Study of the Influence of Gas Tungsten Arc (GTA) Welding on the Microstructure and Properties of Mg–Al–RE-Type Magnesium Alloys
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, X.; Jahazi, M.; Immarigeon, J.P.; Wallace, W. A review of laser welding techniques for magnesium alloys. J. Mater. Proc. Tech. 2006, 171, 188–204. [Google Scholar] [CrossRef]
- Abderrazak, K.; Kriaa, W.; Salem, W.B.; Mhiri, H.; Lepalec, G.; Autic, M. Numerical and experimental studies of molten pool formation during an interaction of a pulse laser (Nd:YAG) with a magnesium alloy. Opt. Laser Technol. 2009, 41, 470–480. [Google Scholar] [CrossRef]
- Jun, Y.; Sun, G.P.; Wang, H.-Y.; Jia, S.Q.; Jia, S.S. Laser (Nd:YAG) cladding of AZ91D magnesium alloys with Al + Si + Al2O3. J. Alloys Compd. 2006, 407, 201–207. [Google Scholar] [CrossRef]
- Xu, N.; Shen, J.; Xie, W.; Wang, L.; Wang, D.; Min, D. Abnormal distribution of microhardness in tungsten inert gas arc butt-welded AZ61 magnesium alloy plates. Mater. Charact. 2010, 61, 713–719. [Google Scholar] [CrossRef]
- DuPoint, J.N. On optimization of the powder plasma arc surfacing process. Metal. Mater. Trans. B 1998, 29, 932–934. [Google Scholar] [CrossRef]
- Quan, Y.J.; Chen, Z.H.; Gong, X.S.; Yu, Z.H. Effects of heat input on microstructure and tensile properties of laser welded magnesium alloy AZ31. Mater. Charact. 2008, 59, 1491–1497. [Google Scholar] [CrossRef]
- Zhu, J.; Li, L.; Liu, Z. CO2 and diode laser welding of AZ31 magnesium alloy. App. Sur. Sci. 2005, 247, 300–306. [Google Scholar] [CrossRef]
- Liang, G.L.; Zhou, G.; Yuan, S.Q. Study on hybrid heat source overlap welding of magnesium alloy AZ31B. Mater. Sci. Eng. A 2009, 499, 93–96. [Google Scholar] [CrossRef]
- Cao, X.; Jahazi, M. Effect of welding speed on the quality of friction stir welded butt joints of a magnesium alloy. Mater. Des. 2009, 30, 2033–2042. [Google Scholar] [CrossRef]
- Xie, G.M.; Ma, Z.Y.; Geng, L.; Chen, R.S. Microstructural evolution and mechanical properties of friction stir welded Mg–Zn–Y–Zr alloy. Mater. Sci. Eng. A 2007, 471, 63–68. [Google Scholar] [CrossRef]
- Chowdhury, S.M.; Chen, D.L.; Bhole, S.D.; Cab, X.; Powidajko, E.; Weckman, D.C.; Zhou, Y. Tensile properties and strain-hardening behavior of double-sided arc welded and friction stir welded AZ31B magnesium alloy. Mater. Sci. Eng. A 2010, 527, 2951–2961. [Google Scholar] [CrossRef]
- Sato, Y.S.; Hwan, S.; Park, C.; Michiuchi, M.; Kokawa, H. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys. Scripta Mater. 2004, 50, 1233–1236. [Google Scholar] [CrossRef]
- Wagner, D.C.; Chai, X.; Tang, X.; Kou, S. Liquation cracking in arc and friction-stir welding of Mg-Zn Alloys. Matall. Mater. Trans. A 2015, 46, 315–327. [Google Scholar] [CrossRef]
- Huang, R.-S.; Liu, L.-M.; Song, G. Infrared temperature measurement and interference analysis alloys in hybrid laser-TIG welding process. Mater. Sci. Eng. A 2007, 447, 239–243. [Google Scholar] [CrossRef]
- Min, D.; Shen, J.; Lai, S.; Chen, J. Effect of heat input on the microstructure and mechanical properties of tungsten inert gas arc butt-welded AZ61 magnesium alloy plates. Mater. Charact. 2009, 60, 1583–1590. [Google Scholar] [CrossRef]
- Chi, C.-T.; Chao, C.-G.; Liu, T.-F.; Wang, C.-C. A study of weldability and fracture modes in electron beam weldments of AZ series magnesium alloys. Mater. Sci. Eng. A 2006, 435–436, 672–680. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, J. Microstructural evolution in AZ91D magnesium alloy during electron beam welding. Vacuum 2011, 85, 1004–1010. [Google Scholar] [CrossRef]
- Srinivasan, S.; Ravi Bharath, R.; Atrens, A.; Srinivasan, P.B. Fusion Welding of Magnesium Alloys: Process Variants, Metallurgical Challenges, and Structure–Property Relationships—A Critical Review. JMEP 2025, 34, 9247–9280. [Google Scholar] [CrossRef]
- Shen, J.; You, G.; Long, S.; Pan, F. Abnormal macropore formation during double-sided gas tungsten arc welding of magnesium AZ91D alloy. Mater. Charact. 2008, 59, 1059–1065. [Google Scholar] [CrossRef]
- Liu, L.; Dong, C. Gas tungsten-arc filler welding of AZ31 magnesium alloy. Mater. Letters 2006, 60, 2194–2197. [Google Scholar] [CrossRef]
- Strzelecka, M.; Iwaszko, J.; Malik, M.; Tomczyński, S. Surface modification of the AZ91 magnesium alloy. Arch. Civ. Mech. Eng. 2015, 15, 854–861. [Google Scholar] [CrossRef]
- Wenbin, D.; Haiyan, J.; Xiaoqin, Z.; Dehui, L.; Shoushan, Y. Microstructure and mechanical properties of GTA surface modified composite layer on magnesium alloy AZ31 with SiCP. J. Alloys Compd. 2007, 429, 233–241. [Google Scholar] [CrossRef]
- Winzer, N.; Xu, P.; Bender, S.; Gross, T.; Unger, W.E.S.; Cross, C.E. Stress corrosion cracking of gas-tungsten arc welds in continuous-cast AZ31Mg alloy sheet. Corros. Sci. 2009, 51, 1950–1963. [Google Scholar] [CrossRef]
- Stern, A.; Munitz, A. Partially melted zone microstructural characterization from gas tungsten-arc bead on plate welds of magnesium AZ91 alloy. J. Mater. Sci. Letters 1999, 18, 853–855. [Google Scholar] [CrossRef]
- Liao, J.; Yamamoto, N.; Nakata, K. Gas tungsten arc welding of fine-grained AZ31B magnesium alloys made by powder metallurgy. Mater. Des. 2014, 56, 460–467. [Google Scholar] [CrossRef]
- Braszczyńska-Malik, K.N.; Mróz, M. Gas-tungsten arc welding of AZ91 magnesium alloy. J. Alloys Compd. 2011, 509, 9951–9958. [Google Scholar] [CrossRef]
- Marya, M.; Edwords, G.R.; Liu, S. An investigation on the effects of gases in GTA welding of a wrought AZ80 magnesium alloy. Weld. J. July 2004, 83, 203-S. [Google Scholar]
- Zhu, T.; Chen, Z.W.; Gao, W. Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy. Mater. Charact. 2008, 59, 1550–1558. [Google Scholar] [CrossRef]
- Munitz, A.; Cotler, C.; Stern, A.; Kohn, G. Mechanical properties and microstructure of gas tungsten arc welded magnesium AZ91D plates. Mater. Sci. Eng. A 2001, 302, 68–73. [Google Scholar] [CrossRef]
- Ben-Hamu, G.; Eliezer, D.; Cross, C.E.; Böllinghaus, T. The relation between microstructure and corrosion behavior of GTA welded AZ31B magnesium sheet. Mater. Sci. Eng. A 2007, 452–453, 210–218. [Google Scholar] [CrossRef]
- Zhou, W.; Le, Q.; Shi, Y.; Liao, Q.; Wang, T.; Zou, Q.; Aranas, C., Jr. Enhencement of mechanical properties of GTAW joints for AZ63 magnesium Alloys by post weld hat treatment. J. Mater. Sci. Techn. 2024, 169, 251–263. [Google Scholar] [CrossRef]
- Braszczyńska-Malik, K.N. Precipitates of α-Mg17Al12 phase in AZ91 alloy. In Magnesium Alloys—Design, Processing and Properties; Czerwinski, F., Ed.; INTECH Open Access Publisher: London, UK, 2011; Chapter 5; pp. 95–112. [Google Scholar]
- Dieringa, H.; Hort, N.; Kainer, K.U. Investigation of minimum creep rates and stress exponents calculated from tensile and compressive creep data of magnesium alloy AE42. Mater. Sci. Eng. A 2009, 510–511, 382–386. [Google Scholar] [CrossRef]
- Braszczyńska-Malik, K.N.; Grzybowska, A. Microstructure of Mg-5Al-0.4Mn-xRE (x = 3 and 5 wt.%) alloys in as-cast conditions and after annealing. J. Alloys Compd. 2016, 663, 172–179. [Google Scholar] [CrossRef]
- Dargusch, M.S.; Zhu, S.M.; Nie, J.F.; Dunlop, G.L. Microstructural analysis of the improved creep resistance of a die-cast magnesium–aluminium–rare earth alloy by strontium additions. Scr. Mater. 2009, 60, 116–119. [Google Scholar] [CrossRef]
- Braszczyńska-Malik, K.N.; Grzybowska, A. Influence of phase composition on microstructure and properties of Mg-5Al-0.4Mn-xRE (x = 0, 3 and 5 wt.%) alloys. Mater. Charact. 2016, 115, 14–22. [Google Scholar] [CrossRef]
- Nami, B.; Razavi, H.; Mirdamadi, S.; Shabestari, S.G.; Miresmaeili, S.M. Effect of Ca and rare earth elements on impression creep properties of AZ91 magnesium alloy. Metal. Mater. Trans. A 2010, 41, 1973–1982. [Google Scholar]
- Braszczyńska-Malik, K.N. Types of component interfaces in metal matrix composites on the example of magnesium matrix composites. Materials 2021, 14, 5182. [Google Scholar] [CrossRef]
- Braszczyńska-Malik, K.N.; Przełożyńska, E. The influence of Ti particles on microstructure and mechanical properties Of Mg-5Al-5RE matrix alloy composite. J. Alloys Compd. 2017, 728, 600–606. [Google Scholar] [CrossRef]
- Braszczyńska, K.N. Contribution of SiC particles to the formation of the structure of Mg-3 wt.% RE cast composites. Z. Für Met. 2003, 94, 144–148. [Google Scholar] [CrossRef]
- Wang, X.; Du, W.; Liu, K.; Wang, Z.; Li, S. Microstructure, tensile properties and creep behaviors of as-cast Mg–2Al–1Zn–xGd (x = 1, 2, 3, and 4 wt.%) alloys. J. Alloys Compd. 2012, 522, 78–84. [Google Scholar] [CrossRef]
- Qiu, W.; Han, E.; Liu, L. Microstructure and mechanical properties of Mg-3Al-1Zn-xRE alloys. J. Mater. Sci. Technol. 2009, 25, 356–360. [Google Scholar]
- Zhang, J.; Liu, S.; Leng, Z.; Zhang, M.; Meng, J.; Wu, R. Microstructure and mechanical properties of heat-resistant HPDC Mg-4Al-based alloys containing cheap misch metal. Mater. Sci. Eng. A 2011, 528, 2670–2677. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, L.; Wang, J.; Wu, Y.; Ning, Z. Microstructure and mechanical properties of Mg-4Al-4Nd-0.5Zn-0.3Mn alloy. Mater. Sci. Eng. A 2009, 515, 98–101. [Google Scholar] [CrossRef]
- Braszczyńska-Malik, K.N. Some mechanical properties of experimental Mg-Al-RE-Mn magnesium alloys. Arch. Foundry Eng. 2014, 14, 13–16. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, K.; Fang, D.; Qiu, X.; Tang, D.; Meng, J. Microstructure, tensile properties and creep behavior of high-pressure die-cast Mg-4Al-4RE-0.4Mn (RE = La, Ce) alloys. J. Mater. Sci. 2009, 44, 2046–2054. [Google Scholar] [CrossRef]
- Huang, Y.D.; Dieringa, H.; Hort, N.; Maier, P.; Kainer, K.U.; Liu, Y.L. Evolution of microstructure and hardness of AE42 alloy after heat treatment. J. Alloys Comp. 2008, 463, 238–245. [Google Scholar] [CrossRef]
- Feng, L.; Dong, X.; Xia, M.; Zhu, X.; Ji, G.; Yang, H.; Wang, B.; Nyberg, E.A.; Ji, S. Development of high thermal conductivity, enhanced strength and cost-effective die-cast Mg alloy compared with AE44 alloy. J. Mater. Res. Technol. 2023, 22, 2955–2966. [Google Scholar] [CrossRef]
- Braszczyńska-Malik, K.N. Mg-Al-RE magnesium alloys for high-pressure die-casting. Arch. Foundry Eng. 2014, 14, 49–52. [Google Scholar] [CrossRef]
- Lakshmikhanth, R.S.; Lakshminarayanan, A.K. On the mechanical, microstructural, and corrosion properties of pulsed gas tungsten arc and friction stir welded RZ5 rare earth grade magnesium alloy. Mater. Res. Express 2022, 9, 126507. [Google Scholar] [CrossRef]
- Eftekhar, A.H.; Sadrossadat, S.M.; Reihanian, M. Effect of heat input on microstructure and mechanical properties of TIG-welded semisolid cast AXE622 Mg alloy. Mater. Charact. 2022, 184, 111692. [Google Scholar] [CrossRef]
- Wang, Q.; Tong, X.; Wu, G.; Zhan, J.; Qi, F.; Zhang, L.; Liu, W. Microstructure and strengthening mechanism of TIG welded joints of a Mg-Nd-Gd alloy: Effects of heat input and pulse current. Mater. Sci. Eng. A 2023, 869, 144816. [Google Scholar] [CrossRef]
- Zhou, W.; Le, Q.; Liao, Q.; Shi, Y.; Wang, T.; Hu, W. Study of GTA-welded joints of ZW61 magnesium alloy—effect of welding current on the microstructure and mechanical properties. Weld. J. 2025, 104, 17–24. [Google Scholar] [CrossRef]
- Powder Diffraction File; PDF-4 + 2015; International Centre for Diffraction Data (ICDD): Pennsylvania, PA, USA, 2015.
- Braszczyńska-Malik, K.N. Effect of high-pressure die casting on structure and properties of Mg-5Al-0.4Mn-xRE (x = 1, 3 and 5wt%) experimental alloys. J. Alloys Compd. 2017, 694, 841–847. [Google Scholar] [CrossRef]
- Braszczyńska-Malik, K.N. Magnesium Alloys and Composites on Their Matrix (Oryg. Title: Stopy Magnezu i Kompozyty na Ich Osnowie), 1st ed.; Czestochowa University Publisher: Czestochowa, Poland, 2017; pp. 82–133. ISBN 978-83-7193-674-6. (In Polish) [Google Scholar]
Alloy | Chemical Composition wt% | |||
---|---|---|---|---|
Al | RE | Mn | Mg | |
Mg-5Al-3RE | 5 | 3 | 0.4 | balance |
Mg-5Al-5RE | 5 | 5 | 0.4 | balance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braszczyńska-Malik, K.N. Study of the Influence of Gas Tungsten Arc (GTA) Welding on the Microstructure and Properties of Mg–Al–RE-Type Magnesium Alloys. Materials 2025, 18, 3277. https://doi.org/10.3390/ma18143277
Braszczyńska-Malik KN. Study of the Influence of Gas Tungsten Arc (GTA) Welding on the Microstructure and Properties of Mg–Al–RE-Type Magnesium Alloys. Materials. 2025; 18(14):3277. https://doi.org/10.3390/ma18143277
Chicago/Turabian StyleBraszczyńska-Malik, Katarzyna N. 2025. "Study of the Influence of Gas Tungsten Arc (GTA) Welding on the Microstructure and Properties of Mg–Al–RE-Type Magnesium Alloys" Materials 18, no. 14: 3277. https://doi.org/10.3390/ma18143277
APA StyleBraszczyńska-Malik, K. N. (2025). Study of the Influence of Gas Tungsten Arc (GTA) Welding on the Microstructure and Properties of Mg–Al–RE-Type Magnesium Alloys. Materials, 18(14), 3277. https://doi.org/10.3390/ma18143277