Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (407)

Search Parameters:
Keywords = GlcNAc

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3771 KiB  
Article
Integrated Transcriptome and Metabolome Analyses Uncover Cholesterol-Responsive Gene Networks
by Ruihao Zhang, Qi Sun, Lixia Huang and Jian Li
Int. J. Mol. Sci. 2025, 26(15), 7108; https://doi.org/10.3390/ijms26157108 - 23 Jul 2025
Viewed by 252
Abstract
Cholesterol stress profoundly modulates cellular processes, but its underlying mechanisms remain incompletely understood. To investigate cholesterol-responsive networks, we performed integrated transcriptome (RNA-seq) and metabolome (LC-MS) analyses on HeLa cells treated with cholesterol for 6 and 24 h. Through transcriptomic analysis of cholesterol-stressed HeLa [...] Read more.
Cholesterol stress profoundly modulates cellular processes, but its underlying mechanisms remain incompletely understood. To investigate cholesterol-responsive networks, we performed integrated transcriptome (RNA-seq) and metabolome (LC-MS) analyses on HeLa cells treated with cholesterol for 6 and 24 h. Through transcriptomic analysis of cholesterol-stressed HeLa cells, we identified stage-specific responses characterized by early-phase stress responses and late-phase immune-metabolic coordination. This revealed 1340 upregulated and 976 downregulated genes after a 6 h cholesterol treatment, including induction and suppression of genes involved in cholesterol efflux and sterol biosynthesis, respectively, transitioning to Nuclear Factor kappa-B (NF-κB) activation and Peroxisome Proliferator-Activated Receptor (PPAR) pathway modulation by 24 h. Co-expression network analysis prioritized functional modules intersecting with differentially expressed genes. We also performed untargeted metabolomics using cells treated with cholesterol for 6 h, which demonstrated extensive remodeling of lipid species. Interestingly, integrated transcriptomic and metabolic analysis uncovered GFPT1-driven Uridine Diphosphate-N-Acetylglucosamine (UDP-GlcNAc) accumulation and increased taurine levels. Validation experiments confirmed GFPT1 upregulation and ANGPTL4 downregulation through RT-qPCR and increased O-GlcNAcylation via Western blot. Importantly, clinical datasets further supported the correlations between GFPT1/ANGPTL4 expression and cholesterol levels in Non-Alcoholic Steatohepatitis (NASH) liver cancer patients. This work establishes a chronological paradigm of cholesterol sensing and identifies GFPT1 and ANGPTL4 as key regulators bridging glycosylation and lipid pathways, providing mechanistic insights into cholesterol-associated metabolic disorders. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 3177 KiB  
Review
Galectin-3: Integrator of Signaling via Hexosamine Flux
by Mana Mohan Mukherjee, Devin Biesbrock and John Allan Hanover
Biomolecules 2025, 15(7), 1028; https://doi.org/10.3390/biom15071028 - 16 Jul 2025
Viewed by 201
Abstract
Galectin-3 (Gal-3) is a β-galactoside-binding lectin that mediates diverse signaling events in multiple cell types, including immune cells. It is also a prognostic indicator for multiple clinically important disorders, including cardiovascular disease. Gal-3 binds to cell surface glycans to form lattices that modulate [...] Read more.
Galectin-3 (Gal-3) is a β-galactoside-binding lectin that mediates diverse signaling events in multiple cell types, including immune cells. It is also a prognostic indicator for multiple clinically important disorders, including cardiovascular disease. Gal-3 binds to cell surface glycans to form lattices that modulate surface receptor signaling and internalization. However, the tissue-specific regulation of Gal-3 surface expression remains poorly understood. Here, we review evidence for the involvement of Gal-3 in cell surface signaling, intranuclear events, and intracellular trafficking. Our focus will be on the O-GlcNAc modification as a regulator of Gal-3 biosynthesis, non-canonical secretion, and recycling. We argue that the nutrient-driven cytoplasmic hexosamine biosynthetic pathway (HBP) and endomembrane transport mechanisms generate unique pools of nucleotide sugars. The differing levels of nucleotide sugars in the cytosol, endoplasmic reticulum (ER), and Golgi apparatus generate differential thresholds for the responsiveness of O-GlcNAc cycling, N- and O-linked glycan synthesis/branching, and glycolipid synthesis. By regulating Gal-3 synthesis and non-canonical secretion, O-GlcNAc cycling may serve as a nexus constraining Gal-3 cell surface expression and lattice formation. This homeostatic feedback mechanism would be critical under conditions where extensive glycan synthesis and branching in the endomembrane system and on the cell surface are maintained by elevated hexosamine synthesis. Thus, O-GlcNAc cycling and Gal-3 synergize to regulate Gal-3 secretion and influence cellular signaling. In humans, Gal-3 serves as an early-stage prognostic indicator for heart disease, kidney disease, viral infection, autoimmune disease, and neurodegenerative disorders. Since O-GlcNAc cycling has also been linked to these pathologic states, exploring the interconnections between O-GlcNAc cycling and Gal-3 expression and synthesis is likely to emerge as an exciting area of research. Full article
(This article belongs to the Special Issue Cell Biology and Biomedical Application of Galectins)
Show Figures

Figure 1

19 pages, 1812 KiB  
Article
Effect of Platelet-Derived Microparticles on the Expression of Adhesion Molecules in Endothelial Cells
by Elvira Varela-López, Socorro Pina-Canseco, Felipe Massó-Rojas, Claudia Lerma, Ana María Mejía Domínguez, Jesús Oswaldo García Ávila, Juan Carlos Torres-Narváez, Alvaro Vargas-González and Araceli Páez-Arenas
Int. J. Mol. Sci. 2025, 26(14), 6567; https://doi.org/10.3390/ijms26146567 - 8 Jul 2025
Viewed by 300
Abstract
In healthy conditions and cardiovascular diseases, the most abundant microparticles (MPs) in the bloodstream are those of platelet origin, but the direct effect of these microparticles on endothelial activation is poorly understood. The objective of this paper is to measure endothelial cell activation, [...] Read more.
In healthy conditions and cardiovascular diseases, the most abundant microparticles (MPs) in the bloodstream are those of platelet origin, but the direct effect of these microparticles on endothelial activation is poorly understood. The objective of this paper is to measure endothelial cell activation, as evaluated by the expression of the adhesion molecules E-selectin, VCAM-1, ICAM-1, and PECAM-1 in endothelial cell line HMEC-1 when stimulated with MPs produced by platelets stimulated in vitro with thrombin (TH), adenosine diphosphate (ADP), calcium ionophore (ICa), N-acetylglucosamine (NAcGlc), and without any stimulus. Platelets from healthy individuals induced the formation of MPs with different agonists. The results from the determination of the phenotype of the MPs showed that the expression of GPIIb/IIIa was significant, with median fold changes of TH = 2.2, ADP = 5.2, Ica = 7.0, and NAcGlc = 10.0. However, in HMEC-1 cells, the expression of adhesion molecules stimulated with MPs had a median change slightly higher for E-Sel expression (ranging from 1.4 to 4.2) and ICAM-1 expression (range 2.2 to 3.0), especially VCAM-1 expression (ranging from 15 to 18.8), all of which were significant. For PECAM-1, only stimulation with ICa (1.5) was significant, demonstrating that MPs elicit stimulus-dependent responses in endothelial cells. Platelet-derived MPs may have a potential role in modulating inflammation and other endothelial functions. Full article
Show Figures

Figure 1

13 pages, 2255 KiB  
Article
Solid-Phase Oligosaccharide Synthesis with Highly Complexed Peptidoglycan Fragments
by Yuichiro Kadonaga, Ning Wang, Atsushi Shimoyama, Yukari Fujimoto and Koichi Fukase
Molecules 2025, 30(13), 2787; https://doi.org/10.3390/molecules30132787 - 28 Jun 2025
Viewed by 377
Abstract
Peptidoglycan (PGN) is a component of bacterial cell walls; its fragments are recognized by the cytoplasmic receptors Nod1 and Nod2, thereby promoting the production of inflammatory cytokines and antibodies. To further elucidate these biological defense mechanisms, a large and stable supply of the [...] Read more.
Peptidoglycan (PGN) is a component of bacterial cell walls; its fragments are recognized by the cytoplasmic receptors Nod1 and Nod2, thereby promoting the production of inflammatory cytokines and antibodies. To further elucidate these biological defense mechanisms, a large and stable supply of the PGN fragments via chemical synthesis is essential. However, the synthesis and purification of long PGN fragments are quite challenging due to their low solubility. In this study, we efficiently synthesized PGN fragments via solid-phase oligosaccharide synthesis (SPOS). Using the JandaJel™ Wang resin (JJ-Wang), an octasaccharide glycan chain of PGN was constructed by repeating glycosylation reactions to elongate β-1,4-linked disaccharide units composed of MurNAc and GlcNAc. To enhance reactivity, glycosylation was performed in a mixed solvent comprising C4F9OEt/CH2Cl2/THF with the intention of promoting substrate concentration onto the solid support through the fluorophobic effect, affording the PGN octasaccharide in a 19% overall yield (10 steps). Subsequently, after deprotection of the O-Fmoc, N-Troc, and ethyl ester groups, N- and O-acetylation proceeded smoothly, owing to the high swelling property of JJ-Wang. Peptide condensation with L-Ala-D-isoGln(OBn) and carboxylic acids was also achieved. Finally, cleavage of the PGN fragment from the resin with TFA afforded the desired octasaccharide with dipeptides in a 2.3% overall yield (15 steps). Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Organic Chemistry)
Show Figures

Graphical abstract

9 pages, 776 KiB  
Brief Report
Increased O-GlcNAcylation in Leukocytes from Overweight Pediatric Subjects: A Pilot Study
by Alessia Remigante, Sara Spinelli, Gianluca Rizzo, Daniele Caruso, Angela Marino, Elisabetta Straface, Silvia Dossena and Rossana Morabito
Int. J. Mol. Sci. 2025, 26(12), 5665; https://doi.org/10.3390/ijms26125665 - 13 Jun 2025
Viewed by 427
Abstract
Type II diabetes mellitus (T2D) is a metabolic disorder. Childhood overweight or obesity raises the risk for developing T2D later in life. Early identification of at-risk individuals is fundamental for disease prevention and patient management. The scope of this pilot study was to [...] Read more.
Type II diabetes mellitus (T2D) is a metabolic disorder. Childhood overweight or obesity raises the risk for developing T2D later in life. Early identification of at-risk individuals is fundamental for disease prevention and patient management. The scope of this pilot study was to explore whether leukocyte protein O-GlcNAc modification is elevated in an overweight pediatric cohort. Eight overweight and eight normal-weight children aged 3–13 years were recruited at the Papardo General Hospital (Messina, Italy). Physical exams, complete blood tests, and determination of leukocyte protein O-GlcNAcylation were carried out. Protein O-GlcNAcylation was higher in leucocytes from overweight children compared to normal-weight children, and was significantly correlated with BMI, metabolic markers (LDL-cholesterol/triglycerides), and the inflammatory marker CRP. This study suggests that leukocyte protein O-GlcNAcylation may represent a novel biomarker for the early detection of metabolic abnormalities that may lead to the development of pre-diabetes or T2D later in life. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

15 pages, 6537 KiB  
Article
Txnip/Trx Is a Potential Element in Regulating O-GlcNAc Modification in Photoreceptors to Alleviate Diabetic Retinopathy
by Laraib Imdad, Shengnan Xu, Yulang Meng, Kaimin Bao, Wenkang Dong, Xuanya Yin, Yujie Tong, Wei Zhang, Xiang Ren and Li Kong
Int. J. Mol. Sci. 2025, 26(11), 5369; https://doi.org/10.3390/ijms26115369 - 4 Jun 2025
Viewed by 668
Abstract
Hyperglycemia is a key factor in diabetic retinopathy which leads to blindness. O-linked-N-acetylglucosamine (O-GlcNAc) modification changes are linked to various diseases, including diabetic retinopathy. This research aims to study the roles of Txnip and Trx in influencing O-GlcNAc in photoreceptor cells during diabetic [...] Read more.
Hyperglycemia is a key factor in diabetic retinopathy which leads to blindness. O-linked-N-acetylglucosamine (O-GlcNAc) modification changes are linked to various diseases, including diabetic retinopathy. This research aims to study the roles of Txnip and Trx in influencing O-GlcNAc in photoreceptor cells during diabetic retinopathy. A diabetic mouse model and 661w cells, after exposure to high glucose, were employed as models. H&E staining and ERG were used to evaluate the morphology and function of the retina, respectively. Western blotting was used to analyze protein expression, a TUNEL assay was used to measure apoptosis, and a co-immunoprecipitation (CO-IP) assay was used to detect the interactions of protein. In diabetic mice, electroretinogram (ERG) amplitude wave, retinal thickness, and body weight decreased. Glial fibrillary acidic protein (GFAP), Iba1 expression, and blood glucose level increased. In vitro, the percentage of apoptotic cell, Bax, and caspase3 levels increased, and Bcl2 decreased in 661w cells under high-glucose conditions. Moreover, Txnip expression was upregulated, while Trx was downregulated. Additionally, a Western blot analysis revealed that high-glucose exposure led to increased O-GlcNAc modification both in vivo and in vitro. The CO-IP results show that Txnip interacted with O-GlcNAc modifications. S-opsin expression was significantly downregulated in vitro under high-glucose conditions. Knockdown Txnip or upregulation Trx could reverse or delay apoptosis in 661w cells under hyperglycemic conditions. Txnip/Trx is a potential element in regulating photoreceptor apoptosis in diabetic retinopathy. The underlying mechanism is linked to regulation of O-GlcNAc modification in photoreceptor cells in DR. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

32 pages, 2714 KiB  
Article
Comparative Potential of Chitinase and Chitosanase from the Strain Bacillus thuringiensis B-387 for the Production of Antifungal Chitosan Oligomers
by Gleb Aktuganov, Alexander Lobov, Nailya Galimzianova, Elena Gilvanova, Lyudmila Kuzmina, Polina Milman, Alena Ryabova, Alexander Melentiev, Sergey Chetverikov, Sergey Starikov and Sergey Lopatin
BioTech 2025, 14(2), 35; https://doi.org/10.3390/biotech14020035 - 8 May 2025
Viewed by 3757
Abstract
The depolymerization of chitosan using chitinolytic enzymes is one of the most promising approaches for the production of bioactive soluble chitooligosaccharides (COS) due to its high specificity, environmental safety, mild reaction conditions, and potential for development. However, the comparative efficacy of bacterial chitinases [...] Read more.
The depolymerization of chitosan using chitinolytic enzymes is one of the most promising approaches for the production of bioactive soluble chitooligosaccharides (COS) due to its high specificity, environmental safety, mild reaction conditions, and potential for development. However, the comparative efficacy of bacterial chitinases and chitosanases in terms of yield, solubility, and antimicrobial activity of produced COS remains understudied. In this work, chitinase (73 kDa) and chitosanase (40 kDa) from the strain Bacillus thuringiensis B-387 (Bt-387) were purified using various chromatographic techniques and compared by their action on chitosan (DD 85%). The molecular mass and structure of generated COS was determined using TLC, LC-ESI-MS, HP-SEC, and C13-NMR techniques. Chitosanase converted the polymer more rapidly to short COS (GlcN2-GlcN4), than chitinase, and was more specific in its action on mixed bonds between GlcN and GlcNAc. Chitosanase needed a noticeably shorter incubation time and enzyme–substrate ratio than chitinase for production of larger oligomeric molecules (Mw 2.4–66.5 and 15.4–77.7 kDa, respectively) during controlled depolymerization of chitosan. Moreover, chitosanase-generated oligomers demonstrate better solubility and a higher antifungal activity in vitro against the tested plant pathogenic fungi. These features, as well as the high enzyme production and its simplified purification protocol, make chitosanase B-387 more suitable for the production of antifungal chitooligomers than chitinase. Full article
Show Figures

Graphical abstract

22 pages, 4370 KiB  
Article
Establishment of a Human iPSC Line from Mucolipidosis Type II That Expresses the Key Markers of the Disease
by Maria Eduarda Moutinho, Mariana Gonçalves, Ana Joana Duarte, Marisa Encarnação, Maria Francisca Coutinho, Liliana Matos, Juliana Inês Santos, Diogo Ribeiro, Olga Amaral, Paulo Gaspar, Sandra Alves and Luciana Vaz Moreira
Int. J. Mol. Sci. 2025, 26(8), 3871; https://doi.org/10.3390/ijms26083871 - 19 Apr 2025
Viewed by 507
Abstract
Mucolipidosis type II (ML II) is a rare and fatal disease of acid hydrolase trafficking. It is caused by pathogenic variants in the GNPTAB gene, leading to the absence of GlcNAc-1-phosphotransferase activity, an enzyme that catalyzes the first step in the formation of [...] Read more.
Mucolipidosis type II (ML II) is a rare and fatal disease of acid hydrolase trafficking. It is caused by pathogenic variants in the GNPTAB gene, leading to the absence of GlcNAc-1-phosphotransferase activity, an enzyme that catalyzes the first step in the formation of the mannose 6-phosphate (M6P) tag, essential for the trafficking of most lysosomal hydrolases. Without M6P, these do not reach the lysosome, which accumulates undegraded substrates. The lack of samples and adequate disease models limits the investigation into the pathophysiological mechanisms of the disease and potential therapies. Here, we report the generation and characterization of an ML II induced pluripotent stem cell (iPSC) line carrying the most frequent ML II pathogenic variant [NM_024312.5(GNPTAB):c.3503_3504del (p.Leu1168fs)]. Skin fibroblasts were successfully reprogrammed into iPSCs that express pluripotency markers, maintain a normal karyotype, and can differentiate into the three germ layers. Furthermore, ML II iPSCs showed a phenotype comparable to that of the somatic cells that originated them in terms of key ML II hallmarks: lower enzymatic activity of M6P-dependent hydrolases inside the cells but higher in conditioned media, and no differences in an M6P-independent hydrolase and accumulation of free cholesterol. Thus, ML II iPSCs constitute a novel model for ML II disease, with the inherent iPSC potential to become a valuable model for future studies on the pathogenic mechanisms and testing potential therapeutic approaches. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

9 pages, 2524 KiB  
Communication
Expression of Tailored α-N-Acetylglucosaminidase in Escherichia coli for Synthesizing Mannose-6-Phosphate on N-Linked Oligosaccharides of Lysosomal Enzymes
by Yunsong Cao and Wei Wang
Bioengineering 2025, 12(4), 425; https://doi.org/10.3390/bioengineering12040425 - 17 Apr 2025
Viewed by 449
Abstract
Lysosomal enzymes are synthesized as N-glycosylated glycoproteins with mannose-6-phosphate (M6P) moieties, which are responsible for their binding to M6P receptors and transporting to the lysosome. In the M6P biosynthetic pathway, a Man8GlcNAc2 glycoform is converted to M6P groups through two [...] Read more.
Lysosomal enzymes are synthesized as N-glycosylated glycoproteins with mannose-6-phosphate (M6P) moieties, which are responsible for their binding to M6P receptors and transporting to the lysosome. In the M6P biosynthetic pathway, a Man8GlcNAc2 glycoform is converted to M6P groups through two consecutive enzymatic reactions, including N-acetylglucosamine (GlcNAc)-1-phosphotransferase (GNPT), transferring GlcNAc-1-phosphate from UDP-GlcNAc to the C6 hydroxyl groups of mannose residues, and then, removal of the covering GlcNAc moiety from the GlcNAc-P-mannose phosphodiester was carried out using an α-N-acetylglucosaminidase (referred to as ‘uncovering enzyme’, UCE) in the trans-Golgi network (TGN). Here, we expressed differently tailored versions of the UCE, including four truncated variants, in Escherichia coli. The four variants with the signal peptide, transmembrane domain, propiece and cytoplasmic tail truncated, respectively, were purified by affinity chromatography, and their enzymatic activities were assayed using a UDP-Glo kit. By fusing a maltose-binding protein (MBP) in the N-terminus of the UCE variants, the fusion proteins could be soluble when expressed in E. coli. The highest concentration of the purified enzyme was 80.5 mg/L of fermentation broth. Furthermore, the UCE with the core catalytic domain exhibited the highest uncovering activity. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Graphical abstract

19 pages, 2035 KiB  
Review
Chitin, Chitosan and Its Derivatives: Antimicrobials and/or Mitigators of Water
by Eva Scarcelli, Alessia Catalano, Domenico Iacopetta, Jessica Ceramella, Maria Stefania Sinicropi and Francesca Aiello
Macromol 2025, 5(2), 15; https://doi.org/10.3390/macromol5020015 - 8 Apr 2025
Viewed by 2580
Abstract
Antimicrobial resistance (AMR) is a major global health problem, exacerbated by the excessive and inappropriate use of antibiotics in human medicine, animal care and agriculture. Therefore, new strategies and compounds are needed to overcome this issue. In this view, it may be appropriate [...] Read more.
Antimicrobial resistance (AMR) is a major global health problem, exacerbated by the excessive and inappropriate use of antibiotics in human medicine, animal care and agriculture. Therefore, new strategies and compounds are needed to overcome this issue. In this view, it may be appropriate to reconsider existing biomaterials to alleviate antibiotic overuse. Chitin, a naturally abundant amino mucopolysaccharide, is a poly-β-1, 4-N-acetylglucosamine (GlcNAc). It is a white, hard, inelastic, nitrogenous polysaccharide and the major source of surface pollution in coastal areas. Chitosan derives from the partial N-deacetylation of chitin and originates from the shells of crustaceans and the fungi cell walls. It is a nontoxic natural antimicrobial polymer approved by GRAS (Generally Recognized as Safe by the United States Food and Drug Administration). Chitin and chitosan, as non-toxic biopolymers, are useful compounds for wastewater treatment to remove pollutants, such as pharmaceuticals, heavy metals and dyes. The described features make these biopolymers intriguing compounds to be investigated for their application as antibacterials. Full article
Show Figures

Figure 1

29 pages, 9411 KiB  
Article
Migrasome Marker Epidermal Growth Factor Domain-Specific O-GlcNAc Transferase: Pan-Cancer Angiogenesis Biomarker and the Potential Role of circ_0058189/miR-130a-3p/EOGT Axis in Hepatocellular Carcinoma Progression and Sorafenib Resistance
by Zhe Yu, Jing Luo, Wen An, Herui Wei, Mengqi Li, Lingling He, Fan Xiao and Hongshan Wei
Biomedicines 2025, 13(4), 773; https://doi.org/10.3390/biomedicines13040773 - 22 Mar 2025
Cited by 1 | Viewed by 883
Abstract
Background: The EGF domain-specific O-GlcNAc transferase (EOGT), a migrasome marker, plays emerging roles in cancer biology through O-GlcNAcylation modifications, yet its pan-cancer functions and therapeutic implications remain underexplored. This study aimed to systematically characterize EOGT’s oncogenic mechanisms across malignancies, with particular focus [...] Read more.
Background: The EGF domain-specific O-GlcNAc transferase (EOGT), a migrasome marker, plays emerging roles in cancer biology through O-GlcNAcylation modifications, yet its pan-cancer functions and therapeutic implications remain underexplored. This study aimed to systematically characterize EOGT’s oncogenic mechanisms across malignancies, with particular focus on hepatocellular carcinoma (HCC) progression and sorafenib resistance. Methods: Multi-omics analysis integrated TCGA/GTEx data from 33 cancer types with spatial/single-cell transcriptomics and 10 HCC cohorts. Functional validation employed Huh7 cell models with EOGT modulation, RNA sequencing, and ceRNA network construction. Drug sensitivity analysis leveraged GDSC/CTRP/PRISM databases, while immune microenvironment assessment utilized ESTIMATE/TIMER algorithms. Results: EOGT showed cancer-specific dysregulation, marked by significant upregulation in HCC correlating with advanced stages and poor survival. Pan-cancer analysis revealed EOGT’s association with genomic instability, tumor stemness, and angiogenesis. Experimental validation demonstrated EOGT’s promotion of HCC proliferation and migration. A novel exosomal circ_0058189/miR-130a-3p/EOGT axis was identified, showing that circ_0058189 was upregulated in HCC tissues, plasma samples and exosomes of sorafenib-resistant cells. Conclusion: This study establishes EOGT as a pan-cancer angiogenesis biomarker, while elucidating its role in therapeutic resistance via exosomal circRNA-mediated regulation, providing mechanistic insights for targeted intervention strategies. Full article
(This article belongs to the Special Issue Mechanisms and Therapeutic Approaches for Hepatocellular Carcinoma)
Show Figures

Figure 1

14 pages, 4795 KiB  
Article
O-GlcNAcylation in Gli1+ Mesenchymal Stem Cells Is Indispensable for Bone Formation and Fracture Healing
by Moyu Liu, Yujie Hu, Chengjia You, Ding Xiong, Ling Ye and Yu Shi
Int. J. Mol. Sci. 2025, 26(6), 2712; https://doi.org/10.3390/ijms26062712 - 18 Mar 2025
Viewed by 808
Abstract
Adult mesenchymal stem cells (MSCs) play a crucial role in maintaining bone health and promoting regeneration. In our previous research, we identified Gli1+ MSCs as key contributors to the formation of most trabecular bone in adulthood and as essential for healing bicortical [...] Read more.
Adult mesenchymal stem cells (MSCs) play a crucial role in maintaining bone health and promoting regeneration. In our previous research, we identified Gli1+ MSCs as key contributors to the formation of most trabecular bone in adulthood and as essential for healing bicortical fractures. However, the mechanisms behind the maintenance and differentiation of Gli1+ MSCs are still not fully understood. O-linked N-acetylglucosamine modification (O-GlcNAcylation), mediated by O-GlcNAc glycosyltransferase (OGT), is involved in various biological processes and diseases. Our earlier work also demonstrated that O-GlcNAcylation is necessary for Wnt-stimulated bone formation. Nonetheless, the specific functions of O-GlcNAcylation in MSCs have not been completely elucidated. In this study, we found that the absence of OGT in Gli1+ MSCs led to a decrease in O-GlcNAcylation, which impaired both the bone formation and regeneration following fractures. Mechanistically, the Hedgehog signaling pathway induced O-GlcNAcylation through the insulin-like growth factor (Igf)-mTORC2 axis. This process stabilized the Gli2 protein at a specific site Ser355 and promoted osteogenesis in MSCs in vitro. Our findings reveal a significant mechanism by which O-GlcNAcylation regulates bone development and repair in mammals. Full article
Show Figures

Figure 1

25 pages, 3757 KiB  
Article
GATAD2B O-GlcNAcylation Regulates Breast Cancer Stem-like Potential and Drug Resistance
by Giang Le Minh, Jessica Merzy, Emily M. Esquea, Nusaiba N. Ahmed, Riley G. Young, Ryan J. Sharp, Tejsi T. Dhameliya, Bernice Agana, Mi-Hye Lee, Jennifer R. Bethard, Susana Comte-Walters, Lauren E. Ball and Mauricio J. Reginato
Cells 2025, 14(6), 398; https://doi.org/10.3390/cells14060398 - 8 Mar 2025
Cited by 1 | Viewed by 1267
Abstract
The growth of breast tumors is driven and controlled by a subpopulation of cancer cells resembling adult stem cells, which are called cancer stem-like cells (CSCs). In breast cancer, the function and maintenance of CSCs are influenced by protein O-GlcNAcylation and the enzyme [...] Read more.
The growth of breast tumors is driven and controlled by a subpopulation of cancer cells resembling adult stem cells, which are called cancer stem-like cells (CSCs). In breast cancer, the function and maintenance of CSCs are influenced by protein O-GlcNAcylation and the enzyme responsible for this post-translational modification, O-GlcNAc transferase (OGT). However, the mechanism of CSCs regulation by OGT and O-GlcNAc cycling in breast cancer is still unclear. Analysis of the proteome and O-GlcNAcome, revealed GATAD2B, a component of the Nucleosome Remodeling and Deacetylase (NuRD) complex, as a substrate regulated by OGT. Reducing GATAD2B genetically impairs mammosphere formation, decreases expression of self-renewal factors and CSCs population. O-GlcNAcylation of GATAD2B at the C-terminus protects GATAD2B from ubiquitination and proteasomal degradation in breast cancer cells. We identify ITCH as a novel E3 ligase for GATAD2B and show that targeting ITCH genetically increases GATAD2B levels and increases CSCs phenotypes. Lastly, we show that overexpression of wild-type GATAD2B, but not the mutant lacking C-terminal O-GlcNAc sites, promotes mammosphere formation, expression of CSCs factors and drug resistance. Together, we identify a key role of GATAD2B and ITCH in regulating CSCs in breast cancer and GATAD2B O-GlcNAcylation as a mechanism regulating breast cancer stem-like populations and promoting chemoresistance. Full article
(This article belongs to the Special Issue Cellular Mechanisms of Anti-Cancer Therapies)
Show Figures

Figure 1

22 pages, 5214 KiB  
Article
Novel Phenotypical and Biochemical Findings in Mucolipidosis Type II
by Eines Monteagudo-Vilavedra, Daniel Rodrigues, Giorgia Vella, Susana B. Bravo, Carmen Pena, Laura Lopez-Valverde, Cristobal Colon, Paula Sanchez-Pintos, Francisco J. Otero Espinar, Maria L. Couce and J. Victor Alvarez
Int. J. Mol. Sci. 2025, 26(6), 2408; https://doi.org/10.3390/ijms26062408 - 7 Mar 2025
Cited by 1 | Viewed by 1144
Abstract
Mucolipidosis type II is a very rare lysosomal disease affecting the UDP-GlcNAc N-acetylglucosamine-1-phosphotransferase enzyme, which catalyzes the synthesis of the targeting signal mannose 6-phosphate in lysosomal acid hydrolases. Its deficiency hinders the arrival of lysosomal enzymes to the lysosome, diminishing the multiple degradations [...] Read more.
Mucolipidosis type II is a very rare lysosomal disease affecting the UDP-GlcNAc N-acetylglucosamine-1-phosphotransferase enzyme, which catalyzes the synthesis of the targeting signal mannose 6-phosphate in lysosomal acid hydrolases. Its deficiency hinders the arrival of lysosomal enzymes to the lysosome, diminishing the multiple degradations of components that cells need to perform. Due to the low prevalence of this condition, available information is scarce. This article aims to deepen the understanding of the disease; clinical, biochemical, and proteomic data are analyzed. Three patients have been identified presenting GNPTAB pathogenic variants using whole exome sequencing. A biochemical profile for these patients has been carried out through quantification of glycosaminoglycans in urine samples and enzymatic analysis in dried blood spot (DBS) samples. Quantitative proteomic studies were performed. Results show how enzymatic assays in DBS can be used to diagnose this disease both during the neonatal period or in patients of more advanced age. Increased levels of acid sphingomyelinase, alpha-iduronidase, iduronidate 2-sulfatase, alpha-N-acetyl glucosaminidase, and beta-glucuronidase are found. Conclusion: this biochemical method could potentially improve early diagnosis. Proteomic data supporting these results reveal disrupted biochemical pathways, including the degradation of dermatan sulfate, heparan sulfate, and cellular cholesterol trafficking. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 4313 KiB  
Article
The Impact of Chitinase Binding Domain Truncation on the Properties of CaChi18B from Chitinilyticum aquatile CSC-1
by Chenxi Gu, Jianrong Chen, Xinyue Huang, Yongqiang Jiang, Na Ou, Dengfeng Yang, Mingguo Jiang and Lixia Pan
Mar. Drugs 2025, 23(3), 93; https://doi.org/10.3390/md23030093 - 20 Feb 2025
Cited by 1 | Viewed by 798
Abstract
The chitinase binding domain (ChBD) plays a crucial role in the properties of enzymes. To assess its impact, we cloned a truncated mutant of the chitinase gene CaChi18B from the novel chitinase-producing facultative anaerobic bacterium Chitinilyticum aquatile CSC-1, designated as CaChi18B_ΔChBDs. [...] Read more.
The chitinase binding domain (ChBD) plays a crucial role in the properties of enzymes. To assess its impact, we cloned a truncated mutant of the chitinase gene CaChi18B from the novel chitinase-producing facultative anaerobic bacterium Chitinilyticum aquatile CSC-1, designated as CaChi18B_ΔChBDs. The recombinant chitinase was successfully expressed and purified, exhibiting a specific activity of 3.48 U/mg on colloidal chitin, with optimal conditions at 45 °C and pH 6.0, and retaining over 80% activity at temperatures up to 40 °C. Kinetic analysis revealed that the Km value was 1.159 mg mL−1 and the Vmax was 10.37 μM min−1 mg−1. Compared to CaChi18B_ΔChBD1, which has only the first ChBD truncated at the N-terminus, CaChi18B_ΔChBDs exhibited minor changes in the optimal temperature and pH, while the Km and Vmax values increased significantly. CaChi18B_ΔChBDs exhibited tolerance to various metal ions, with K+ and NH4+ enhancing activity, while Cu2+ significantly inhibited it. Most organic reagents had minimal impact, except for formic acid, which severely reduced activity. The primary hydrolysis product in the initial phase was GlcNAc, contrasting with (GlcNAc)2 for CaChi18B_ΔChBD1. These findings indicated that the ChBD influences the enzyme’s Km, Vmax, and product distribution, enhancing our understanding of ChBD’s roles and advancing chitin utilization. Full article
(This article belongs to the Section Biomaterials of Marine Origin)
Show Figures

Figure 1

Back to TopTop