Antineoplastic and Antitrypanosomal Properties of Propolis from Tetragonula biroi Friese
Abstract
:1. Introduction
2. Results
2.1. Chemical Profiling of Crude Philippine Propolis
2.2. Characterization of Ph-2-14 as 27-Hydroxymangiferonic Acid
2.3. Characterization of Ph-2-11 as 27-Hydroxyisomangiferolic Acid
2.4. Characterization of Ph-2-20 as Isomangiferolic Acid
2.5. Antineoplastic Properties of Philippine Propolis
2.6. Antitrypanosomal Activity of the Philippine Propolis Sample Tested against T. brucei S427 Strain
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Propolis Collection and Preparation for LC-MS
4.3. Extraction and Purification of Propolis
4.3.1. Extraction
4.3.2. Purification
Column Chromatography
Size-Exclusion Chromatography
4.4. Structure Elucidation
4.4.1. Nuclear Magnetic Resonance
4.4.2. LC-MS
4.4.3. Evaluation of Antitumor Property: Cell Viability Assay
4.4.4. Antitrypanosomal Assay In Vitro
4.4.5. Statistical Analysis
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sanpa, S.; Popova, M.; Bankova, V.; Tunkasiri, T.; Eitssayeam, S.; Chantawannakul, P. Antibacterial Compounds from Propolis of Tetragonula laeviceps and Te melanoleuca (Hymenoptera: Apidae) from Thailand. PLoS ONE 2015, 10, e0126886. [Google Scholar]
- Choudhari, M.K.; Haghniaz, R.; Rajwade, J.M.; Paknikar, K.M. Anticancer Activity of Indian Stingless Bee Propolis: An In Vitro Study. Evid. Based Complement. Altern. Med. 2013, 2013, 928280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, T.D.; Ogbourne, S.M.; Brooks, P.R.; Sánchez-Cruz, N.; Medina-Franco, J.L.; Quinn, R.J. Lessons from Exploring Chemical Space and Chemical Diversity of Propolis Components. Int. J. Mol. Sci. 2020, 21, 4988. [Google Scholar] [CrossRef] [PubMed]
- Wagh, V.D. Propolis: A Wonder Bees Product and Its Pharmacological Potentials. Adv. Pharmacol. Sci. 2013, 2013, 308249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bankova, V.; Popova, M.; Trusheva, B. The phytochemistry of the honeybee. Phytochemistry 2018, 155, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Miorin, P.L.; Junior, N.C.L.; Custodio, A.R.; Bretz, W.A.; Marcucci, M.C. Antibacterial activity of honey and propolis from Apis mellifera and Tetragonisca angustula against Staphylococcus aureus. J. Appl. Microbiol. 2003, 95, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Sawaya, A.C.H.F.; Cunha, I.B.S.; Marcucci, M.C.; de Oliveira Rodrigues, R.F.; Eberlin, M.N. Brazilian Propolis of Tetragonisca angustula and Apis mellifera. Apidologie 2006, 37, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Aminimoghadamfarouj, N.; Nematollahi, A. Propolis Diterpenes as a Remarkable Bio-Source for Drug Discovery Development: A Review. Int. J. Mol. Sci. 2017, 18, 1290. [Google Scholar] [CrossRef] [Green Version]
- Abd Jalil, M.A.; Kasmuri, A.R.; Hadi, H. Stingless Bee Honey, the Natural Wound Healer: A Review. Ski. Pharmacol. Physiol. 2017, 30, 66–75. [Google Scholar] [CrossRef]
- Choudhari, M.K.; Punekar, S.A.; Ranade, R.V.; Paknikar, K.M. Antimicrobial activity of stingless bee (Trigona sp.) propolis used in the folk medicine of Western Maharashtra, India. J. Ethnopharmacol. 2012, 141, 363–367. [Google Scholar] [CrossRef]
- Mulyati, A.H.; Sulaeman, A.; Marliyati, S.A.; Rafi, M.; Fikri, A.M. Phytochemical analysis and antioxidant activities of ethanol extract of stingless bee propolis from Indonesia. AIP Conf. Proc. 2020, 2243, 030014. [Google Scholar]
- Bonamigo, T.; Campos, J.F.; Alfredo, T.M.; Balestieri, J.B.P.; Cardoso, C.A.L.; Paredes-Gamero, E.J.; Souza, K.D.P.; dos Santos, E.L. Antioxidant, cytotoxic, and toxic activities of propolis from two native bees in Brazil: ScaptoTetragonula depilis and Melipona quadrifasciata anthidioides. Oxidative Med. Cell. Longev. 2017, 2017, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.X.; Nguyen, M.T.T.; Nguyen, N.T.; Awale, S. Chemical constituents of propolis from Vietnamese Tetragonula minor and their antiausterity activity against the PANC-1 Human Pancreatic Cancer Cell Line. J. Nat. Prod. 2017, 80, 2345–2352. [Google Scholar] [CrossRef] [PubMed]
- Xuan, H.; Li, Z.; Yan, H.; Sang, Q.; Wang, K.; He, Q.; Wang, Y.; Hu, F. Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells. Evid. Based Complement. Altern. Med. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Escobedo-Martinez, C.; Concepcion Lozada, M.; Hernandez Ortega, S.; Villarreal, M.L.; Gnecco, D.; Enriquez, R.G.; Reynolds, W. 1H and 13C NMR characterization of new cycloartane triterpenes from Mangifera indica. Magn. Reson. Chem. 2012, 50, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Dong, Y.; Du, H.; Shi, H.; Peng, Y.; Li, X. Antioxidant Compounds from Propolis Collected in Anhui, China. Molecules 2011, 16, 3444–3455. [Google Scholar] [CrossRef]
- Abdulkhani, A.; Hosseinzadeh, J.; Ashori, A.; Esmaeeli, H. Evaluation of the antibacterial activity of cellulose nanofibers/polylactic acid composites coated with ethanolic extract of propolis. Polym. Compos. 2017, 38, 13–19. [Google Scholar] [CrossRef]
- Bueno-Silva, B.; Marsola, A.; Ikegaki, M.; Alencar, S.M.; Rosalen, P.L. The effect of seasons on Brazilian red propolis and its botanical source: Chemical composition and antibacterial activity. Nat. Prod. Res. 2017, 31, 1318–1324. [Google Scholar] [CrossRef]
- Lamberte, L.E.; Cabrera, E.C.; Rivera, W.L. Activity of ethanolic extract of propolis (EPP) as a potential inhibitor of quorum sensing-mediated pigment production in Chromobacterium violaceum and virulence factor production in Pseudomonas aeruginosa. Philipp. Agric. Sci. 2011, 94, 14–22. [Google Scholar]
- Alenezi, S.S.; Alenezi, N.D.; Ebiloma, G.U.; Natto, M.J.; Ungogo, M.A.; Igoli, J.O.; Ferro, V.A.; Gray, A.I.; Fearnley, J.; de Koning, H.P.; et al. The Antiprotozoal Activity of Papua New Guinea Propolis and Its Triterpenes. Molecules 2022, 27, 1622. [Google Scholar] [CrossRef]
- Arung, E.T.; Ramadhan, R.; Khairunnisa, B.; Amen, Y.; Matsumoto, M.; Nagata, M.; Kusuma, I.W.; Paramita, S.; Takemoto, N.; Tandirogang, N.; et al. Cytotoxicity effect of honey, bee pollen, and propolis from seven stingless bees in some cancer cell lines. Saudi J. Biol. Sci. 2021, 28, 7182–7189. [Google Scholar] [CrossRef] [PubMed]
- Desamero, M.J.; Kakuta, S.; Tang, Y.; Chambers, J.; Uchida, K.; Estacio, M.A.; Cervancia, C.; Kominami, Y.; Ushio, H.; Nakayama, J.; et al. Tumor-suppressing potential of stingless bee propolis in in vitro and in vivo models of differentiated-type gastric adenocarcinoma. Sci. Rep. 2019, 9, 19635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullah, N.A.; Zullkiflee, N.; Zaini, S.N.Z.; Taha, H.; Hashim, F.; Usman, A. Phytochemicals, mineral contents, antioxidants, and antimicrobial activities of propolis produced by Brunei stingless bees GenioTetragonula thoracica, HeteroTetragonula itama, and TeTetragonula binghami. Saudi J. Biol. Sci. 2020, 27, 2902–2911. [Google Scholar] [CrossRef]
- Oktay, Y.; Emre, B.; Nevzat, A. Antioxidative activities of grape (Vitis vinifera) seed extracts obtained from different varieties grown in Turkey. Int. J. Food Sci. Tech. 2009, 43, 154–159. [Google Scholar]
- Khalil, M.L. Biological activity of bee propolis in health and disease. Asian Pac. J. Cancer Prev. 2006, 7, 22–31. [Google Scholar] [PubMed]
- Kamiya, T.; Nishihara, H.; Hara, H.; Adachi, T. Ethanol Extract of Brazilian Red Propolis Induces Apoptosis in Human Breast Cancer MCF-7 Cells through Endoplasmic Reticulum Stress. J. Agric. Food Chem. 2012, 60, 11065–11070. [Google Scholar] [CrossRef]
- Vatansever, H.S.; Sorkun, K.; Gurhan, S.D.; Ozdal-Kurt, F.; Turkoz, E.; Gencay, O.; Salih, B. Propolis from Turkey induces apoptosis through activating caspases in human breast carcinoma cell lines. Acta Histochem. 2010, 112, 546–556. [Google Scholar] [CrossRef]
- Alanazi, S.; Alenzi, N.; Alenazi, F.; Tabassum, H.; Watson, D. Chemical characterization of Saudi propolis and its antiparasitic and anticancer properties. Sci. Rep. 2021, 11, 5390. [Google Scholar] [CrossRef]
- Elumalai, P.; Muninathan, N.; Megalatha, S.T.; Suresh, A.; Kumar, K.S.; Jhansi, N.; Kalaivani, K.; Krishnamoorthy, G. An Insight into Anticancer Effect of Propolis and Its Constituents: A Review of Molecular Mechanisms. Evid. -Based Complement. Altern. Med. 2022, 2022, 5901191. [Google Scholar] [CrossRef]
- Chiu, H.F.; Han, Y.C.; Shen, Y.C.; Golovinskaia, O.; Venkatakrishnan, K.; Wang, C.K. Chemopreventive and Chemotherapeutic Effect of Propolis and Its Constituents: A Mini-review. J. Cancer Prev. 2020, 25, 70–78. [Google Scholar] [CrossRef]
- Sepúlveda, C.; Núñez, O.; Torres, A.; Guzmán, L.; Wehinger, S. Antitumor Activity of Propolis: Recent Advances in Cellular Perspectives, Animal Models and Possible Applications. Food Rev. Int. 2019, 36, 429–455. [Google Scholar] [CrossRef]
- De Koning, H.; MacLeod, A.; Barrett, M.; Cover, B.; Jarvis, S.M. Further evidence for a link between melarsoprol resistance and P2 transporter function in African trypanosomes. Mol. Biochem. Parasitol. 2000, 106, 181. [Google Scholar] [CrossRef]
- Giordani, F.; Morrison, L.J.; Rowan, T.G.; De Koning, H.P.; Barrett, M.P. The animal trypanosomiases and their chemotherapy: A review. Parasitology 2016, 143, 1862–1889. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, A.; Ebiloma, G.U.; Williams, R.; Alenezi, S.; Donachie, A.M.; Guillaume, S.; Igoli, J.O.; Fearnley, J.; De Koning, H.P.; Watson, D.G. European propolis is highly active against trypanosomatids including Crithidia fasciculata. Sci. Rep. 2019, 9, 11364. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L. Follow-up of natural products isolation. In Natural Products Isolation, 3rd ed.; Humana Press/Springer-Verlag: Totowa, NJ, USA, 2012; pp. 473–514. [Google Scholar]
- Heftmann, E. Chromatography: Fundamentals and Applications of Chromatography and Related Differential Migration Methods-Part B: Applications; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Raz, B.; Iten, M.; Grether-Bühler, Y.; Kaminsky, R.; Brun, R. The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop. 1997, 68, 139–147. [Google Scholar] [CrossRef]
Peak No. | Retention Time (min) | [M-1] | Chemical Formula | Delta (ppm) | Intensity |
---|---|---|---|---|---|
1 | 26.5 | 263.13 | C15H19O4 | 1.473 | E 6 |
2 | 39.57 | 405.27 | C24H37O5 | 2.178 | E 7 |
3 | 41.85 | 471.35 | C30H47O4 | 2.284 | E 7 |
4 | 49.64 | 469.33 | C30H45O4 | 1.954 | E 6 |
5 | 50.35 | 467.32 | C30H43O4 | 2.155 | E 7 |
6 | 53.72 | 455.35 | C30H47O3 | 2.924 | E 5 |
Sample Code | IC50 Mean Value (µg/mL) | Standard Deviation | % Relative Standard Deviation | p Value |
---|---|---|---|---|
Ph-2 fraction | 129.6 | 17.6 | 13.6 | <0.0001 |
Isomangiferolic acid | 172.6 | 17.2 | 10.0 | <0.0001 |
27-hydoxymangiferonic acid | 164.7 | 37.0 | 22.5 | <0.0001 |
27-hydroxyisomangiferolic acid | 153.3 | 12.2 | 8.0 | 0.002 |
Pentamidine (µM) | 13.3 | 1.0 | 7.6 | <0.0001 |
Diminazen (µM) | 29.6 | 2.2 | 7.3 | <0.0001 |
Sample Code | Mean (µg/mL) | Standard Deviation | % Relative Standard Deviation | p Value |
---|---|---|---|---|
Philippine crude | 22.0 | 1.71 | 7.78 | <0.0001 |
Ph-2 fraction | 11.6 | 0.99 | 8.59 | <0.0001 |
Isomangiferolic acid | 21.4 | 1.83 | 8.58 | <0.0001 |
27-hydoxymangiferonic acid | 11.4 | 1.07 | 9.46 | <0.0001 |
27-hydroxyisomangiferolic acid | 13.9 | 1.20 | 8.68 | <0.0001 |
Pentamidine (µM) | 0.0045 | 0.0004 | 7.9334 | <0.0001 |
Diminazen (µM) | 0.0374 | 0.0017 | 4.4221 | <0.0001 |
No. | Time (min) | A (%) Aqueous Phase (0.1% v/v Formic Acid in Water) | B (%) Organic Phase (0.1% v/v Formic Acid in Acetonitrile) | Flow (mL/min) |
---|---|---|---|---|
1 | 0 | 75 | 25 | 0.3 |
2 | 10 | 50 | 50 | 0.3 |
3 | 20 | 50 | 50 | 0.3 |
4 | 35 | 20 | 80 | 0.3 |
5 | 45 | 20 | 80 | 0.3 |
6 | 46 | 0 | 100 | 0.3 |
7 | 60 | 0 | 100 | 0.3 |
8 | 61 | 75 | 25 | 0.3 |
9 | 70 | 75 | 25 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, S. Antineoplastic and Antitrypanosomal Properties of Propolis from Tetragonula biroi Friese. Molecules 2022, 27, 7463. https://doi.org/10.3390/molecules27217463
Alanazi S. Antineoplastic and Antitrypanosomal Properties of Propolis from Tetragonula biroi Friese. Molecules. 2022; 27(21):7463. https://doi.org/10.3390/molecules27217463
Chicago/Turabian StyleAlanazi, Samyah. 2022. "Antineoplastic and Antitrypanosomal Properties of Propolis from Tetragonula biroi Friese" Molecules 27, no. 21: 7463. https://doi.org/10.3390/molecules27217463
APA StyleAlanazi, S. (2022). Antineoplastic and Antitrypanosomal Properties of Propolis from Tetragonula biroi Friese. Molecules, 27(21), 7463. https://doi.org/10.3390/molecules27217463