rac-2-(2′-Ferrocenyl-2′-hydroxy-n-propyl)-1,3-benzothiazole
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Synthesis of rac-2-(2′-Ferrocenyl-2′-hydroxy-n-propyl)-1,3-benzothiazole (1)
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pauson, P.L. Ferrocene—How it all began. J. Organomet. Chem. 2001, 637–639, 3–6. [Google Scholar] [CrossRef]
- Pauson, P.L. Ferrocene and related compounds. Q. Rev. Chem. Soc. 1955, 9, 391–414. [Google Scholar] [CrossRef]
- Phillips, E.S. (Ed.) Ferrocenes: Compounds, Properties and Applications; Nova: Hauppauge, NY, USA, 2011. [Google Scholar]
- Togni, A.; Hayashi, T. (Eds.) Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science; VCH: Weinheim, Germany, 1995. [Google Scholar]
- Štěpnička, P. Forever young: The first seventy years of ferrocene. Dalton Trans. 2022, 51, 8085–8102. [Google Scholar] [CrossRef]
- Patra, M.; Gasser, G. The medicinal chemistry of ferrocene and its derivatives. Nat. Rev. Chem. 2017, 1, 0066. [Google Scholar] [CrossRef]
- Vessières, A. Iron compounds as anticancer agents. In Metal-Based Anticancer Agents; Casini, A., Vessières, A., Meier-Menches, S.M., Eds.; RSC: Cambridge, UK, 2019; pp. 62–90. [Google Scholar]
- Popova, L.V.; Babin, V.N.; Belousov, Y.A.; Nekrasov, Y.S.; Snegireva, A.E.; Borodina, N.P.; Shaposhnikova, G.M.; Bychenko, O.B.; Raevskii, P.M.; Morozova, N.B.; Ilyina, A.I.; Shitov, K.G. Antitumor effects of binuclear ferrocene derivatives. Appl. Organomet. Chem. 1993, 7, 85–94. [Google Scholar] [CrossRef]
- Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2003; pp. 155–158. [Google Scholar]
- Keri, R.S.; Patil, M.R.; Patil, S.A.; Budagumpi, S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem. 2015, 89, 207–251. [Google Scholar] [CrossRef]
- Gill, R.K.; Rawal, R.K.; Bariwal, J. Recent advances in the chemistry and biology of benzothiazoles. Arch. Pharm. Chem. Life Sci. 2015, 348, 155–178. [Google Scholar] [CrossRef]
- Seth, S. A comprehensive review on recent advances in the synthesis & pharmacotherapeutic potential of benzothiazoles. Anti-inflamm. Anti-Allergy Agents Med. Chem. 2015, 14, 98–112. [Google Scholar]
- Singh, R.; Sindhu, J.; Devi, M.; Kumar, A.; Kumar, R.; Hussain, K.; Kumar, P. Solid-supported materials-based synthesis of 2-substituted benzothiazoles: Recent developments and sanguine future. ChemistrySelect 2021, 6, 6388–6449. [Google Scholar] [CrossRef]
- Zhilitskaya, L.V.; Shainyan, B.A.; Yarosh, N.O. Modern approaches to the synthesis and transformations of practically valuable benzothiazole derivatives. Molecules 2021, 26, 002190. [Google Scholar] [CrossRef]
- Filho, M.S.; Moraes, E.S.; da Luz, L.C.; da Silveira Santos, F.; Martin, A.; Benhida, R.; Duarte, L.G.T.A.; Rodembusch, F.S. Synthesis, photophysics, and theoretical calculations of styryl-based fluorophores harboring substituted benzothiazole acceptors. J. Photochem. Photobiol. A Chem. 2023, 435, 114287. [Google Scholar] [CrossRef]
- Chikashita, H.; Ishihara, M.; Takigawa, K.; Itoh, K. Synthetic application of benzothiazole ring system as an off-on type of leaving group. Synthesis of ketones and carboxylic acid derivatives from 2-(1-substituted 1-hydroxyalkyl)- and 2-(1-hydroxyalkyl)benzothiazoles. Bull. Chem. Soc. Jpn. 1991, 64, 3256–3261. [Google Scholar] [CrossRef]
- Xu, J.; Frcic, A.; Clyburne, J.A.C.; Gossage, R.A.; Yu, H.-Z. Thin layer electrochemistry of 1,3-diferrocenyl-2-buten-1-one: Direct correlation between driving force and liquid/liquid interfacial electron transfer rates. J. Phys. Chem. B 2004, 108, 5742–5746. [Google Scholar] [CrossRef]
- Kumar, V.; May, K.L.; Lough, A.J.; Gossage, R.A. The crystal and molecular structure of 1-ferrocenyl-3,3-bis(methylthio)prop-2-en-1-one. Z. Naturforsch. 2023, 78b, 579–581. [Google Scholar] [CrossRef]
- Hill, M.C.; Lough, A.J.; Gossage, R.A. Synthesis and structural studies of group 12 oxazoline-enolate coordination complexes of (Z)-1-R-2-(4′,4′-dimethyl-2′-oxazolin-2′-yl)-eth-1-en-1-ates: Part I: The zinc derivatives. Can. J. Chem. 2023, 101, 497–503. [Google Scholar] [CrossRef]
- Hill, M.C.; Lougth, A.J.; Gossage, R.A. Heteroatom Exchange Chemistry in (Z)-1-R-2-(4′,4′-dimethyl)-2′-oxazolin-2′yl)-eth-1-en-1-ols: Access to Chelate-stabilized Thioester Analogues of Dithiooxophosphoranes. Chem. Lett. 2022, 51, 170–172. [Google Scholar] [CrossRef]
- Petrov, A.; Adjei, J.A.; Lough, A.J.; Wylie, R.S.; Gossage, R.A. Synthesis, Characterization, and Catalytic Exploration of Mononuclear Mo(VI) Dioxido Complexes of (Z)-1-R-2-(4′,4′-Dimethyl-2′-oxazolin-2′-yl)-eth-1-en-1-ates. Molecules 2022, 27, 001309. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.C.; Chojnacka, M.W.; Quail, J.W.; Gardiner, M.G.; Decken, A.; Yates, B.F.; Gossage, R.A. Oxazoles revisited: On the nature of binding of benzoxazole and 2-methylbenzoxazole with the zinc and palladium halides. Dalton Trans. 2011, 40, 1594–1600. [Google Scholar] [CrossRef] [PubMed]
- Mochida, T.; Shimizu, H.; Suzuki, S.; Akasaka, T. Synthesis and properties of azole-substituted ferrocenes. J. Organomet. Chem. 2006, 691, 4882–4889. [Google Scholar] [CrossRef]
- Snegur, L.V.; Simenel, A.A.; Nekrasov, Y.S.; Morozova, E.A.; Starikova, Z.A.; Peregudova, L.A.; Kuzmenko, Y.V.; Babin, V.N.; Ostrovskaya, L.A.; Bluchterova, N.V.; Fomina, M.M. Synthesis, structure and redox potentials of biologically active ferrocenylalkyl azoles. J. Organomet. Chem. 2004, 689, 2473–2479. [Google Scholar] [CrossRef]
- de Greñu, B.D.; Fernández-Aroca, D.M.; Organero, J.A.; Durá, G.; Jalón, F.A.; Sánchez-Prieto, R.; Ruiz-Hidalgo, M.J.; Rodríguez, A.M.; Santos, L.; Albasanz, J.L.; Manzano, B.R. Ferroazoles: Ferrocenyl derivatives of letrozole with dual effects as potent aromatase inhibitors and cytostatic agents. J. Biol. Inorg. Chem. 2023, 28, 531–547. [Google Scholar] [CrossRef] [PubMed]
- Sommer, R.D. How to grow crystals for X-ray crystallography. Acta Cryst. 2024, C80, 337–342. [Google Scholar] [CrossRef]
- Müller, P. Practical suggestions for better crystal structures. Crystallogr. Rev. 2009, 15, 57–83. [Google Scholar] [CrossRef]
- Etter, M.C.; Jahn, D.A.; Donahue, B.S.; Johnson, R.B.; Ojala, C. Growth and characterization of small organic crystals. J. Cryst. Growth 1986, 76, 645–655. [Google Scholar] [CrossRef]
- Lough, A.J.; (X-ray Crystallography Laboratory, University of Toronto, Toronto, ON, Canada). Personal communication, 2024.
- Cerniani, A.; Passerini, R. The near-ultra-violet absorption spectra of some heterocyclic compounds. Part II. Benzothiazoles. J. Chem. Soc. 1954, 2261–2264. [Google Scholar] [CrossRef]
- Gordon, R.D.; Yang, R.F. Vapor absorption spectra of benzoxazole, benzimidazole, and benzothiazole near 2850 Å. Can. J. Chem. 1970, 48, 1722–1729. [Google Scholar] [CrossRef]
- Knyazhanskii, M.I.; Gilyanovskii, P.V.; Osipov, O.A. Luminescence and photochemistry of azoles (review). Chem. Heterocyclic Cmpds. 1977, 13, 1160–1177. [Google Scholar] [CrossRef]
- Galvão, T.L.P.; Kuznetsova, A.; Gomes, J.R.B.; Zheludkevich, M.L.; Tedim, J.; Ferreira, M.G.S. A computational UV-Vis spectroscopic study of the chemical speciation of 2-mercaptobenzothiazole corrosion inhibitor in aqueous solution. Theor. Chem. Acc. 2016, 135, 000078. [Google Scholar] [CrossRef]
- Mubarik, A.; Mahmood, S.; Rasool, N.; Hashmi, M.A.; Ammar, M.; Mutahir, S.; Ali, K.G.; Bilal, M.; Akhtar, M.N.; Ashraf, G.A. Computational study of benzothiazole derivatives for conformational, thermodynamic and spectroscopic features and their potential to act as antibacterials. Crystals 2022, 12, 000912. [Google Scholar] [CrossRef]
- Sohn, Y.S.; Hendrickson, D.N.; Gray, H.B. Electronic structure of metallocenes. J. Am. Chem. Soc. 1971, 93, 3603–3612. [Google Scholar]
- Phillips, L.; Lacey, A.R.; Cooper, M.K. Analysis of substituted ferrocenes by infrared spectroscopy. J. Chem. Soc. Dalton Trans. 1988, 1383–1391. [Google Scholar] [CrossRef]
- Mohammadi, N.; Ganesan, A.; Chantler, C.T.; Wang, F. Differentiation of ferrocene D5d and D5h conformers by IR spectroscopy. J. Organomet. Chem. 2012, 713, 51–59. [Google Scholar] [CrossRef]
- Kumar, S.; Rathore, D.S.; Garg, G.; Khatri, K.; Saxena, R.; Sahu, S.K. Synthesis and evaluation of some benzothiazole derivatives as antidiabetic agents. Int. J. Pharma. Pharma. Sci. 2017, 9, 60–68. [Google Scholar] [CrossRef]
- Arjunan, V.; Sakiladevi, S.; Rani, T.; Mythili, C.V.; Mohan, S. FTIR, FT-Raman, FT-NMR, UV-visible and quantum mechanical investigations of 2-amino-4-methylbenzothiazole. Spectrochim. Acta A 2012, 88, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Duff, E.J.; Hughes, M.N.; Rutt, K.J. Structure and infrared spectra of some nitrato-complexes of cobalt(II), nickel(II), copper(II) and zinc(II) with heterocyclic ligands. J. Chem. Soc. A 1969, 2126–2128. [Google Scholar] [CrossRef]
- Hughes, M.N.; Rutt, R.J. The far infrared spectra of some complexes of palladium(II) with thiazoles. Spectrochim. Acta 1971, 27A, 924–925. [Google Scholar] [CrossRef]
- Ahuja, I.S.; Singh, R.; Rai, C.P. 2-Methylbenzothiazole complexes with some uranyl salts. Current Sci. 1978, 47, 622–624. [Google Scholar]
- Mohamed, A.A.; Aly, A.A.M.; El-Shabasy, M. Magnetic and spectral properties of 2-methylbenzoxazole, benzothiazole, and 2-methylbenzothiazole complexes with copper(II) dichloroacetate. Croat. Chem. Acta 1986, 59, 509–512. [Google Scholar]
- Caruso, U.; Panunzi, B.; Roviello, A.; Tingoli, M.; Tuzi, A. Two aminobenzothiazole derivatives for Pd(II) and Zn(II) coordination. Synthesis, characterization and solid state fluorescence. Inorg. Chem. Commun. 2011, 14, 46–48. [Google Scholar] [CrossRef]
- Artemenko, M.V.; Slyusarenko, K.F. Complex formation by copper(II) chloride with 2-(hydroxyalkyl)-benzothiazoles. Russ. J. Inorg. Chem. 1964, 9, 1376–1380. [Google Scholar]
- Artemenko, M.V.; Slyusarenko, K.F. Formation of complexes of copper salts with 2-(hydroxyalkyl)-benzothiazoles and 2-methylbenzothiazole. Russ. J. Inorg. Chem. 1965, 10, 620–624. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhen, M.G.; May, K.L.; Gossage, R.A. rac-2-(2′-Ferrocenyl-2′-hydroxy-n-propyl)-1,3-benzothiazole. Molbank 2024, 2024, M1893. https://doi.org/10.3390/M1893
Zhen MG, May KL, Gossage RA. rac-2-(2′-Ferrocenyl-2′-hydroxy-n-propyl)-1,3-benzothiazole. Molbank. 2024; 2024(4):M1893. https://doi.org/10.3390/M1893
Chicago/Turabian StyleZhen, Martin G., Kathleen L. May, and Robert A. Gossage. 2024. "rac-2-(2′-Ferrocenyl-2′-hydroxy-n-propyl)-1,3-benzothiazole" Molbank 2024, no. 4: M1893. https://doi.org/10.3390/M1893
APA StyleZhen, M. G., May, K. L., & Gossage, R. A. (2024). rac-2-(2′-Ferrocenyl-2′-hydroxy-n-propyl)-1,3-benzothiazole. Molbank, 2024(4), M1893. https://doi.org/10.3390/M1893