Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = HACCP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2104 KB  
Review
Management and Genetic Approaches for Enhancing Meat Quality in Poultry Production Systems: A Comprehensive Review
by Muhammad Naeem, Arjmand Fatima, Rabin Raut, Rishav Kumar, Zahidul Tushar, Farazi Rahman and Dianna Bourassa
Poultry 2026, 5(1), 4; https://doi.org/10.3390/poultry5010004 - 1 Jan 2026
Viewed by 367
Abstract
This review explores strategies to enhance meat quality in poultry, focusing on both management and genetic methods. Poultry meat quality is influenced by many factors, including rearing conditions, nutrition, animal welfare, and post-slaughter processing. Key management factors such as stocking density, ventilation, temperature, [...] Read more.
This review explores strategies to enhance meat quality in poultry, focusing on both management and genetic methods. Poultry meat quality is influenced by many factors, including rearing conditions, nutrition, animal welfare, and post-slaughter processing. Key management factors such as stocking density, ventilation, temperature, and humidity are emphasized for their significant impact on bird welfare and the resulting meat texture, color, and microbial stability. Welfare-enhancing practices like gentle handling, environmental enrichment, and thermal comfort are highlighted for their direct effects on stress levels and meat properties such as water-holding capacity and pH. Innovations in slaughtering and chilling techniques, including electrical and gas stunning and rapid chilling, are shown to preserve meat quality and prevent common defects like pale, soft, and exudative (PSE) or dark, firm, and dry (DFD) meat. The review also underscores the importance of hygiene protocols, hazard analysis and critical control points (HACCP) systems, and traceability technologies to ensure food safety and foster consumer trust. On the genetic front, it discusses conventional selection, marker-assisted selection (MAS), and genomic selection (GS) as tools for breeding birds with better meat quality traits, including tenderness, intramuscular fat, and resistance to conditions like woody breast. Functional genomics and gene editing are identified as the leading edge of future advances. Ultimately, the review advocates for an integrated approach that balances productivity, quality, animal welfare, and sustainability. As consumer expectations increase, the poultry industry must adopt precise, science-based strategies across the entire production process to reliably deliver high-quality meat products. Full article
Show Figures

Figure 1

24 pages, 745 KB  
Article
Multi-Objective Optimization for Sustainable Food Delivery in Taiwan
by Kang-Lin Chiang
Sustainability 2026, 18(1), 330; https://doi.org/10.3390/su18010330 - 29 Dec 2025
Viewed by 267
Abstract
This study develops a fuzzy linear multi-objective programming (FLMOP) model to optimize Taiwan’s online food delivery (OFD) systems by jointly considering time, cost, quality, and carbon emissions (TCQCE) under strict Hazard Analysis and Critical Control Point (HACCP) safety constraints. By integrating fuzzy set [...] Read more.
This study develops a fuzzy linear multi-objective programming (FLMOP) model to optimize Taiwan’s online food delivery (OFD) systems by jointly considering time, cost, quality, and carbon emissions (TCQCE) under strict Hazard Analysis and Critical Control Point (HACCP) safety constraints. By integrating fuzzy set theory with triangular fuzzy numbers (TFN) and employing centroid defuzzification, this model effectively addresses uncertainties in delivery time, cost, and quality. Empirical results demonstrate that controlled delivery-time extension and order batching reduce carbon emissions by 20%, maintain food quality at 89.3%, and lower delivery costs by 15% under large-scale operations. Statistical validation (p = 0.002) and sensitivity analysis confirm robustness and low variability. Comparative benchmarking highlights FLMOP’s superiority over mixed-integer linear programming (MILP) and genetic algorithms/non-dominated sorting genetic algorithm II (GA/NSGA-II), achieving higher hypervolume (0.904 vs. 0.836 and 0.743) and near-optimal solutions within 11 s, making it suitable for real-time decision-making. This study establishes a benchmark for sustainable last-mile OFD and offers practical guidelines for Taiwan’s OFD platforms. Full article
(This article belongs to the Special Issue Sustainable Logistics and Supply Chain Operations in the Digital Era)
Show Figures

Figure 1

31 pages, 2154 KB  
Review
Application of Machine Learning in Food Safety Risk Assessment
by Qingchuan Zhang, Zhe Lu, Zhenqiao Liu, Jialu Li, Mingchao Chang and Min Zuo
Foods 2025, 14(23), 4005; https://doi.org/10.3390/foods14234005 - 22 Nov 2025
Cited by 2 | Viewed by 1264
Abstract
With the increasing globalization of supply chains, ensuring food safety has become more complex, necessitating advanced approaches for risk assessment. This study aims to review the transformative role of machine learning (ML) and deep learning (DL) in enabling intelligent food safety management by [...] Read more.
With the increasing globalization of supply chains, ensuring food safety has become more complex, necessitating advanced approaches for risk assessment. This study aims to review the transformative role of machine learning (ML) and deep learning (DL) in enabling intelligent food safety management by efficiently analyzing high-quality and nonlinear data. We systematically summarize recent advances in the application of ML and DL, focusing on key areas such as biotoxin detection, heavy metal contamination, analysis of pesticide and veterinary drug residues, and microbial risk prediction. While traditional algorithms including support vector machines and random forests demonstrate strong performance in classification and risk evaluation, unsupervised methods such as K-means and hierarchical cluster analysis facilitate pattern recognition in unlabeled datasets. Furthermore, novel DL architectures, such as convolutional neural networks, recurrent neural networks, and transformers, enable automated feature extraction and multimodal data integration, substantially improving detection accuracy and efficiency. In conclusion, we recommend future work to emphasize model interpretability, multi-modal data fusion, and integration into HACCP systems, thereby supporting intelligent, interpretable, and real-time food safety management. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

22 pages, 11649 KB  
Article
Dual-Modified A- and B-Type Wheat Starch–PCL Composite Films: Antibacterial and HACCP-Oriented Biodegradable Packaging from Kazakhstani Resources
by Gulnazym Ospankulova, Saule Saduakhasova, Svetlana Kamanova, Dana Toimbayeva, Indira Temirova, Zhainagul Kakimova, Yernaz Yermekov, Berdibek Bulashev, Tultabayeva Tamara and Marat Muratkhan
Foods 2025, 14(21), 3730; https://doi.org/10.3390/foods14213730 - 30 Oct 2025
Viewed by 610
Abstract
Biodegradable packaging based on starch–polycaprolactone (PCL) composites is a promising route to reduce reliance on petroleum-derived plastics. Here, wheat starches with A- and B-type crystallinity—sourced from Kazakhstani varieties—were dual-modified by electron-beam irradiation followed by acetylation and incorporated into PCL (30–50 wt%) via melt [...] Read more.
Biodegradable packaging based on starch–polycaprolactone (PCL) composites is a promising route to reduce reliance on petroleum-derived plastics. Here, wheat starches with A- and B-type crystallinity—sourced from Kazakhstani varieties—were dual-modified by electron-beam irradiation followed by acetylation and incorporated into PCL (30–50 wt%) via melt extrusion and compression molding. The resulting films were characterized for morphology, mechanical performance, water-vapor permeability (WVP), thermal behavior, antibacterial activity, and biodegradation under soil and composting conditions. Acetylated A-type starch dispersed more uniformly within the PCL matrix, yielding smoother surfaces, higher tensile strength, and moderate WVP. In contrast, B-type starch produced a more porous microstructure with increased WVP and accelerated mass loss during composting (up to ~45% within 10 days at higher starch loadings). Incorporation of starch slightly decreased thermal stability relative to neat PCL, while agar-diffusion assays against Escherichia coli and Staphylococcus aureus showed loading-dependent inhibition zones, with A-type composites generally outperforming B-type at equivalent contents. Taken together, A-type starch–PCL films are better suited for applications requiring mechanical integrity and controlled moisture transfer, whereas B-type systems favor breathable packaging and rapid compostability. These results clarify how starch crystalline type governs structure–property–degradation relationships in PCL composites and support the targeted design of sustainable packaging materials using regionally available starch resources. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

41 pages, 3705 KB  
Article
An HACCP-Inspired Post-Evaluation Framework for Highway Preventive Maintenance: Methodology and Case Application
by Naren Fang, Chen Wang and Huanyu Chang
Appl. Sci. 2025, 15(21), 11377; https://doi.org/10.3390/app152111377 - 23 Oct 2025
Viewed by 712
Abstract
With the increasing age and traffic load of highway networks in China, preventive maintenance has become a critical strategy for extending pavement service life and improving infrastructure sustainability. However, the lack of standardized post-evaluation systems has hindered the scientific assessment of maintenance effectiveness. [...] Read more.
With the increasing age and traffic load of highway networks in China, preventive maintenance has become a critical strategy for extending pavement service life and improving infrastructure sustainability. However, the lack of standardized post-evaluation systems has hindered the scientific assessment of maintenance effectiveness. This study proposes a systematic post-evaluation framework for highway preventive maintenance projects based on the Hazard Analysis and Critical Control Points (HACCP)-Inspired methodology (Applying Principles of Hazard Analysis and CCP Identification). Adopting a full life-cycle perspective, the framework identifies critical control points (CCPs) across pre-, mid-, and post-implementation phases, targeting six key dimensions: ecological and environmental hazards, resource utilization hazard, engineering safety risks, engineering quality risks, socioeconomic benefit hazards, and social living environment hazards. A multi-level evaluation indicator system is constructed using hierarchical clustering and weighted through the Analytic Hierarchy Process (AHP). The framework is applied to a preventive maintenance project on the Jinghuan Expressway in Tianjin, China, demonstrating strong practical applicability. The final evaluation score of 84.1 out of 100 confirms the technical adequacy of the project while revealing areas for improvement in clean energy adoption and substructure monitoring. This framework provides a robust basis for standardizing post-evaluation practices and promoting sustainable highway maintenance management. Full article
Show Figures

Figure 1

23 pages, 1098 KB  
Article
Process Mining of Sensor Data for Predictive Process Monitoring: A HACCP-Guided Pasteurization Study Case
by Azin Moradbeikie, Ana Paula Ayub da Costa Barbon, Iuliana Malina Grigore, Douglas Fernandes Barbin and Sylvio Barbon Junior
Systems 2025, 13(11), 935; https://doi.org/10.3390/systems13110935 - 22 Oct 2025
Viewed by 859
Abstract
Industrial processes governed by food safety regulations, such as high-temperature short-time (HTST) pasteurization, rely on continuous sensor monitoring to ensure compliance with standards like Hazard Analysis and Critical Control Points (HACCP). However, extracting actionable process insights from raw sensor data remains a non-trivial [...] Read more.
Industrial processes governed by food safety regulations, such as high-temperature short-time (HTST) pasteurization, rely on continuous sensor monitoring to ensure compliance with standards like Hazard Analysis and Critical Control Points (HACCP). However, extracting actionable process insights from raw sensor data remains a non-trivial task, largely due to the continuous, multivariate, and often high-frequency characteristics of the signals, which can obscure clear activity boundaries and introduce significant variability in temporal patterns. This paper proposes a process mining framework to extract activity-based representations from multivariate sensor data in a pasteurization scenario. By modelling temperature, pH, conductivity, viscosity, turbidity, flow, and pressure signals, the approach segments continuous data into discrete operational phases and generates event logs aligned with domain semantics. Unsupervised learning techniques, including Hidden Markov Models (HMMs), are used to infer latent process stages, while domain knowledge guides their interpretation in accordance with critical control points (CCPs). The extracted models support conformance checking against HACCP-based procedures and enable predictive process-monitoring tasks such as next-activity prediction and remaining time estimation. Experimental results on synthetic (literature-grounded data) demonstrated the method’s ability to enhance safety, compliance, and operational efficiency. This study illustrates how integrating process mining with regulatory principles can bridge the gap between continuous sensor streams and structured process analysis in food manufacturing. Full article
(This article belongs to the Special Issue Data-Driven Analysis of Industrial Systems Using AI)
Show Figures

Figure 1

22 pages, 1986 KB  
Review
Food and Agriculture Defense in the Supply Chain: A Critical Review
by Nina Puhač Bogadi, Natalija Uršulin-Trstenjak, Bojan Šarkanj and Ivana Dodlek Šarkanj
Appl. Sci. 2025, 15(20), 11020; https://doi.org/10.3390/app152011020 - 14 Oct 2025
Viewed by 2016
Abstract
The malicious contamination of food has been recognized by the World Health Organization (WHO) as a real and current threat that must be integrated into food safety systems to ensure preparedness for deliberate attacks. Traditional approaches, such as HACCP, effectively address unintentional hazards [...] Read more.
The malicious contamination of food has been recognized by the World Health Organization (WHO) as a real and current threat that must be integrated into food safety systems to ensure preparedness for deliberate attacks. Traditional approaches, such as HACCP, effectively address unintentional hazards but remain insufficient against intentional contamination and sabotage. Food defense frameworks such as HACCP (Hazard Analysis and Critical Control Points), VACCP (Vulnerability Assessment and Critical Control Points), and TACCP (Threat Assessment and Critical Control Points) represent complementary methodologies, addressing unintentional, economically motivated, and deliberate threats, respectively. This review critically examines food defense frameworks across the European Union, the United States, and the United Kingdom, as well as standards benchmarked by the Global Food Safety Initiative (GFSI), drawing on peer-reviewed and grey literature sources. In the United States, the Food Safety Modernization Act (FSMA) mandates the development and periodic reassessment of food defense plans, while the European Union primarily relies on general food law and voluntary certification schemes. The United Kingdom’s PAS 96:2017 standard provides TACCP-based guidance that also acknowledges cybercrime as a deliberate threat. Building on these regulatory and operational gaps, this paper proposes the Cyber-FSMS model, an integrated framework that combines traditional food defense pillars with cyber risk management to address cyber–physical vulnerabilities in increasingly digitalized supply chains. The model introduces six interconnected components (governance, vulnerability assessment, mitigation, monitoring, verification, and recovery) designed to embed cyber-resilience into Food Safety Management Systems (FSMS). Priority actions include regulatory harmonization, practical support for small and medium-sized enterprises (SMEs), and the alignment of cyber-resilience principles with upcoming GFSI benchmarking developments, thereby strengthening the integrity, robustness, and adaptability of global food supply chains. Full article
(This article belongs to the Special Issue Advances in Food Safety and Microbial Control)
Show Figures

Figure 1

14 pages, 722 KB  
Article
Assessment of Food Hygiene Non-Compliance and Control Measures: A Three-Year Inspection Analysis in a Local Health Authority in Southern Italy
by Caterina Elisabetta Rizzo, Roberto Venuto, Giovanni Genovese, Raffaele Squeri and Cristina Genovese
Foods 2025, 14(19), 3364; https://doi.org/10.3390/foods14193364 - 28 Sep 2025
Viewed by 2329
Abstract
Background and Aim: Food hygiene is fundamental to public health, ensuring safe and nutritious food free from contaminants, and is vital for economic development and sustainability. The Hazard Analysis and Critical Control Points (HACCP) system is a crucial tool for managing risks in [...] Read more.
Background and Aim: Food hygiene is fundamental to public health, ensuring safe and nutritious food free from contaminants, and is vital for economic development and sustainability. The Hazard Analysis and Critical Control Points (HACCP) system is a crucial tool for managing risks in food production. Despite global recognition of food safety’s importance, significant disparities exist, especially in Southern Italy, where diverse food production, tourism, and economic factors pose challenges to enforcing hygiene standards. This study evaluates non-compliance with food hygiene regulations within a Local Health Authority (LHA) in Calabria, Southern Italy, to inform effective public health strategies. Materials and Methods Authorized by the Food Hygiene and Nutrition Service (FHNS) of the LHA, the study covers January 2022 to December 2024, analyzing 579 enterprises with 1469 production activities. Inspections followed EC Regulation No. 852/2004, verifying the correct application of procedures based on the Hazard Analysis and Critical Control Points (HACCP) principles, including the operator’s monitoring of Critical Control Points (CCPs), and adherence to Good Hygiene Practices (GHPs). Non-compliances were classified by severity, and corrective and punitive actions were applied. Data were analyzed annually and across the full period using descriptive statistics and chi-squared tests to assess trends. Results: Inspection coverage increased markedly from 29.8% of production activities in 2022 to 62.5% in 2023, sustaining 62.0% in early 2024, exceeding the growth of new activities. Inspections were mainly triggered by RASFF alerts (22.4%), routine controls (20.0%), and verification of previous prescriptions (14.3%). The most frequent corrective measures were long-term prescriptions (28.6%), violation reports (22.9%), and short-term prescriptions (20.0%). Enterprises averaged 4.61 production activities, highlighting operational complexity. Conclusions: This study provides a granular analysis of food hygiene non-compliance within a Local Health Authority (LHA) in Southern Italy, to inform effective public health strategies. While official control data may be publicly available in some contexts, our research offers a unique, in-depth view of inspection triggers, non-compliance patterns, and corrective measures, which is crucial for understanding specific regional challenges. The analysis reveals that the prevalence of long-term prescriptions and reliance on RASFF alerts indicate systemic challenges requiring sustained interventions. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

13 pages, 500 KB  
Systematic Review
Listericidal Novel Processing Technological Approaches for the Safety of Milk and Dairy Products: A Systematic Review
by Diana Víquez-Barrantes, Jessie Usaga, Rosa María García-Gimeno and Guiomar Denisse Posada-Izquierdo
Encyclopedia 2025, 5(3), 143; https://doi.org/10.3390/encyclopedia5030143 - 9 Sep 2025
Viewed by 1499
Abstract
Listeria monocytogenes is a major public health concern in milk and ready-to-eat dairy products. To meet consumer demand for fresher, minimally processed foods with high nutritional and sensory quality, several non-thermal technologies are being explored as alternatives to conventional heat treatments. This systematic [...] Read more.
Listeria monocytogenes is a major public health concern in milk and ready-to-eat dairy products. To meet consumer demand for fresher, minimally processed foods with high nutritional and sensory quality, several non-thermal technologies are being explored as alternatives to conventional heat treatments. This systematic review (2020–2025), following PRISMA guidelines, examines recent applications of selected non-thermal technologies to control Listeria in milk and dairy matrices. Peer-reviewed studies available in full-text, in English or Spanish, focusing on applications at laboratory or pilot plant scales, with milk or dairy produced onsite or purchased, containing Listeria sp., were included. Studies with applications to plant-based or non-dairy products or those not inoculated with Listeria, were excluded. Conference abstracts, corrections, editorials, letters, news, and scientific opinions were excluded as well. The databases searched were Web of Science, Scopus, and ProQuest, which were last consulted in April 2025. Given the naturality of the review, the risk of bias was assessed through independent screening by two of the researchers, focusing on clear objectives, analytical validity, statistical analysis, and methodology. The results are presented in tabulated format. Of the 157 records identified, 22 were included in this review. Seven of the records reported hurdle technologies, while fifteen reported single technology applications, with high-pressure processing being the most frequent. Limitations observed are primarily the use of unreported strains, a lack of information regarding the initial load of inoculum, and expected log reductions. The equipment used is mostly at the laboratory scale, except for HPP. Non-thermal technologies present a promising option for the control of Listeria in dairy products. The basic principles of GMP, HACCP, and cold-chain control in dairy processing are of special importance in safety assurance. This research was funded by Vicerrectoría de Investigación, Universidad de Costa Rica, grant number 735-C3-460. Full article
(This article belongs to the Section Chemistry)
Show Figures

Graphical abstract

14 pages, 1535 KB  
Article
Evaluation of a Method for Assessing Food Contamination Based on a Shopping Mall Model
by Marcin Niemcewicz, Rafał Szelenberger, Weronika Grabowska, Natalia Cichon, Marcin Podogrocki and Michal Bijak
Foods 2025, 14(17), 3110; https://doi.org/10.3390/foods14173110 - 5 Sep 2025
Viewed by 988
Abstract
This study evaluated a novel methodology for assessing food safety vulnerabilities in shopping malls by integrating Hazard Analysis and Critical Control Points (HACCP), Threat Assessment and Critical Points (TACCP), and Failure Mode and Effects Analysis (FMEA). Inspections were conducted in nine shopping centers [...] Read more.
This study evaluated a novel methodology for assessing food safety vulnerabilities in shopping malls by integrating Hazard Analysis and Critical Control Points (HACCP), Threat Assessment and Critical Points (TACCP), and Failure Mode and Effects Analysis (FMEA). Inspections were conducted in nine shopping centers across Poland, the Czech Republic, Slovakia, and Spain to identify the risk of intentional/unintentional contamination with chemical, biological, radiological, and nuclear agents. The assessment considered key operational areas, including food delivery, transportation, staff security, back-office access, product handling, and inspection protocols. Risk levels were quantified using FMEA parameters. The findings revealed an overall high to average risk score with the most critical vulnerabilities linked to back-office access, unauthorized personnel entry, and susceptibility to fraudulent inspections. Observations also highlighted infrastructural shortcomings, insufficient monitoring, and procedural gaps that could facilitate contamination. The proposed methodology offers a structured, quantitative framework for identifying and prioritizing food safety hazards in public environments. Implementing targeted countermeasures—such as enhanced surveillance, strict access control, staff training, and dedicated food handling protocols—can substantially reduce risks, thereby strengthening public health protection and operational resilience. This approach may serve as a promising framework for integrating food defense and safety assessments for food defense in high-density commercial facilities. Full article
(This article belongs to the Special Issue Evaluation of Food Safety Performance)
Show Figures

Figure 1

25 pages, 1642 KB  
Article
The Green HACCP Approach: Advancing Food Safety and Sustainability
by Mohamed Zarid
Sustainability 2025, 17(17), 7834; https://doi.org/10.3390/su17177834 - 30 Aug 2025
Cited by 2 | Viewed by 4798
Abstract
Food safety management has evolved with the Hazard Analysis and Critical Control Point (HACCP) system serving as a global benchmark. However, conventional HACCP does not explicitly address environmental sustainability, leading to challenges such as excessive water use, chemical discharge, and energy inefficiency. Green [...] Read more.
Food safety management has evolved with the Hazard Analysis and Critical Control Point (HACCP) system serving as a global benchmark. However, conventional HACCP does not explicitly address environmental sustainability, leading to challenges such as excessive water use, chemical discharge, and energy inefficiency. Green HACCP extends traditional HACCP by integrating Environmental Respect Practices (ERPs) to fill this critical gap between food safety and sustainability. This study is presented as a conceptual paper based on a structured literature review combined with illustrative industry applications. It analyzes the principles, implementation challenges, and economic viability of Green HACCP, contrasting it with conventional systems. Evidence from recent reports and industry examples shows measurable benefits: water consumption reductions of 20–25%, energy savings of 10–15%, and improved compliance readiness through digital monitoring technologies. It explores how digital technologies—IoT for real-time monitoring, AI for predictive optimization, and blockchain for traceability—enhance efficiency and sustainability. By aligning HACCP with sustainability goals and the United Nations Sustainable Development Goals (SDGs), this paper provides academic contributions including a clarified conceptual framework, quantified advantages, and policy recommendations to support the integration of Green HACCP into global food safety systems. Industry applications from dairy, seafood, and bakery sectors illustrate practical benefits, including waste reduction and improved compliance. This study concludes with policy recommendations to integrate Green HACCP into global food safety frameworks, supporting broader sustainability goals. Overall, Green HACCP demonstrates a cost-effective, scalable, and environmentally responsible model for future food production. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

10 pages, 465 KB  
Article
The Fourth Survey on the Activity of Human Milk Banks in Italy
by Giuseppe De Nisi, Guido E. Moro, Sertac Arslanoglu, Amalia M. Ambruzzi, Enrico Bertino, Augusto Biasini, Claudio Profeti, Guglielmo Salvatori, Paola Tonetto, Pasqua Anna Quitadamo, Nicoletta Danese and the members of AIBLUD (Italian Association of Donor Human Milk Banks)
Nutrients 2025, 17(16), 2663; https://doi.org/10.3390/nu17162663 - 18 Aug 2025
Cited by 1 | Viewed by 978
Abstract
Background: Scientific literature confirms the benefits of mother’s own milk (MOM) for both term and preterm infants. The feeding of pathological newborns, in particular the very low birth weight infants (VLBWIs), is dependent on human milk. When MOM is not available, pasteurized donor [...] Read more.
Background: Scientific literature confirms the benefits of mother’s own milk (MOM) for both term and preterm infants. The feeding of pathological newborns, in particular the very low birth weight infants (VLBWIs), is dependent on human milk. When MOM is not available, pasteurized donor human milk obtained from a recognized Human Milk Bank (HMB) is the best alternative. Research aims: This survey aims to evaluate the activity of human milk banks (HMBs) in Italy in the years 2023–2024. Methods: Following the previous three surveys performed in 2012, 2016, and 2022, a fourth survey related to 2023 and 2024 was planned in the year 2025. A questionnaire was sent to the 44 HMBs officially operating in Italy, with questions regarding their management and activity, in order to collect national-level data. Results: All 44 Italian HMBs (100%) responded to this survey. The collected data confirm the results of the previous surveys, confirming an optimal adherence to the Italian Ministerial Guidelines. Almost all the HMBs (96%) apply the principles of self-control and the HACCP system, while the home milk collection service still requires improvement. Only 68% of HMBs organize collection and transport of the donated milk from the donor’s home to the bank. In addition, this survey shows the spreading of computerization in the management of the activities of HMBs: 36.4% make use of specific software that could lead to a greater availability of donor human milk for the neonatal centers in the future. The number of donors and the amount of donated milk increased consistently compared to the previous years. Conclusions: In general, this survey shows an improvement in the results obtained in the three previous surveys, with a positive dissemination of the culture of human milk donation in Italy. The impressive response rate to the survey demonstrates the importance of a regular check-up of the activity of HMBs. Full article
Show Figures

Graphical abstract

31 pages, 1686 KB  
Review
Strategic Detection of Escherichia coli in the Poultry Industry: Food Safety Challenges, One Health Approaches, and Advances in Biosensor Technologies
by Jacquline Risalvato, Alaa H. Sewid, Shigetoshi Eda, Richard W. Gerhold and Jie Jayne Wu
Biosensors 2025, 15(7), 419; https://doi.org/10.3390/bios15070419 - 1 Jul 2025
Cited by 4 | Viewed by 3779
Abstract
Escherichia coli (E. coli) remains a major concern in poultry production due to its ability to incite foodborne illness and public health crisis, zoonotic potential, and the increasing prevalence of antibiotic-resistant strains. The contamination of poultry products with pathogenic E. coli [...] Read more.
Escherichia coli (E. coli) remains a major concern in poultry production due to its ability to incite foodborne illness and public health crisis, zoonotic potential, and the increasing prevalence of antibiotic-resistant strains. The contamination of poultry products with pathogenic E. coli, including avian pathogenic E. coli (APEC) and Shiga toxin-producing E. coli (STEC), presents risks at multiple stages of the poultry production cycle. The stages affected by E. coli range from, but are not limited to, the hatcheries to grow-out operations, slaughterhouses, and retail markets. While traditional detection methods such as culture-based assays and polymerase chain reaction (PCR) are well-established for E. coli detection in the food supply chain, their time, cost, and high infrastructure demands limit their suitability for rapid and field-based surveillance—hindering the ability for effective cessation and handling of outbreaks. Biosensors have emerged as powerful diagnostic tools that offer rapid, sensitive, and cost-effective alternatives for E. coli detection across various stages of poultry development and processing where detection is needed. This review examines current biosensor technologies designed to detect bacterial biomarkers, toxins, antibiotic resistance genes, and host immune response indicators for E. coli. Emphasis is placed on field-deployable and point-of-care (POC) platforms capable of integrating into poultry production environments. In addition to enhancing early pathogen detection, biosensors support antimicrobial resistance monitoring, facilitate integration into Hazard Analysis Critical Control Points (HACCP) systems, and align with the One Health framework by improving both animal and public health outcomes. Their strategic implementation in slaughterhouse quality control and marketplace testing can significantly reduce contamination risk and strengthen traceability in the poultry value chain. As biosensor technology continues to evolve, its application in E. coli surveillance is poised to play a transformative role in sustainable poultry production and global food safety. Full article
(This article belongs to the Special Issue Biosensors for Food Safety)
Show Figures

Figure 1

24 pages, 7348 KB  
Article
Microbiome Diversity in Seafood Factories via Next-Generation Sequencing for Food Safety Management System (FSMS) Certifications in Malaysia
by Shuping Kuan, Nyuk Ling Chin, Tuan Poy Tee and Noor Zafira Noor Hasnan
Foods 2025, 14(9), 1517; https://doi.org/10.3390/foods14091517 - 26 Apr 2025
Cited by 2 | Viewed by 1502
Abstract
Next-Generation Sequencing (NGS) technology was applied to evaluate Food Safety Management System (FSMS) performance in seafood-processing factories by exploring microbiome diversity alongside traditional methods for detecting foodborne pathogens. A total of 210 environmental swabs collected from processing zones in six factories underwent 16S [...] Read more.
Next-Generation Sequencing (NGS) technology was applied to evaluate Food Safety Management System (FSMS) performance in seafood-processing factories by exploring microbiome diversity alongside traditional methods for detecting foodborne pathogens. A total of 210 environmental swabs collected from processing zones in six factories underwent 16S rRNA amplicon sequencing. FSMS-certified factories exhibited significantly higher species richness, with alpha diversity p-values of 0.0036 for observed ASVs, 0.0026 for Faith’s PD and 0.032 for Shannon. Beta diversity analysis also revealed significant differences, with p-values of 0.001 for Bray–Curtis, unweighted UniFrac and Jaccard. Pathogens like Listeria monocytogenes, Salmonella spp. and Bacillus cereus were present in “uncertified” factories but absent in the “certified” factories. The “certified” factories had a significantly higher proportion of lactic acid bacteria (LAB) genera (70.22%) compared to “uncertified” factories (29.78%). The LAB genera included Streptococcus, Lactococcus, Lactobacillus and others. NGS has demonstrated superior capability by providing comprehensive microbiome detection, including the unculturable microorganisms and insights into microbial diversity, so it lacks the limitations that come with traditional culturing. These findings highlight the potential for leveraging beneficial microbes in bioremediation and pathogen control to enhance FSMS effectiveness in seafood-processing environments. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

18 pages, 2158 KB  
Article
Risk Prevention and Quality Control in Camel Milk Collection: Insights from Field Research
by Hui Yang, Demtu Er, Yuning Liu, Hongxia Ling and Rili Ge
Foods 2025, 14(7), 1090; https://doi.org/10.3390/foods14071090 - 21 Mar 2025
Cited by 2 | Viewed by 2190
Abstract
The camel milk market’s rapid expansion necessitates strategies that ensure raw milk quality and safety, particularly in small-scale production. This study examines smallholder farmers in Haixi, Qinghai Province, China, where traditional practices intersect with modern standards. Analyzing 80 raw camel milk samples, the [...] Read more.
The camel milk market’s rapid expansion necessitates strategies that ensure raw milk quality and safety, particularly in small-scale production. This study examines smallholder farmers in Haixi, Qinghai Province, China, where traditional practices intersect with modern standards. Analyzing 80 raw camel milk samples, the study assessed risks like adulteration, microbial contamination, and nutritional variability. DNA testing and microbial assays revealed that 66.67% of hand-milked samples were adulterated with cow milk, a significantly higher rate than mechanically processed samples (p < 0.05). Manual milking also showed higher microbial counts (up to 2.05 × 104 CFU/mL) and somatic cell levels, indicating hygiene issues. Nutritional analysis found that grazing systems yielded milk with more vitamin A, B2, and potassium, while semi-intensive systems had higher ash content. A quality evaluation framework was developed, combining pastoralist knowledge with rapid diagnostic tools, focusing on mechanization, cold-chain efficiency, and community training. This framework provides strategies to reduce adulteration, ensure nutritional consistency, and align small-scale production with international standards. The study proposes culturally adaptive quality control methods to protect consumer health, support rural livelihoods, and standardize the camel milk market. Full article
Show Figures

Figure 1

Back to TopTop