Welding of Solid-State-Recycled Aluminum Alloy: Comparative Analysis of the Mechanical and Microstructural Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Macroscopy Analysis
3.2. Mechanical Properties Analysis
3.3. Scanning Electron Microscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stacey, M. Aluminium Recyclability and Recycling; Cwningen Press: Carmarthen, UK, 2015; ISBN 9780993016219. [Google Scholar]
- Krolo, J.; Lela, B.; Grgić, K.; Jozić, S. Production of Closed-Cell Foams out of Aluminum Chip Waste: Mathematical Modeling and Optimization. Metals 2022, 12, 933. [Google Scholar] [CrossRef]
- El Mehtedi, M.; Buonadonna, P.; Carta, M.; El Mohtadi, R.; Mele, A.; Morea, D. Sustainability Study of a New Solid-State Aluminum Chips Recycling Process: A Life Cycle Assessment Approach. Sustainability 2023, 15, 11434. [Google Scholar] [CrossRef]
- Feng, Z.; David, S.A.; Manchiraju, V.K.; Frederick, D.A.; Thomas, W. Friction Extrusion: Solid-State Metal Synthesis and Recycling in Sustainable Manufacturing. JOM 2023, 75, 2962–2973. [Google Scholar] [CrossRef]
- Murray, J.W.; Jin, X.; Cleaver, C.J.; Azevedo, J.M.C.; Liao, Z.; Zhou, W.; Cullen, J.M.; Allwood, J.M.; Clare, A.T. A Review of Principles and Options for the Re-Use of Machining Chips by Solid, Semi-Solid or Melt-Based Processing. J. Mater. Process. Technol. 2024, 331, 118514. [Google Scholar] [CrossRef]
- Altharan, Y.M.; Shamsudin, S.; Al-Alimi, S.; Saif, Y.; Zhou, W. A Review on Solid-State Recycling of Aluminum Machining Chips and Their Morphology Effect on Recycled Part Quality. Heliyon 2024, 10, e34433. [Google Scholar] [CrossRef] [PubMed]
- Laurent-Brocq, M.; Lilensten, L.; Pinot, C.; Schulze, A.; Duchaussoy, A.; Bourgon, J.; Leroy, E.; Tekkaya, A.E. Solid State Recycling of Aluminium Chips: Multi-Technique Characterization and Analysis of Oxidation. Materialia 2023, 31, 101864. [Google Scholar] [CrossRef]
- Paraskevas, D.; Kellens, K.; Dewulf, W.; Duflou, J.R. Resource Efficiency in Manufacturing: Identifying Low Impact Paths. In Proceedings of the 10th Global Conference on Sustainable Manufacturing (GCSM 2012), Istanbul, Turkey, 31 October–2 November 2012; pp. 271–276. [Google Scholar]
- Duflou, J.R.; Tekkaya, A.E.; Haase, M.; Welo, T.; Vanmeensel, K.; Kellens, K.; Dewulf, W.; Paraskevas, D. Environmental Assessment of Solid State Recycling Routes for Aluminium Alloys: Can Solid State Processes Significantly Reduce the Environmental Impact of Aluminium Recycling? CIRP Ann.-Manuf. Technol. 2015, 64, 37–40. [Google Scholar] [CrossRef]
- Krolo, J.; Gudić, S.; Vrsalović, L.; Lela, B.; Dadić, Z. Fatigue and Corrosion Behavior of Solid-State Recycled Aluminum Alloy EN AW 6082. J. Mater. Eng. Perform. 2020, 29, 4310–4321. [Google Scholar] [CrossRef]
- Kumar, N.; Bharti, A. Review on Powder Metallurgy: A Novel Technique for Recycling and Foaming of Aluminium-Based Materials. Powder Metall. Met. Ceram. 2021, 60, 52–59. [Google Scholar] [CrossRef]
- Tekkaya, A.E.; Schikorra, M.; Becker, D.; Biermann, D.; Hammer, N.; Pantke, K. Hot Profile Extrusion of AA-6060 Aluminum Chips. J. Mater. Process. Technol. 2009, 209, 3343–3350. [Google Scholar] [CrossRef]
- Allwood, J.M.; Cullen, J.M.; Cooper, D.R.; Milford, R.L.; Patel, A.C.H.; Carruth, M.A.; Mcbrien, M. Conserving Our Metal Energy; University of Cambridge: Cambridge, UK, 2010; pp. 1–20. [Google Scholar]
- Wan, B.; Chen, W.; Lu, T.; Liu, F.; Jiang, Z.; Mao, M. Review of Solid State Recycling of Aluminum Chips. Resour. Conserv. Recycl. 2017, 125, 37–47. [Google Scholar] [CrossRef]
- Kolpak, F.; Schulze, A.; Dahnke, C.; Tekkaya, A.E. Predicting Weld-Quality in Direct Hot Extrusion of Aluminium Chips. J. Mater. Process. Technol. 2019, 274, 116294. [Google Scholar] [CrossRef]
- Gronostajski, J.; Marciniak, H.; Matuszak, A. New Methods of Aluminium and Aluminium-Alloy Chips Recycling. J. Mater. Process. Technol. 2000, 106, 34–39. [Google Scholar] [CrossRef]
- Krolo, J.; Lela, B.; Dumanić, I.; Kozina, F. Statistical Analysis of the Combined ECAP and Heat Treatment for Recycling Aluminum Chips Without Remelting. Metals 2019, 9, 660. [Google Scholar] [CrossRef]
- Haase, M.; Ben Khalifa, N.; Tekkaya, A.E.; Misiolek, W.Z. Improving Mechanical Properties of Chip-Based Aluminum Extrudates by Integrated Extrusion and Equal Channel Angular Pressing (IECAP). Mater. Sci. Eng. A 2012, 539, 194–204. [Google Scholar] [CrossRef]
- Güley, V.; Güzel, A.; Jäger, A.; Ben Khalifa, N.; Tekkaya, A.E.; Misiolek, W.Z. Effect of Die Design on the Welding Quality during Solid State Recycling of AA6060 Chips by Hot Extrusion. Mater. Sci. Eng. A 2013, 574, 163–175. [Google Scholar] [CrossRef]
- Paraskevas, D.; Vanmeensel, K.; Vleugels, J.; Dewulf, W.; Deng, Y.; Duflou, J.R. Spark Plasma Sintering as a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation. Materials 2014, 7, 5664–5687. [Google Scholar] [CrossRef]
- Koch, A.; Wittke, P.; Walther, F. Computed Tomography-Based Characterization of the Fatigue Behavior and Damage Development of Extruded Profiles Made from Recycled AW6060 Aluminum Chips. Materials 2019, 12, 2372. [Google Scholar] [CrossRef]
- Ab Rahim, S.N.; Lajis, M.A.; Ariffin, S. A Review on Recycling Aluminum Chips by Hot Extrusion Process. Procedia CIRP 2015, 26, 761–766. [Google Scholar] [CrossRef]
- Carvalho, G.H.S.F.L.; Campatelli, G.; Fratini, L. Feasibility Study of Using Friction Stir Extruded Recycled Aluminum Rods for Welding and Additive Manufacturing. Manuf. Lett. 2024, 42, 52–55. [Google Scholar] [CrossRef]
- Chiba, R.; Nakamura, T.; Kuroda, M. Solid-State Recycling of Aluminium Alloy Swarf through Cold Profile Extrusion and Cold Rolling. J. Mater. Process. Technol. 2011, 211, 1878–1887. [Google Scholar] [CrossRef]
- Kore, A.S.; Nayak, K.C.; Date, P.P. Formability of Aluminium Sheets Manufactured by Solid State Recycling. J. Phys. Conf. Ser. 2017, 896, 012007. [Google Scholar] [CrossRef]
- Chino, Y.; Mabuchi, M.; Iwasaki, H.; Yamamoto, A.; Tsubakino, H. Tensile Properties and Blow Forming of 5083 Aluminum Alloy Recycled by Solid-State Recycling. Mater. Trans. 2004, 45, 2509–2515. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, J.; Xia, T.; Xie, Y.; Chan, S.L.I.; Wang, J.; Zhang, D. Effects of Oxide Fragments on Microstructure and Mechanical Properties of AA6061 Aluminum Alloy Tube Fabricated by Thermomechanical Consolidation of Machining Chips. Materials 2023, 16, 1384. [Google Scholar] [CrossRef] [PubMed]
- Brien, A.O. (Ed.) Welding Handbook—Welding Processes, Part 1; American Welding Society: Miami, FL, USA, 2004; Volume 2, ISBN 0-87171-729-89. [Google Scholar]
- O’Brien, A. (Ed.) Welding Handbook—MATERIALS AND APPLICATIONS, PART 2; American Welding Society: Miami, FL, USA, 2015; Volume 5, ISBN 978-0-87171-856-3. [Google Scholar]
- Mathers, G. The Welding of Aluminium and Its Alloys; CRC Press LLC: Boca Raton, FL, USA, 2002; ISBN 0-8493-1551-4. [Google Scholar]
- Kolarik, L.; Kovanda, K.; Valova, M.; Vondrous, P.; Dunovsky, J. Weldability Test of Precipitation Hardenable Aluminium Alloy En Aw 6082 T6. MM Sci. J. 2011, 2011, 243–247. [Google Scholar] [CrossRef]
- HRN EN ISO 6507-1:2018; Metallic Materials—Vickers Hardness Test—Part 1: Test Method (ISO 6507-1:2018; EN ISO 6507-1:2018); Croatia Standards Institute: Zagreb, Croatia, 2018. Available online: https://repozitorij.hzn.hr/norm/HRN+EN+ISO+6507-1%3A2018 (accessed on 20 January 2023).
- Yang, S.; Wang, Y.; Yang, X.; Lu, X.; Li, M.V.; Zhu, X. Effect of Softening of 6082-T6 Aluminum Alloy CMT Welded Joints on Mechanical Properties and Fracture Behavior. J. Manuf. Process. 2024, 124, 1567–1582. [Google Scholar] [CrossRef]
- Chu, Q.; Bai, R.; Jian, H.; Lei, Z.; Hu, N.; Yan, C. Microstructure, Texture and Mechanical Properties of 6061 Aluminum Laser Beam Welded Joints. Mater. Charact. 2018, 137, 269–276. [Google Scholar] [CrossRef]
- Yang, S.; Yang, X.; Lu, X.; Li, M.V.; Zuo, H.; Wang, Y. Strength Calculation and Microstructure Characterization of HAZ Softening Area in 6082-T6 Aluminum Alloy CMT Welded Joints. Mater. Today Commun. 2023, 37, 107077. [Google Scholar] [CrossRef]
- Han, X.; Yang, Z.; Ma, Y.; Shi, C.; Xin, Z. Porosity Distribution and Mechanical Response of Laser-MIG Hybrid Butt Welded 6082-T6 Aluminum Alloy Joint. Opt. Laser Technol. 2020, 132, 106511. [Google Scholar] [CrossRef]
- Arunakumara, P.C.; Sagar, H.N.; Gautam, B.; George, R.; Rajeesh, S. A Review Study on Fatigue Behavior of Aluminum 6061 T-6 and 6082 T-6 Alloys Welded by MIG and FS Welding Methods. Mater. Today Proc. 2023, 74, 293–301. [Google Scholar] [CrossRef]
- Samiuddin, M.; Li, J.-L.; Taimoor, M.; Siddiqui, M.N.; Siddiqui, S.U.; Xiong, J. tao Investigation on the Process Parameters of TIG-Welded Aluminum Alloy through Mechanical and Microstructural Characterization. Def. Technol. 2021, 17, 1234–1248. [Google Scholar] [CrossRef]
- Lee, H.K.; Chun, K.S.; Park, S.H.; Kang, C.Y. Control of Surface Defects on Plasma-MIG Hybrid Welds in Cryogenic Aluminum Alloys. Int. J. Nav. Archit. Ocean Eng. 2015, 7, 770–783. [Google Scholar] [CrossRef]
- Habba, M.I.A.; Alsaleh, N.A.; Badran, T.E.; El-Sayed Seleman, M.M.; Ataya, S.; El-Nikhaily, A.E.; Abdul-Latif, A.; Ahmed, M.M.Z. Comparative Study of FSW, MIG, and TIG Welding of AA5083-H111 Based on the Evaluation of Welded Joints and Economic Aspect. Materials 2023, 16, 5124. [Google Scholar] [CrossRef] [PubMed]
- Jenney, C.L.; O’Brien, A. (Eds.) Welding Handbook—Welding Science and Technology; American Welding Society: Miami, FL, USA, 2001; Volume 1, ISBN 0871716577. [Google Scholar]
- Tercelj, M.; Fazarinc, M.; Kugler, G.; Perus, I. Influence of the Chemical Composition and Process Parameters on the Mechanical Properties of an Extruded Aluminium Alloy for Highly Loaded Structural Parts. Constr. Build. Mater. 2013, 44, 781–791. [Google Scholar] [CrossRef]
- Krolo, J.; Lela, B.; Ljumović, P.; Bagavac, P. Enhanced Mechanical Properties of Aluminium Alloy EN AW 6082 Recycled without Remelting. Teh. Vjesn. 2019, 26, 1253–1259. [Google Scholar] [CrossRef]
Mg% | Si% | Fe% | Mn% | Cu% | Cr% | Ni% | Zn% | Others% | Al% |
---|---|---|---|---|---|---|---|---|---|
0.78 | 0.669 | 0.825 | 0.486 | 0.075 | 0.029 | 0.006 | 0.032 | Bal. | 97.080 |
Welding Process/ Parameter | MIG | TIG (One Side) | TIG (Two Sides) |
---|---|---|---|
Electric current (A) | 175 | 120/80 | 110/70 |
Work mode | DCEP | AC | AC |
Pulse welding | No | Yes (50/50) | Yes (50/50) |
Protective gas | Argon 100% | Argon 100% | Argon 100% |
Gas flow (L/min) | 20 | 10 | 10 |
Electrode type | ϕ 1.2 mm aluminum | ϕ 2.4 mm tungsten | ϕ 2.4 mm tungsten |
Filler material | AlMg5 (5356) | AlMg5 (5356) | AlMg5 (5356) |
Moving speed (cm/min) | 53.57 | ≈20 | ≈30 |
CTDW (mm) | 20 | - | - |
Tensile Strength (MPa) | |||
---|---|---|---|
Specimen Type | MIG | TIG (One Side) | TIG (Two Sides) |
SSR | 178.5 | 64 | 120 |
Conventional | 188.5 | 72 | 132 |
Engineering Strain (%) | |||
Specimen Type | MIG | TIG (One Side) | TIG (Two Sides) |
SSR | 20.7 | 6.1 | 17.6 |
Conventional | 13.5 | 5.7 | 11.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krolo, J.; Špada, V.; Bilušić, M.; Čatipović, N. Welding of Solid-State-Recycled Aluminum Alloy: Comparative Analysis of the Mechanical and Microstructural Properties. Appl. Sci. 2025, 15, 1222. https://doi.org/10.3390/app15031222
Krolo J, Špada V, Bilušić M, Čatipović N. Welding of Solid-State-Recycled Aluminum Alloy: Comparative Analysis of the Mechanical and Microstructural Properties. Applied Sciences. 2025; 15(3):1222. https://doi.org/10.3390/app15031222
Chicago/Turabian StyleKrolo, Jure, Vedrana Špada, Martin Bilušić, and Nikša Čatipović. 2025. "Welding of Solid-State-Recycled Aluminum Alloy: Comparative Analysis of the Mechanical and Microstructural Properties" Applied Sciences 15, no. 3: 1222. https://doi.org/10.3390/app15031222
APA StyleKrolo, J., Špada, V., Bilušić, M., & Čatipović, N. (2025). Welding of Solid-State-Recycled Aluminum Alloy: Comparative Analysis of the Mechanical and Microstructural Properties. Applied Sciences, 15(3), 1222. https://doi.org/10.3390/app15031222