Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (183)

Search Parameters:
Keywords = Gas Tungsten Arc Welding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3178 KiB  
Article
Deep Learning-Based YOLO Applied to Rear Weld Pool Thermal Monitoring of Metallic Materials in the GTAW Process
by Vinicius Lemes Jorge, Zaid Boutaleb, Theo Boutin, Issam Bendaoud, Fabien Soulié and Cyril Bordreuil
Metals 2025, 15(8), 836; https://doi.org/10.3390/met15080836 - 26 Jul 2025
Viewed by 315
Abstract
This study investigates the use of YOLOv8 deep learning models to segment and classify thermal images acquired from the rear of the weld pool during the Gas Tungsten Arc Welding (GTAW) process. Thermal data were acquired using a two-color pyrometer under three welding [...] Read more.
This study investigates the use of YOLOv8 deep learning models to segment and classify thermal images acquired from the rear of the weld pool during the Gas Tungsten Arc Welding (GTAW) process. Thermal data were acquired using a two-color pyrometer under three welding current levels (160 A, 180 A, and 200 A). Models of sizes from nano to extra-large were trained on 66 annotated frames and evaluated with and without data augmentation. The results demonstrate that the YOLOv8m model achieved the best classification performance, with a precision of 83.25% and an inference time of 21.4 ms per frame by using GPU, offering the optimal balance between accuracy and speed. Segmentation accuracy also remained high across all current levels. The YOLOv8n model was the fastest (15.9 ms/frame) but less accurate (75.33%). Classification was most reliable at 160 A, where the thermal field was more stable. The arc reflection class was consistently identified with near-perfect precision, demonstrating the model’s robustness against non-relevant thermal artifacts. These findings confirm the feasibility of using lightweight, dual-task neural networks for reliable weld pool analysis, even with limited training data. Full article
(This article belongs to the Special Issue Advances in Welding Processes of Metallic Materials)
Show Figures

Figure 1

130 pages, 2839 KiB  
Review
Issues Relative to the Welding of Nickel and Its Alloys
by Adam Rylski and Krzysztof Siczek
Materials 2025, 18(15), 3433; https://doi.org/10.3390/ma18153433 - 22 Jul 2025
Viewed by 243
Abstract
Nickel is used in aerospace, military, energy, and chemical sectors. Commercially pure (CP) Ni, and its alloys, including solid-solution strengthened (SSS), precipitation strengthened (PS), and specialty alloys (SA), are widely utilized, typically at elevated temperatures, in corrosive settings and in cryogenic milieu. Ni [...] Read more.
Nickel is used in aerospace, military, energy, and chemical sectors. Commercially pure (CP) Ni, and its alloys, including solid-solution strengthened (SSS), precipitation strengthened (PS), and specialty alloys (SA), are widely utilized, typically at elevated temperatures, in corrosive settings and in cryogenic milieu. Ni or Ni-based alloys frequently require welding realized, inter alia, via methods using electric arc and beam power. Tungsten inert gas (TIG) and Electron-beam welding (EBW) have been utilized most often. Friction stir welding (FSW) is the most promising solid-state welding technique for connecting Ni and its alloys. The primary weldability issues related to Ni and its alloys are porosity, as well as hot and warm cracking. CP Ni exhibits superior weldability. It is vulnerable to porosity and cracking during the solidification of the weld metal. Typically, SSS alloys demonstrate superior weldability when compared to PS Ni alloys; however, both types may experience weld metal solidification cracking, liquation cracking in the partially melted and heat-affected zones, as well as ductility-dip cracking (DDC). Furthermore, PS alloys are prone to strain-age cracking (SAC). The weldability of specialty Ni alloys is limited, and brazing might provide a solution. Employing appropriate filler metal, welding settings, and minimal restraint can reduce or avert cracking. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

12 pages, 4872 KiB  
Article
Study of the Influence of Gas Tungsten Arc (GTA) Welding on the Microstructure and Properties of Mg–Al–RE-Type Magnesium Alloys
by Katarzyna N. Braszczyńska-Malik
Materials 2025, 18(14), 3277; https://doi.org/10.3390/ma18143277 - 11 Jul 2025
Viewed by 365
Abstract
The effects of the gas tungsten arc (GTA) welding process on the microstructure and microhardness of two Mg-5Al-3RE and Mg-5Al-5RE experimental alloys (RE—rare earth elements) are presented. Both alloys were gravity-cast in a steel mould and GTA-welded in the same conditions. Analyses of [...] Read more.
The effects of the gas tungsten arc (GTA) welding process on the microstructure and microhardness of two Mg-5Al-3RE and Mg-5Al-5RE experimental alloys (RE—rare earth elements) are presented. Both alloys were gravity-cast in a steel mould and GTA-welded in the same conditions. Analyses of the alloys’ microstructure were carried out by scanning electron microscopy (SEM+EDX) as well as X-ray diffraction (XRD). In as-cast conditions; both alloys were mainly composed of α-Mg; Al11RE3; and Al10RE2Mn7 intermetallic phases. Additionally; α+γ eutectic (where γ is Al12Mg17) in the Mg-5Al-3RE alloy and an Al2RE phase in the Mg-5Al-5RE material were revealed. The same phase composition was revealed for both alloys after the GTA welding process. The results of the dendrite arm size (DAS) and Vickers microhardness measurements were also described. Both welded materials exhibited an intensive size reduction of the structural constituents after GTA welding. About 75% smaller values of the dendrite arm spacing were revealed in the fusion zones of the investigated materials than in the as-cast conditions. The GTA welding process also influenced the microhardness of the experimental alloys and increased them by about 21% compared to the base metal; which was the consequence of the refinement of the structural constituents. Full article
(This article belongs to the Collection Alloy and Process Development of Light Metals)
Show Figures

Figure 1

27 pages, 18408 KiB  
Article
Optimizing Al7072 Grooved Joints After Gas Tungsten Arc Welding
by Wei Guo, Qinwei Yu, Pengshen Zhang, Shunjie Yao, Hui Wang and Hongliang Li
Metals 2025, 15(7), 767; https://doi.org/10.3390/met15070767 - 8 Jul 2025
Viewed by 212
Abstract
Aluminum alloy, due to its low melting point and high thermal conductivity, deforms and contracts significantly during welding. To mitigate this and achieve full penetration in a single pass, this study uses GTAW (Gas Tungsten Arc Welding) additive manufacturing and optimizes welding groove [...] Read more.
Aluminum alloy, due to its low melting point and high thermal conductivity, deforms and contracts significantly during welding. To mitigate this and achieve full penetration in a single pass, this study uses GTAW (Gas Tungsten Arc Welding) additive manufacturing and optimizes welding groove parameters via the Box-Behnken Response Surface Methodology. The focus is on improving tensile strength and penetration depth by analyzing the effects of groove angle, root face width, and root gap. The results show that groove angle most significantly affects tensile strength and penetration depth. Hardness profiles exhibit a W-shape, with base material hardness decreasing and weld zone hardness increasing as groove angle rises. Root face width reduces hardness fluctuation in the weld zone, and an appropriate root gap compensates for thermal expansion, enhancing joint performance. The interaction between root face width and root gap most impacts tensile strength, while groove angle and root face width interaction most affects penetration depth. The optimal welding parameters for 7xxx aluminum alloy GTAW are a groove angle of 70.8°, root face width of 1.38 mm, and root gap of 0 mm. This results in a tensile strength of 297.95 MPa and penetration depth of 5 mm, a 90.38% increase in tensile strength compared to the RSM experimental worst group. Microstructural analysis reveals the presence of β-Mg2Si and η-MgZn2 strengthening phases, which contribute to the material’s enhanced mechanical properties. Fracture surface examination exhibits characteristic ductile fracture features, including dimples and shear lips, confirming the material’s high ductility. The coexistence of these strengthening phases and ductile fracture behavior indicates excellent overall mechanical performance, balancing strength and plasticity. Full article
Show Figures

Figure 1

12 pages, 3521 KiB  
Article
Effect of Alternating Magnetic Field Intensity on Microstructure and Corrosion Properties of Deposited Metal in 304 Stainless Steel TIG Welding
by Jinjie Wang, Jiayi Li, Haokai Wang, Zan Ju, Juan Fu, Yong Zhao and Qianhao Zang
Metals 2025, 15(7), 761; https://doi.org/10.3390/met15070761 - 6 Jul 2025
Viewed by 326
Abstract
Stainless steel, due to its exceptional comprehensive properties, has been widely adopted as the primary material for liquid cargo tank containment systems and pipelines in liquefied natural gas (LNG) carriers. However, challenges such as hot cracking, excessive deformation, and the deterioration of welded [...] Read more.
Stainless steel, due to its exceptional comprehensive properties, has been widely adopted as the primary material for liquid cargo tank containment systems and pipelines in liquefied natural gas (LNG) carriers. However, challenges such as hot cracking, excessive deformation, and the deterioration of welded joint performance during stainless steel welding significantly constrain the construction quality and safety of LNG carriers. While conventional tungsten inert gas (TIG) welding can produce high-integrity welds, it is inherently limited by shallow penetration depth and low efficiency. Magnetic field-assisted TIG welding technology addresses these limitations by introducing an external magnetic field, which effectively modifies arc morphology, refines grain structure, enhances penetration depth, and improves corrosion resistance. In this study, TIG bead-on-plate welding was performed on 304 stainless steel plates, with a systematic investigation into the dynamic arc behavior during welding, as well as the microstructure and anti-corrosion properties of the deposited metal. The experimental results demonstrate that, in the absence of a magnetic field, the welding arc remains stable without deflection. As the intensity of the alternating magnetic field intensity increases, the arc exhibits pronounced periodic oscillations. At an applied magnetic field intensity of 30 mT, the maximum arc deflection angle reaches 76°. With increasing alternating magnetic field intensity, the weld penetration depth gradually decreases, while the weld width progressively expands. Specifically, at 30 mT, the penetration depth reaches a minimum value of 1.8 mm, representing a 44% reduction compared to the non-magnetic condition, whereas the weld width peaks at 9.3 mm, corresponding to a 9.4% increase. Furthermore, the ferrite grains in the weld metal are significantly refined at higher alternating magnetic field intensities. The weld metal subjected to a 30 mT alternating magnetic field exhibits the highest breakdown potential, the lowest corrosion rate, and the most protective passive film, indicating superior corrosion resistance compared to other tested conditions. Full article
(This article belongs to the Special Issue Advanced Metal Welding and Joining Technologies—2nd Edition)
Show Figures

Graphical abstract

20 pages, 6918 KiB  
Article
Phase Transformation Kinetics During Post-Weld Heat Treatment in Weldments of C-250 Maraging Steel
by Mercedes Andrea Duran, Pablo Peitsch and Hernán Gabriel Svoboda
Materials 2025, 18(12), 2820; https://doi.org/10.3390/ma18122820 - 16 Jun 2025
Viewed by 402
Abstract
Welding of maraging steels leads to a microstructural gradient from base material (BM) to weld metal (WM). During post-weld heat treatment (PWHT) the precipitation and reverted austenite (γr) reactions will occur defining the mechanical properties. These reactions are affected by the [...] Read more.
Welding of maraging steels leads to a microstructural gradient from base material (BM) to weld metal (WM). During post-weld heat treatment (PWHT) the precipitation and reverted austenite (γr) reactions will occur defining the mechanical properties. These reactions are affected by the microstructure and local chemical composition of each zone in the “as welded” (AW) condition. This effect has not been clearly described yet nor the evolution of the microstructure. The objective of this work was to analyse the phase transformations at the different zones of the welded joint during the PWHT to explain the microstructure obtained at each zone. Samples of C250 maraging steel were butt-welded by GTAW-P (Gas Tungsten Arc Welding—Pulsed) process without filler material. The AW condition showed an inhomogeneous microhardness profile, associated with a partial precipitation hardening in the subcritical heat affected zone (SC-HAZ) followed by a softening in the intercritical (IC-HAZ) and recrystallized heat affected zone (R-HAZ). A loop-shaped phase was observed between low temperature IC-HAZ and SC-HAZ, associated with γr, as well as microsegregation at the weld metal (WM). The microstructural evolution during PWHT (480 °C) was evaluated on samples treated to different times (1–360 min). Microhardness profile along the welded joint was mostly homogeneous after 5 min of PWHT due to precipitation reaction. The microhardness in the WM was lower than in the rest of the joint due to the depletion of Ni, Ti and Mo in the martensite matrix related with the γr formation. The isothermal kinetics of precipitation reaction at 480 °C was studied using Differential Scanning Calorimetry (DSC), obtaining a JMAK expression. The average microhardness for each weld zone was proposed for monitoring the precipitation during PWHT, showing a different behaviour for the WM. γr in the WM was also quantified and modelled, while in the IC-HAZ tends to increase with PWHT time, affecting the microhardness. Full article
(This article belongs to the Special Issue Advances on Welded Joints: Microstructure and Mechanical Properties)
Show Figures

Figure 1

25 pages, 6526 KiB  
Article
Engineering Perfection in GTAW Welding: Taguchi-Optimized Root Height Reduction for SS316L Pipe Joints
by Mohammad Sohel, Vishal S. Sharma and Aravinthan Arumugam
J. Manuf. Mater. Process. 2025, 9(6), 188; https://doi.org/10.3390/jmmp9060188 - 6 Jun 2025
Viewed by 715
Abstract
This study presents a systematic optimization of GTAW welding parameters to achieve a pipe-to-pipe butt weld with a root height consistently below 2 mm when joining stainless-steel 316L material, employing the Taguchi design of experiments. To the authors’ knowledge, no similar studies have [...] Read more.
This study presents a systematic optimization of GTAW welding parameters to achieve a pipe-to-pipe butt weld with a root height consistently below 2 mm when joining stainless-steel 316L material, employing the Taguchi design of experiments. To the authors’ knowledge, no similar studies have been conducted to explore the optimization of welding parameters specifically aimed at minimizing weld root height under 2 mm in stainless-steel EO pipeline welding applications. This gap in the existing literature highlights the innovative aspect of the current study, which seeks to address these challenges and improve welding precision and joint reliability. Root height, also referred to as weld root reinforcement, is defined as the excess weld metal protruding beyond the inner surface root side of a butt-welded joint. The input parameters considered are the welding current, voltage, speed, and root gap configurations of 1, 1.5, and 2 mm. Welding was performed according to the Taguchi L-09 experimental design. Nine weld samples were evaluated using liquid penetrant testing to detect surface-breaking defects, such as porosity, laps, and cracks; X-ray radiography to identify internal defects; and profile radiography to assess erosion, corrosion, and root height. Among the nine welded plate samples, the optimal root height (less than 2 mm) was selected and further validated through the welding of a one-pipe sample. An additional macro examination was conducted to confirm the root height and assess the overall root weld integrity and quality. Full article
(This article belongs to the Special Issue Innovative Approaches in Metal Forming and Joining Technologies)
Show Figures

Figure 1

26 pages, 4568 KiB  
Article
Optimization of ATIG Weld Based on a Swarm Intelligence Approach: Application to the Design of Welding in Selected Manufacturing Processes
by Kamel Touileb and Sahbi Boubaker
Crystals 2025, 15(6), 523; https://doi.org/10.3390/cryst15060523 - 29 May 2025
Viewed by 443
Abstract
Tungsten Inert Gas (TIG) welding is a widespread welding process used in the industry for high-quality joints. However, this welding process suffers from lower productivity. Activated Tungsten Inert Gas (ATIG) is a variant of the TIG that aims to increase the depth penetration [...] Read more.
Tungsten Inert Gas (TIG) welding is a widespread welding process used in the industry for high-quality joints. However, this welding process suffers from lower productivity. Activated Tungsten Inert Gas (ATIG) is a variant of the TIG that aims to increase the depth penetration capability of conventional TIG welding. This is achieved by applying a thin coating of activating flux material onto the workpiece surface before welding. This work investigates the effect of the thermophysical properties of individual metallic oxide fluxes on 316L stainless steel weld morphology. Four levels of current intensity (120, 150, 180, 200 A) are considered. The weld speed up to 15 cm/min and arc length of 2 mm are maintained constant. Thirteen oxides were tested under various levels of current intensity in addition to multiple thermophysical properties combinations, and the depth penetration (D) and the aspect ratio (R) were recorded. This process has provided 52 combinations (13 oxides * 4 currents). Based on the numerical observations, linear and nonlinear models for describing the effect of the thermophysical parameters on the weld characteristics were tuned using a particle swarm optimization algorithm. While the linear model provided good prediction accuracy, the nonlinear exponential model outperformed the linear one for the depth yielding a mean absolute percentage error of 17%, a coefficient of determination of 0.8266, and a root mean square error of 0.9665 mm. The inverse optimization process, where the depth penetration ranged from 1.5 mm to 12 mm, thus covering a large spectrum of industries, the automotive, power plants, and construction industries, was solved to determine the envelopes’ lower and upper limits of optimal oxide thermophysical properties. The results that allowed the design of the fluxes to be used in advance were promising since they provided the oxide designer with the numerical ranges of the oxide components to achieve the targeted depths. Future directions of this work can be built around investigating additional nonlinear models, including saturation and dead-zone, to efficiently estimate the effect of the thermophysical properties on the welding process of other materials. Full article
Show Figures

Figure 1

14 pages, 5879 KiB  
Article
Effect of Post-Weld Heat Treatment Cooling Strategies on Microstructure and Mechanical Properties of 0.3 C-Cr-Mo-V Steel Weld Joints Using GTAW Process
by Syed Quadir Moinuddin, Mohammad Faseeulla Khan, Khaled Alnamasi, Skander Jribi, K. Radhakrishnan, Syed Shaul Hameed, V. Muralidharan and Muralimohan Cheepu
Metals 2025, 15(5), 496; https://doi.org/10.3390/met15050496 - 29 Apr 2025
Viewed by 590
Abstract
A total of 0.3%C-Cr-Mo-V steel, a high-strength alloy steel widely used in rocket motor housings, suspension systems in high-performance vehicles, etc., is noted due to its high strength-to-weight ratio. However, its high carbon equivalent (CE > 1%) makes it challenging to weld, as [...] Read more.
A total of 0.3%C-Cr-Mo-V steel, a high-strength alloy steel widely used in rocket motor housings, suspension systems in high-performance vehicles, etc., is noted due to its high strength-to-weight ratio. However, its high carbon equivalent (CE > 1%) makes it challenging to weld, as it is prone to brittle martensitic formation, which increases the risk of cracking and embrittlement. The present paper focuses on enhancing the microstructure and mechanical properties of 0.3% C-Cr-Mo-V steel by gas tungsten arc welded (GTAW) joints, utilizing post-weld heat treatment and cooling strategies (PWHTCS). A systematic experimental approach was employed to ensure a defect-free weld through dye penetrant testing (DPT) and X-ray radiography techniques. Subsequently, test specimens were extracted from the welded sections and subjected to PWHT protocols, including hardening, tempering, and rapid quenching using air and oil cooling (AC and OC, respectively) mediums. Results show that OC has enhanced tensile strength and hardness while simultaneously maintaining and improving ductility, ensuring a well-balanced combination of strength and toughness. Fractography analysis revealed ductile fracture in AC samples, whereas OC weldments exhibited a mixed ductile–brittle fracture mode. Thus, the findings demonstrate the critical role of PWHTCS, with OC, as an effective method for achieving enhanced mechanical performance and microstructural stability in high-integrity applications. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

13 pages, 7793 KiB  
Article
A Weld Pool Morphology Acquisition and Visualization System Based on an In Situ Calibrated Analytical Solution and Virtual Reality
by Yecun Niu, Shaojie Wu, Fangjie Cheng and Zhijiang Wang
Sensors 2025, 25(9), 2711; https://doi.org/10.3390/s25092711 - 25 Apr 2025
Viewed by 425
Abstract
A weld pool morphology acquisition and visualization system was designed in the current study, which can present real-time three-dimensional (3D) weld pool morphologies to welders. The underneath of the weld pool is calculated by utilizing an in situ calibrated analytical solution based on [...] Read more.
A weld pool morphology acquisition and visualization system was designed in the current study, which can present real-time three-dimensional (3D) weld pool morphologies to welders. The underneath of the weld pool is calculated by utilizing an in situ calibrated analytical solution based on real-time collected welding voltage, current, and the surface boundary of the weld pool. In the meantime, the heat source distribution coefficients of the analytical solution were also calibrated through a scaling calibration method. Thus, the system updates a 3D weld pool instantaneously in weld diameter, and the error is 0.8% at the minimum, and the average value is 8.54%. Furthermore, a virtual environment was constructed by using virtual reality (VR) devices, and the visualization of the 3D weld pool model was realized by employing the hot-update technology. The experimental results demonstrate that this system is basically feasible except the update rates still need to be optimized. The current study facilitates the easier observation of weld pool morphology and is highly significant for enhancing the teleoperation skills of welders, especially in achieving precise teleoperation welding. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

24 pages, 9175 KiB  
Article
Investigating the Effects of H2 Additions to Helium and Argon Shielding Gases on TIG-Welded AISI 316L Stainless Steel
by Samir Khrais, Tariq Darabseh, Awsan Mohammed and Ahmad Abdel Al
J. Compos. Sci. 2025, 9(5), 199; https://doi.org/10.3390/jcs9050199 - 22 Apr 2025
Viewed by 702
Abstract
Adding hydrogen (H2) to shielding gas in Tungsten Inert Gas (TIG) welding has garnered attention for its potential to enhance weld quality. This study explores the effects of H2 and helium (He) content on AISI 316L stainless steel welding, focusing [...] Read more.
Adding hydrogen (H2) to shielding gas in Tungsten Inert Gas (TIG) welding has garnered attention for its potential to enhance weld quality. This study explores the effects of H2 and helium (He) content on AISI 316L stainless steel welding, focusing on their influence on weld bead geometry, microstructural properties, and mechanical properties. The H2 (1.5%, 3%, 4.5%) and He (10%, 20%, 30%) concentrations were evaluated in a shielding gas primarily composed of argon (Ar). The study underscores the need for precise gas blend control to balance enhanced performance with material safety. These findings offer insights into optimizing welding parameters for AISI 316L, with implications for broader applications in industries demanding high quality. The result shows that H2 (1.5–3.0%) improves penetration, geometry, and surface finish, while He (10–20%) enhances arc stability and smoothness; however, excessive levels of H2 (>4.5%) cause defects. Optimal mechanical properties (UTS: 714.54 MPa, YS: 449.03 MPa, hardness: 93.34 HRB, impact toughness: 34.45 J) are achieved with 3% H2, 30% He, and 150 A arc current. Full article
(This article belongs to the Special Issue Welding and Friction Stir Processes for Composite Materials)
Show Figures

Figure 1

27 pages, 7550 KiB  
Article
Effect of Nano TiO2 Flux on Depth of Penetration and Mechanical Properties of TIG-Welded SA516 Grade 70 Steel Joints—An Experimental Investigation
by Rakesh Narayanan, Krishnaswamy Rameshkumar, Arangot Sumesh, Balakrishnan Shankar and Dinu Thomas Thekkuden
Metals 2025, 15(4), 399; https://doi.org/10.3390/met15040399 - 3 Apr 2025
Viewed by 1012
Abstract
This research investigates the application of activated tungsten inert gas (A-TIG) welding on boiler grade SA516 Grade 70 carbon steel using nano titanium dioxide (TiO2) nano flux to enhance weld penetration depth, microstructure, and mechanical properties. A unique flux application technique [...] Read more.
This research investigates the application of activated tungsten inert gas (A-TIG) welding on boiler grade SA516 Grade 70 carbon steel using nano titanium dioxide (TiO2) nano flux to enhance weld penetration depth, microstructure, and mechanical properties. A unique flux application technique was devised and experiments were carried out. Response Surface Methodology (RSM) was utilized to optimize weld parameters, namely arc length, welding current, and travel speed.The selection between A-TIG and TIG welding significantly influences penetration depth, as A-TIG benefits from arc constriction and elevated current density. The welding speed is crucial for controlling heat input, whereas current and arc length enhance penetration by influencing arc force and energy distribution. Optimizing all three parameters guarantees optimal penetration and weld quality. Microstructural research revealed enhanced mechanical properties in A-TIG weldments, distinguished by acicular ferrite in the fusion zone, which augmented toughness and tensile strength (520 MPa) compared to TIG weldments (470 MPa) and the base metal (480 MPa). Although A-TIG welds exhibited reduced impact toughness (68 J) relative to the base metal (128 J), A-TIG joints had superior ductility. The findings of this research clearly demonstrate the A-TIG welding process improved the depth of penetration and mechanical strength of the weld joints. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

12 pages, 10747 KiB  
Communication
Microstructure and Mechanical Properties of Inconel 718 Alloy Fabricated Using Wire Feeding Oscillated Double-Pulsed GTA-AM
by Gang Zhang, Cheng Zhang, Yu Shi and Ding Fan
Metals 2025, 15(3), 248; https://doi.org/10.3390/met15030248 - 26 Feb 2025
Cited by 1 | Viewed by 1230
Abstract
To address anisotropy challenges in electric arc-based additive manufacturing of Inconel 718 alloy, this study develops a novel wire feeding oscillated double-pulsed gas tungsten arc welding additive manufacturing method (DP-GTA-AM) enabling precise thermal-mass transfer control. Series of crack-free thin-walled Inconel 718 alloy parts [...] Read more.
To address anisotropy challenges in electric arc-based additive manufacturing of Inconel 718 alloy, this study develops a novel wire feeding oscillated double-pulsed gas tungsten arc welding additive manufacturing method (DP-GTA-AM) enabling precise thermal-mass transfer control. Series of crack-free thin-walled Inconel 718 alloy parts were successfully obtained by this proposed approach, and the microstructure and mechanical properties of the parts were thoroughly studied. The results indicate that the microstructure changes from dendrites and cellular crystals in the bottom to equiaxed grains in the midsection and entirely equiaxed crystals in the top, resulting in notable grain refinement. With an average grain size of 61.76 μm and an average length of 83.31 μm of large angle grain boundaries, the density of the <001> direction reaches 19.45. The difference in tensile strength and ductility between the horizontal and the vertical directions decreases to 6.3 MPa and 0.38%, which significantly diminishes anisotropy. Fractographic analysis confirms quasi-cleavage failure with homogeneous dimple distribution, demonstrating effective anisotropy mitigation through controlled solidification dynamics. Full article
(This article belongs to the Special Issue Advance in Wire-Based Additive Manufacturing of Metal Materials)
Show Figures

Figure 1

11 pages, 6287 KiB  
Article
Microstructure and Corrosion Behaviors of Gas Tungsten Arc Welds for Borated Stainless Steel Using Various Filler Metals
by Minseok Seo, Hyunbin Nam, Yongju Yoon, Namhyun Kang and Cheolho Park
Materials 2025, 18(3), 550; https://doi.org/10.3390/ma18030550 - 25 Jan 2025
Viewed by 857
Abstract
In this study, the microstructure and corrosion behavior of gas tungsten arc (GTA) welds of borated stainless steel (BSS) with a boron content of 1.62 wt.% were investigated using various filler metals. The filler metals used in this study were 308L, 309L, and [...] Read more.
In this study, the microstructure and corrosion behavior of gas tungsten arc (GTA) welds of borated stainless steel (BSS) with a boron content of 1.62 wt.% were investigated using various filler metals. The filler metals used in this study were 308L, 309L, and 310 without the B component. A small amount of the B component was observed in the weld metal (WM) of all specimens, even though none of the filler wires contained boron. This result was caused by the dilution of the B component from the BM into the WM by the welding heat. The segregation of boron in the WM resulted in Cr-depleted areas, which negatively affected the corrosion resistance of the welded specimens. The corrosion resistance of 308L WM with the highest fraction of B components was the most deteriorated, whereas 309L WM with the lowest boron content exhibited the best corrosion resistance. Using a filler metal without the B component is expected to effectively improve the weldability and corrosion resistance of BSS; however, it can also reduce the neutron absorption capacity. Therefore, for BSS to be used as a spent nuclear fuel storage container material, the boron content of the filler metal must be carefully considered. This study provides a foundation for research aimed at improving the development and applicability of filler metals in borated stainless steel and makes it competitive for application in fourth-generation nuclear power systems. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

17 pages, 7997 KiB  
Article
Welding of Solid-State-Recycled Aluminum Alloy: Comparative Analysis of the Mechanical and Microstructural Properties
by Jure Krolo, Vedrana Špada, Martin Bilušić and Nikša Čatipović
Appl. Sci. 2025, 15(3), 1222; https://doi.org/10.3390/app15031222 - 25 Jan 2025
Cited by 1 | Viewed by 1304
Abstract
The main aim of this research is to investigate the possibilities and challenges involved in the electric arc welding of solid-state-recycled EN AW 6082 aluminum alloy. Lately, solid-state recycling has gained increased attention as a more sustainable and efficient aluminum recycling method, whereby [...] Read more.
The main aim of this research is to investigate the possibilities and challenges involved in the electric arc welding of solid-state-recycled EN AW 6082 aluminum alloy. Lately, solid-state recycling has gained increased attention as a more sustainable and efficient aluminum recycling method, whereby only about 30% of the energy of conventional recycling is used. This method is based on the deformation of small-sized metal waste into solid recycled specimens without a remelting step. For the welding of solid-state-recycled specimens, both metal inert gas welding and tungsten inert gas welding methods are used. To evaluate the weldability of solid-state-recycled material, welded specimens are compared with welded, commercially produced EN AW 6082 aluminum alloy sheets. The welding is performed using the same processes, parameters, and conditions. To evaluate the welding potential of solid-state-recycled alloy, tensile tests, microhardness tests, optical metallography, and scanning electron microscopy, accompanied by energy-dispersive spectroscopy analysis, are performed. Full article
(This article belongs to the Special Issue Sustainable Metal Forming Materials and Technologies)
Show Figures

Figure 1

Back to TopTop