossRef]
- Regasini, L.O.; Vellosa, J.C.R.; Silva, D.H.S.; Furlan, M.; de Oliveira, O.M.M.; Khalil, N.M.; Brunetti, I.L.; Young, M.C.M.; Barreiro, E.J.; Bolzani, V.S. Flavonols from Pterogyne Nitens and Their Evaluation as Myeloperoxidase Inhibitors. Phytochemistry 2008, 69, 1739–1744. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Chen, Y.Y.1; Sun, J.Q.; Li, D.P.; Lu, F.L.; Yan, X.J. Chemical Constituents of n-Butanol Extract from the Leaves of Semiliquidambar cathayensis. J. Chin. Med. Mater. 2023, 46, 1946–1950. (In Chinese) [Google Scholar] [CrossRef]
- Znati, M.; Jannet, H.B.; Cazaux, S.; Souchard, J.P.; Skhiri, F.H.; Bouajila, J. Antioxidant, 5-Lipoxygenase Inhibitory and Cytotoxic Activities of Compounds Isolated from the Ferula Lutea Flowers. Molecules 2014, 19, 16595. [Google Scholar] [CrossRef]
- Farag, M.A.; Porzel, A.; Wessjohann, L.A. Unraveling the Active Hypoglycemic Agent Trigonelline in Balanites Aegyptiaca Date Fruit Using Metabolite Fingerprinting by NMR. J. Pharm. Biomed. Anal. 2015, 115, 383–387. [Google Scholar] [CrossRef]
- Fuentes-Herrera, P.B.; Herrera-Cabrera, B.E.; Martínez-Ayala, A.L.; Zamilpa, A.; Delgado-Alvarado, A. Content and Yield of L-DOPA and Bioactive Compounds of Broad Bean Plants: Antioxidant and Anti-Inflammatory Activity In Vitro. Plants 2023, 12, 3918. [Google Scholar] [CrossRef]
- Multari, S.; Neacsu, M.; Scobbie, L.; Cantlay, L.; Duncan, G.; Vaughan, N.; Stewart, D.; Russell, W.R. Nutritional and Phytochemical Content of High-Protein Crops. J. Agric. Food Chem. 2016, 64, 7800–7811. [Google Scholar] [CrossRef]
- Barros Silva, R.; Santos, N.A.G.; Martins, N.M.; Ferreira, D.A.S.; Barbosa, F., Jr.; Souza, V.C.O.; Kinoshita, A.; Baffa, O.; Del-Bel, E.; Santos, A.C. Caffeic Acid Phenethyl Ester Protects against the Dopaminergic Neuronal Loss Induced by 6-Hydroxydopamine in Rats. Neuroscience 2013, 233, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Fontanilla, C.V.; Ma, Z.; Wei, X.; Klotsche, J.; Zhao, L.; Wisniowski, P.; Dodel, R.C.; Farlow, M.R.; Oertel, W.H.; Du, Y. Caffeic Acid Phenethyl Ester Prevents 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Neurodegeneration. Neuroscience 2011, 188, 135–141. [Google Scholar] [CrossRef]
- Zaitone, S.A.; Ahmed, E.; Elsherbiny, N.M.; Mehanna, E.T.; El-Kherbetawy, M.K.; ElSayed, M.H.; Alshareef, D.M.; Moustafa, Y.M. Caffeic Acid Improves Locomotor Activity and Lessens Inflammatory Burden in a Mouse Model of Rotenone-Induced Nigral Neurodegeneration: Relevance to Parkinson’s Disease Therapy. Pharmacol. Rep. 2019, 71, 32–41. [Google Scholar] [CrossRef]
- Kiliç, I.; Yesiloglu, Y. Spectroscopic Studies on the Antioxidant Activity of P-Coumaric Acid. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 2013, 115, 719–724. [Google Scholar] [CrossRef]
- Ding, P.; Ye, Z.; Liu, B.; Zhang, L.Y. Effect of Protocatechualdehyde on Streptozotocin Induced Diabetic Cardiomyopathy in Mice. Mod. Food Sci. Technol. 2023, 1–7. (In Chinese) [Google Scholar] [CrossRef]
- Mu, J.F.; Song, J.X.; Li, R.; Xue, T.Y.; Wang, D.X.; Yu, J.H. Isovitexin Prevents DSS-Induced Colitis through Inhibiting Inflammation and Preserving Intestinal Barrier Integrity through Activating AhR. Chem. Biol. Interact. 2023, 382, 110583. [Google Scholar] [CrossRef] [PubMed]
- Buonerba, C.; Placido, P.D.; Bruzzese, D.; Pagliuca, M.; Ungaro, P.; Bosso, D.; Ribera, D.; Iaccarino, S.; Scafuri, L.; Liotti, A.; et al. Isoquercetin as an Adjunct Therapy in Patients With Kidney Cancer Receiving First-Line Sunitinib (QUASAR): Results of a Phase I Trial. Front. Pharmacol. 2018, 9, 189. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lin, L.M.; Sui, F.; Wang, Z.M.; Huo, H.R.; Dai, L.; Jiang, T.L. Chemistry and Pharmacology of Siraitia Grosvenorii: A Review. Chin. J. Nat. Med. 2014, 12, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.H.; Dai, D.K.; Zheng, B.Z.-Y.; Duan, R.; Chan, G.K.-L.; Dong, T.T.-X.; Qin, Q.-W.; Tsim, K.W.-K. The Binding of Kaempferol-3-O-Rutinoside to Vascular Endothelial Growth Factor Potentiates Anti-Inflammatory Efficiencies in Lipopolysaccharide-Treated Mouse Macrophage RAW264.7 Cells. Phytomedicine Int. J. Phytother. Phytopharm. 2021, 80, 153400. [Google Scholar] [CrossRef]
- Hwang, D.; Kang, M.J.; Kang, C.W.; Kim, G.D. Kaempferol-3-O-β-rutinoside Suppresses the Inflammatory Responses in Lipopolysaccharide-stimulated RAW264.7 Cells via the NF-κB and MAPK Pathways. Int. J. Mol. Med. 2019, 44, 2321–2328. [Google Scholar] [CrossRef]
- Hua, F.; Li, J.Y.; Zhang, M.; Zhou, P.; Wang, L.; Ling, T.J.; Bao, G.H. Kaempferol-3-O-Rutinoside Exerts Cardioprotective Effects through NF-κB/NLRP3/Caspase-1 Pathway in Ventricular Remodeling after Acute Myocardial Infarction. J. Food Biochem. 2022, 46, e14305. [Google Scholar] [CrossRef]
- Guan, S.; Sun, L.; Wang, X.; Huang, X.; Luo, T. Isoschaftoside Inhibits Lipopolysaccharide-Induced Inflammation in Microglia through Regulation of HIF-1α-Mediated Metabolic Reprogramming. Evid. Based Complement. Altern. Med. 2022, 2022, 5227335. [Google Scholar] [CrossRef]
- Gao, S.; Zhou, C.; Hou, L.; Xu, K.; Zhang, Y.; Wang, X.; Li, J.; Liu, K.; Xia, Q. Narcissin Induces Developmental Toxicity and Cardiotoxicity in Zebrafish Embryos via Nrf2/HO-1 and Calcium Signaling Pathways. J. Appl. Toxicol. 2024, 44, 344–354. [Google Scholar] [CrossRef]
- Patel, D.K. Pharmacological Activities and Therapeutic Potential of Kaempferitrin in Medicine for the Treatment of Human Disorders: A Review of Medicinal Importance and Health Benefits. Cardiovasc. Hematol. Disord. Drug Targets 2021, 21, 104–114. [Google Scholar] [CrossRef]
- Li, J.C.; Yang, J.K.; Xian, Q.W.; Su, H.W.; Ni, Y.F.; Wang, L. Kaempferitrin Attenuates Unilateral Ureteral Obstruction-Induced Renal Inflammation and Fibrosis in Mice by Inhibiting NOX4-Mediated Tubular Ferroptosis. Phytother. Res. PTR 2024, 38, 2656–2668. [Google Scholar] [CrossRef] [PubMed]
- Rasheeda, K.; Fathima, N.N. Trigonelline Hydrochloride: A Promising Inhibitor for Type I Collagen Fibrillation. Colloids Surf. B Biointerfaces 2018, 170, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Roy, S.; Dutta, A.; Jana, K.; Ukil, A. Leishmania Donovani Targets Host Transcription Factor NRF2 To Activate Antioxidant Enzyme HO-1 and Transcriptional Repressor ATF3 for Establishing Infection. Infect. Immun. 2021, 89, e0076420. [Google Scholar] [CrossRef] [PubMed]
No. | tR (min) | Compound | Molecular Formula | M.W. | MS, MS2 | Error (ppm) | Ref. |
---|---|---|---|---|---|---|---|
Flavonoids | |||||||
1 | 24.499 | Vicenin II | C27H30O15 | 594 | 593.1511 | −0.25 | [22,23] |
2 | 25.127 | Schaftoside * | C26H28O14 | 564 | 563.1406 609.1461 545.1286 503.1100 473.1089 443.0985 383.0772 353.0665 | 0 | [22,23,24,25,26,27] |
3 | 25.131 | Rutin | C27H30O16 | 610 | 611.1609 303.0400 | 0.37 | [10,28,29,30] |
4 | 25.392 | Homoorientin * | C21H20O11 | 448 | 447.0931 327.0508 | −0.22 | [27] |
5 | 25.446 | Grosvenorine * | C33H40O19 | 740 | 739.2090 775.1854 | −0.01 | [31,32] |
6 | 25.793 | Lonicerin * | C27H30O15 | 594 | 593.1510 285.0403 | −0.26 | [29,33,34] |
7 | 26.381 | Isovitexin | C21H20O10 | 432 | 431.0981 341.0665 311.0561 | −0.36 | [34,35] |
8 | 26.693 | Kaempferitrin | C27H30O14 | 578 | 1155.3192 623.1617 577.1561 | −0.37 | [31,32,36] |
9 | 26.723 | Kaempferol | C15H10O6 | 286 | 287.0544 258.0525 241.0497 213.0547 165.0184 | −2.00 | [27,29,37] |
10 | 27.039 | Kaempferol−3-O-rutinoside | C27H30O15 | 594 | 593.1514 285.0401 | −0.26 | [31,37,38] |
11 | 27.276 | Astragalin * | C21H20O11 | 448 | 447.0934 284.0327 255.0299 227.0350 | 0.37 | [29,39] |
12 | 28.890 | Quercetin 7-rhamnoside * | C21H20O11 | 448 | 447.0932 301.0351 | 0.20 | [38] |
13 | 29.441 | Kaempferol 3-glucorhamnoside | C27H30O15 | 594 | 595.1660 287.0552 | 0.19 | [40] |
14 | 30.859 | Calycosin * | C16H12O5 | 284 | 285.0758 270.0524 253.0497 225.0548 | −0.56 | [29,41] |
15 | 30.914 | Luteolin | C15H10O6 | 286 | 285.0403 | −0.41 | [42,43,44] |
16 | 35.256 | Hydroxygenkwanin * | C16H12O6 | 300 | 299.0560 284.0325 | −0.28 | [29] |
17 | 37.632 | Genkwanin * | C16H12O5 | 284 | 285.0758 270.0526 | −0.27 | [44,45] |
Phenolic acids | |||||||
18 | 34.796 | Formononetin * | C16H12O4 | 268 | 269.0808 291.0625 237.0547 | −0.37 | [29] |
19 | 3.484 | Caffeic acid * | C9H8O4 | 180 | 163.0390 181.0495 198.0761 | 0.05 | [27,29] |
20 | 5.359 | p-Coumaric acid | C9H8O3 | 164 | 165.0547 147.0441 | 0.37 | [29] |
21 | 24.380 | Ferulic acid | C10H10O4 | 194 | 239.0560 193.0504 149.0807 | −0.63 | [29,44] |
Organic acids | |||||||
22 | 28.693 | 4-Hydroxybenzoic acid * | C7H6O3 | 138 | 137.0244 93.0345 | −0.36 | [46] |
23 | 33.094 | Artemisinic acid * | C15H22O2 | 234 | 235.1693 491.3119 | 0.66 | [47] |
24 | 1.955 | Citric acid | C6H8O7 | 192 | 191.0197 173.0089 154.9985 | −0.31 | [29] |
25 | 28.268 | Azelaic acid | C9H16O4 | 188 | 187.0975 125.0971 97.0658 | −0.26 | [22] |
26 | 30.460 | Liquiritigenin * | C15H12O4 | 256 | 255.0662 153.0193 135.0088 119.0502 | −0.33 | [45,48] |
27 | 31.300 | Biochanin A * | C16H12O5 | 284 | 283.0610 | −0.56 | [34,49] |
28 | 35.420 | Ginkgolic acid (C13:0) * | C20H32O3 | 320 | 321.2425 147.1170 105.0600 | 0.13 | [50] |
29 | 36.021 | Roburic acid * | C30H48O2 | 440 | 441.3726 | −0.27 | [51] |
30 | 40.041 | α-Linolenic acid * | C18H30O2 | 278 | 279.2319 261.2218 243.2112 123.1170 | 0.06 | [43] |
31 | 23.045 | trans−3-Indoleacrylic acid * | C11H9NO2 | 187 | 188.0706 | −0.10 | [52] |
32 | 1.652 | Choline * | C5H13NO | 103 | 104.1070 60.0811 | 0.11 | [52,53] |
33 | 1.773 | Trigonelline HCl * | C7H7NO2 | 137 | 138.0551 94.0652 | 0.72 | [52] |
34 | 2.894 | Cytosine * | C4H5N3O | 111 | 112.0505 95.0241 69.0449 | −0.35 | [23] |
35 | 2.996 | Nicotinic acid * | C6H5NO2 | 123 | 124.0394 105.0337 77.0386 | 0.51 | [23,29] |
36 | 3.362 | Nicotinamide * | C6H6N2O | 122 | 123.0553 106.0358 78.0339 | −0.12 | [54] |
37 | 3.492 | 6-Hydroxyindole * | C8H7NO | 133 | 134.0600 | 0.02 | [55] |
38 | 23.190 | Adenine * | C5H5N5 | 135 | 136.0618 119.0353 | 0.65 | [56] |
39 | 1.433 | DL-Lysine | C6H14N2O2 | 146 | 147.1129 130.0864 84.0809 | 0.56 | [23] |
40 | 1.741 | Betaine * | C5H11NO2 | 117 | 118.0863 235.1653 | −0.10 | [29] |
41 | 2.491 | L-Valine * | C5H11NO2 | 117 | 118.0863 72.0809 | −0.11 | [23] |
42 | 3.484 | Levodopa | C9H11NO4 | 197 | 198.0761 395.1449 152.0707 | 0.06 | [57] |
43 | 3.487 | Vicine | C10H16N4O7 | 304 | 305.1091 141.0413 | −0.37 | [10] |
44 | 39.024 | Ecliptasaponin A * | C36H58O9 | 634 | 633.4013 113.0243 | 0.69 | [58] |
45 | 38.548 | Germacrone * | C15H22O | 218 | 219.1744 201.1639 | 0.34 | [59] |
46 | 38.570 | Curdione * | C15H24O2 | 236 | 237.1849 219.1749 201.1638 159.1170 | 0.06 | [59] |
47 | 3.488 | Protocatechualdehyde * | C7H6O3 | 138 | 139.0390 111.0441 93.0336 65.0385 | 0.11 | [29] |
48 | 27.863 | Rosarin * | C20H28O10 | 428 | 855.3290 463.1375 427.1606 | −0.80 | [60] |
49 | 29.386 | Ligustilide * | C12H14O2 | 190 | 191.1067 173.0962 | 0.05 | [61] |
50 | 34.268 | Demethoxyyangonin * | C14H12O3 | 228 | 229.0860 183.0807 141.0700 | 0.21 | [62] |
51 | 29.385 | Camphor * | C10H16O | 152 | 153.1274 135.1168 | 0.04 | [63] |
52 | 27.122 | Pinoresinol 4-O-glucoside (+) * | C26H32O11 | 520 | 519.1872 357.1344 151.0400 136.0165 | 0.11 | [37] |
Concentration (µM) | SH-SY5Y | PC-12 | ||
---|---|---|---|---|
Caffeic Acid | p-Coumaric Acid | Caffeic Acid | p-Coumaric Acid | |
Con | 1.99 ± 0.670 | 0.00 ± 0.031 | ||
100 | −2.54 ± 0.050 | 10.11 ± 0.059 | −1.11 ± 0.011 | 14.46 ± 0.030 |
50 | −5.73 ± 0.050 | −4.88 ± 0.051 | −3.34 ± 0.024 | 0.95 ± 0.028 |
25 | −4.78 ± 0.026 | −3.54 ± 0.032 | −5.74 ± 0.023 | −0.30 ± 0.034 |
12.5 | −1.18 ± 0.012 | −3.80 ± 0.029 | −2.44 ± 0.036 | −4.13 ± 0.034 |
6.25 | −2.96 ± 0.017 | −2.36 ± 0.049 | −2.55 ± 0.051 | 1.30 ± 0.022 |
3.125 | 3.74 ± 0.032 | 5.37 ± 0.012 | −2.84 ± 0.008 | 3.83 ± 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, D.; Qing, G.; Liu, X.; Cheng, J.; Zhang, K.; He, L. A Study and In Vitro Evaluation of the Bioactive Compounds of Broad Bean Sprouts for the Treatment of Parkinson’s Syndrome. Molecules 2024, 29, 5160. https://doi.org/10.3390/molecules29215160
Hu D, Qing G, Liu X, Cheng J, Zhang K, He L. A Study and In Vitro Evaluation of the Bioactive Compounds of Broad Bean Sprouts for the Treatment of Parkinson’s Syndrome. Molecules. 2024; 29(21):5160. https://doi.org/10.3390/molecules29215160
Chicago/Turabian StyleHu, Danni, Guanglei Qing, Xuecheng Liu, Jianming Cheng, Kewei Zhang, and Lingyun He. 2024. "A Study and In Vitro Evaluation of the Bioactive Compounds of Broad Bean Sprouts for the Treatment of Parkinson’s Syndrome" Molecules 29, no. 21: 5160. https://doi.org/10.3390/molecules29215160
APA StyleHu, D., Qing, G., Liu, X., Cheng, J., Zhang, K., & He, L. (2024). A Study and In Vitro Evaluation of the Bioactive Compounds of Broad Bean Sprouts for the Treatment of Parkinson’s Syndrome. Molecules, 29(21), 5160. https://doi.org/10.3390/molecules29215160