Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (144)

Search Parameters:
Keywords = GFM1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1285 KB  
Article
Stability Assessment of Fully Inverter-Based Power Systems Using Grid-Forming Controls
by Zahra Ahmadimonfared and Stefan Eichner
Electronics 2025, 14(21), 4202; https://doi.org/10.3390/electronics14214202 (registering DOI) - 27 Oct 2025
Abstract
The displacement of synchronous machines by inverter-based resources raises critical concerns regarding the stability of future low-inertia power systems. Grid-forming (GFM) inverters offer a pathway to address these challenges by autonomously establishing voltage and frequency while emulating inertia and damping. This paper investigates [...] Read more.
The displacement of synchronous machines by inverter-based resources raises critical concerns regarding the stability of future low-inertia power systems. Grid-forming (GFM) inverters offer a pathway to address these challenges by autonomously establishing voltage and frequency while emulating inertia and damping. This paper investigates the feasibility of operating a transmission-scale network with 100% GFM penetration by fully replacing all synchronous generators in the IEEE 39-bus system with a heterogeneous mix of droop, virtual synchronous machine (VSM), and synchronverter controls. System stability is assessed under a severe fault-initiated separation, focusing on frequency and voltage metrics defined through center-of-inertia formulations and standard acceptance envelopes. A systematic parameter sweep of virtual inertia (H) and damping (Dp) reveals their distinct and complementary roles: inertia primarily shapes the Rate of Change in Frequency and excursion depth, while damping governs convergence speed and steady-state accuracy. All tested parameter combinations remain within established stability limitations, confirming the robust operability of a fully inverter-dominated grid. These findings demonstrate that properly tuned GFM inverters can enable secure and reliable operation of future power systems without reliance on synchronous machines. Full article
(This article belongs to the Topic Power System Dynamics and Stability, 2nd Edition)
21 pages, 7994 KB  
Article
Power Analysis Produced by Virtual Inertia in Single-Phase Grid-Forming Converters Under Frequency Events Intended for Bidirectional Battery Chargers
by Erick Pantaleon, Jhonatan Paucara and Damián Sal y Rosas
Energies 2025, 18(21), 5560; https://doi.org/10.3390/en18215560 - 22 Oct 2025
Viewed by 205
Abstract
The widespread integration of renewable energy sources (RESs) into the grid through inertia-less power converters is reducing the overall system inertia leading to large frequency variations. To mitigate this issue, grid-forming (GFM) control strategies in bidirectional battery chargers have emerged as a promising [...] Read more.
The widespread integration of renewable energy sources (RESs) into the grid through inertia-less power converters is reducing the overall system inertia leading to large frequency variations. To mitigate this issue, grid-forming (GFM) control strategies in bidirectional battery chargers have emerged as a promising solution, since the inertial response of synchronous generators (SGs) can be emulated by power converters. However, unlike SGs, which can withstand currents above their rated values, the output current of a power converter is limited to its nominal design value. Therefore, the estimation of the power delivered by the GFM power converter during frequency events, called Virtual Inertia (VI) support, is essential to prevent exceeding the rated current. This article analyzes the VI response of GFM power converters, classifying the dynamic behavior as underdamped, critically damped, or overdamped according to the selected inertia constant and damping coefficient, parameters of the GFM control strategy. Subsequently, the transient power response under step-shaped and ramp-shaped frequency deviations is quantified. The proposed analysis is validated using a 1.2 KW single-phase power converter. The simulation and experimental results confirm that the overdamped response under a ramp-shaped frequency event shows higher fidelity to the theorical model. Full article
Show Figures

Figure 1

18 pages, 6226 KB  
Article
PSO-Based Supervisory Adaptive Controller for BESS-VSG Frequency Regulation Under High PV Penetration
by Raffaella Assogna, Lucio Ciabattoni and Gabriele Comodi
Energies 2025, 18(20), 5401; https://doi.org/10.3390/en18205401 - 14 Oct 2025
Viewed by 287
Abstract
High photovoltaic (PV) penetration challenges grid frequency stability due to reduced system inertia. Virtual Synchronous Generators (VSGs), particularly when paired with Battery Energy Storage Systems (BESSs), can mitigate this by emulating synchronous machine dynamics. This study focuses on improving frequency response during PV [...] Read more.
High photovoltaic (PV) penetration challenges grid frequency stability due to reduced system inertia. Virtual Synchronous Generators (VSGs), particularly when paired with Battery Energy Storage Systems (BESSs), can mitigate this by emulating synchronous machine dynamics. This study focuses on improving frequency response during PV power reductions through the adaptive tuning of an extensive set of VSG parameters. A double-phase Supervisory Controller is developed: in the first phase, Particle Swarm Optimization (PSO) computes multiple sets of optimal VSG parameters for various PV curtailment and load demand change scenarios; in the second phase, the system determines the most appropriate parameters based on current operating conditions to minimize frequency deviations, using the first phase as a foundation for adaptive decision making. The proposed Supervisory Controller reduced the Integral of the Absolute Error (IAE) of 151.55% in the case of a 65% irradiance drop. At 55%, the IAE decreased from 0.4605 to 0.2227, and at 25% from 0.0791 to 0.0546. In the low-disturbance scenario at a 25% drop, the IAE was maintained below 0.06. Supervisory Controller performance led to a reduced settling time and improved frequency recovery. These results demonstrate that the Supervisory Controller improves frequency regulation in both mild and severe irradiance reduction events. Full article
Show Figures

Figure 1

20 pages, 8941 KB  
Article
Transient Stability Enhancement of a PMSG-Based System by Saturated Current Angle Control
by Huan Li, Tongpeng Mu, Yufei Zhang, Duhai Wu, Yujun Li and Zhengchun Du
Appl. Sci. 2025, 15(20), 10861; https://doi.org/10.3390/app152010861 - 10 Oct 2025
Viewed by 252
Abstract
This paper investigates the transient stability of Grid-Forming (GFM) Permanent Magnet Synchronous Generator (PMSG) systems during grid faults. An analysis demonstrates how a fixed saturated current angle can trap the system in undesirable operating points, while reactive power coupling can degrade performance. Both [...] Read more.
This paper investigates the transient stability of Grid-Forming (GFM) Permanent Magnet Synchronous Generator (PMSG) systems during grid faults. An analysis demonstrates how a fixed saturated current angle can trap the system in undesirable operating points, while reactive power coupling can degrade performance. Both factors pose a risk of turbine overspeed and instability. To overcome these vulnerabilities, a dual-mechanism control strategy is proposed, featuring an adaptive saturated current angle control that, unlike conventional fixed-angle methods, which risk creating Current Limiting Control (CLC) equilibrium points, dynamically aligns the current vector with the grid voltage to guarantee a stable post-fault trajectory. The effectiveness of the proposed strategy is validated through time-domain simulations in MATLAB/Simulink. The results show that the proposed control not only prevents overspeed trip failures seen in conventional methods but also reduces post-fault recovery time by over 60% and significantly improves system damping, ensuring robust fault ride-through and enhancing overall system stability. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

26 pages, 5816 KB  
Article
Disturbance-Free Switching Control Strategy for Grid-Following/Grid-Forming Modes of Energy Storage Converters
by Geling Jiang, Siyu Kan, Yuhang Li and Xiaorong Zhu
Electronics 2025, 14(19), 3963; https://doi.org/10.3390/electronics14193963 - 9 Oct 2025
Viewed by 391
Abstract
To address the problem of transient disturbance arising during the grid-following (GFL) and grid-forming (GFM) mode switching of energy storage converters, this paper proposes a dual-mode seamless switching control strategy. First, we conduct an in-depth analysis of the mechanism behind switching transients, identifying [...] Read more.
To address the problem of transient disturbance arising during the grid-following (GFL) and grid-forming (GFM) mode switching of energy storage converters, this paper proposes a dual-mode seamless switching control strategy. First, we conduct an in-depth analysis of the mechanism behind switching transients, identifying that sudden changes in current commands and angle-control misalignment are the key factors triggering oscillations in system power and voltage frequency. To overcome this, we design a virtual synchronous generator (VSG) control angle-tracking technique based on the construction of triangular functions, which effectively eliminates the influence of periodic phase-angle jumps on tracking accuracy and achieves precise pre-synchronization of the microgrid phase in GFM mode. Additionally, we employ a current-command seamless switching technique involving real-time latching and synchronization of the inner-loop current references between the two modes, ensuring continuity of control commands at the switching instant. The simulation and hardware-in-the-loop (HIL) experimental results show that the proposed strategy does not require retuning of the parameters after switching, greatly suppresses voltage and frequency fluctuations during mode transition, and achieves smooth, rapid, seamless switching between the GFL and GFM modes of the energy storage converter, thereby improving the stability of microgrid operation. Full article
Show Figures

Figure 1

29 pages, 9652 KB  
Article
Overcurrent Limiting Strategy for Grid-Forming Inverters Based on Current-Controlled VSG
by Alisher Askarov, Pavel Radko, Yuly Bay, Ivan Gusarov, Vagiz Kabirov, Pavel Ilyushin and Aleksey Suvorov
Mathematics 2025, 13(19), 3207; https://doi.org/10.3390/math13193207 - 7 Oct 2025
Viewed by 602
Abstract
A key direction of the development of modern power systems is the application of a continuously increasing number of grid-forming power converters to provide various system services. One of the possible strategies for the implementation of grid-forming control is a control algorithm based [...] Read more.
A key direction of the development of modern power systems is the application of a continuously increasing number of grid-forming power converters to provide various system services. One of the possible strategies for the implementation of grid-forming control is a control algorithm based on a virtual synchronous generator (VSG). However, at present, the problem of VSG operation under abnormal conditions associated with an increase in output current remains unsolved. Existing current saturation algorithms (CSAs) lead to the degradation of grid-forming properties during overcurrent limiting or reduce the possible range of current output. In this regard, this paper proposes to use the structure of modified current-controlled VSG (CC-VSG) instead of traditional voltage-controlled VSG. A current vector amplitude limiter is used to limit the output current in the CC-VSG structure. At the same time, the angle of the current reference vector continues to be regulated based on the emerging operating conditions due to the voltage feedback in the used VSG equations. The presented simulation results have shown that it was possible to achieve a wide operating range for the current phase from 0° to 180° in comparison with a traditional VSG algorithm. At the same time, the properties of the grid-forming inverter, such as power synchronization without phase-locked loop controller, voltage, and frequency control, are preserved. In addition, in order to avoid saturation of the voltage controller, it is proposed to use a simple algorithm of blocking and switching the reference signal from the setpoint to the current voltage level. Due to this structure, it was possible to prevent saturation of integrators in the control loops and to provide a guaranteed exit from the limiting mode. The results of adding this structure showed a five-second reduction in the overvoltage that occurs when it is absent. A comparison with conditional integration also showed that it prevented lock-up in the limiting mode. The results of experimental verification of the developed prototype of the inverter with CC-VSG control and CSA are also given, including a comparison with the serial model of the hybrid inverter. The results obtained showed that the developed algorithm excludes both the dead time and the load current loss when the external grid is disconnected. In addition, there is no tripping during overload, unlike a hybrid inverter. Full article
(This article belongs to the Special Issue Applied Mathematics and Intelligent Control in Electrical Engineering)
Show Figures

Figure 1

32 pages, 7952 KB  
Article
Renewable-Integrated Agent-Based Microgrid Model with Grid-Forming Support for Improved Frequency Regulation
by Danyao Peng, Sangyub Lee and Seonhan Choi
Mathematics 2025, 13(19), 3142; https://doi.org/10.3390/math13193142 - 1 Oct 2025
Viewed by 252
Abstract
The increasing penetration of renewable energy presents substantial challenges to frequency stability, particularly in low-inertia microgrids. This study introduces an agent-based microgrid model that integrates generators, loads, an energy storage system (ESS), and renewable sources, mathematically formalized through the discrete-event system specification (DEVS) [...] Read more.
The increasing penetration of renewable energy presents substantial challenges to frequency stability, particularly in low-inertia microgrids. This study introduces an agent-based microgrid model that integrates generators, loads, an energy storage system (ESS), and renewable sources, mathematically formalized through the discrete-event system specification (DEVS) to ensure both structural clarity and extensibility. To dynamically simulate power system behavior, the model incorporates multiple control strategies—including ESS scheduling, automatic generation control (AGC), predictive AGC, and grid-forming (GFM) inverter control—each posed as an mathematically defined control problem. Simulations on the IEEE 13-bus system demonstrates that the coordinated operation of ESS, GFM, and the proposed strategies markedly enhances frequency stability, reducing frequency peaks by 1.14, 1.14, and 0.72 Hz, and shortening the average recovery time by 9.05, 0.15, and 2.58 min, respectively. Collectively, the model provides a systematic representation of grid behavior and frequency regulation mechanisms under high renewable penetration, and establishes a rigorous mathematical framework for advancing microgrid research. Full article
(This article belongs to the Special Issue Modeling and Simulation for Optimizing Complex Dynamical Systems)
Show Figures

Figure 1

25 pages, 5425 KB  
Article
A Novel Nonlinear Droop Function for Flexible Operation of Grid-Forming Inverters
by Salman Harasis
Energies 2025, 18(18), 4885; https://doi.org/10.3390/en18184885 - 14 Sep 2025
Viewed by 523
Abstract
This paper introduces the Exponent Droop Function (EDF), a nonlinear grid-forming (GFM) control paradigm that enhances the flexibility and performance of droop-based control in microgrids. Unlike conventional droop mechanisms, the EDF establishes a generalized framework that unifies multiple nonlinear droop relations, enabling adaptive [...] Read more.
This paper introduces the Exponent Droop Function (EDF), a nonlinear grid-forming (GFM) control paradigm that enhances the flexibility and performance of droop-based control in microgrids. Unlike conventional droop mechanisms, the EDF establishes a generalized framework that unifies multiple nonlinear droop relations, enabling adaptive shaping of droop characteristics through the adjustment of a single tuning parameter. This capability effectively mitigates the inherent limitations of traditional droop, particularly frequency degradation, while ensuring flexible power-sharing and improved dynamic performance. The proposed approach is rigorously validated through (i) detailed system modeling and small-signal stability analysis of EDF-controlled microgrids under variable load and droop conditions, (ii) dynamic assessments of distributed generators (DGs) supported by frequency-domain analysis, and (iii) extensive time-domain simulations encompassing seven representative operating scenarios. Comparative studies against state-of-the-art GFM controllers demonstrate that EDF achieves superior transient and steady-state performance with minimal control complexity, highlighting its potential as a practical and efficient next-generation GFM control strategy for microgrids. Full article
Show Figures

Figure 1

17 pages, 2856 KB  
Article
An Adaptive Grid-Forming Control Strategy Based on Capacitor Energy State Estimation
by Xinghu Liu, Yingying Chen and Yongfeng Fu
Batteries 2025, 11(9), 337; https://doi.org/10.3390/batteries11090337 - 9 Sep 2025
Viewed by 630
Abstract
Conventional grid-forming (GFM) inverter control strategies often rely on fixed parameters and overlook the dynamic variation in energy stored in the DC link capacitor. This limitation can degrade transient performance and stability, particularly under power fluctuations and grid disturbances in renewable energy systems. [...] Read more.
Conventional grid-forming (GFM) inverter control strategies often rely on fixed parameters and overlook the dynamic variation in energy stored in the DC link capacitor. This limitation can degrade transient performance and stability, particularly under power fluctuations and grid disturbances in renewable energy systems. To address this issue, this paper proposes an adaptive GFM control method that integrates real-time estimation of the DC link capacitor energy into the control loop. A Kalman filter-based observer is designed to estimate the capacitor energy state accurately and robustly using only local voltage and current measurements. The estimated energy deviation is then used to dynamically adjust key control parameters, including the virtual inertia and droop coefficients in the virtual synchronous generator (VSG) framework. These adaptive adjustments enhance the inverter’s damping and inertial behavior according to the internal energy buffer, improving performance under variable operating conditions. Simulation results in MATLAB/Simulink R2023b demonstrate that the proposed method significantly reduces power and voltage overshoots, shortens settling time, and improves DC link voltage regulation compared to conventional fixed-parameter control. Full article
Show Figures

Figure 1

18 pages, 3242 KB  
Article
Synchronous Stability Analysis and Enhanced Control of Power Systems with Grid-Following and Grid-Forming Converters Considering Converter Distribution
by Xin Luo, Zhiying Chen, Fei Duan, Yilong He and Pengwei Sun
Electronics 2025, 14(17), 3539; https://doi.org/10.3390/electronics14173539 - 5 Sep 2025
Viewed by 646
Abstract
Under the backdrop of low-carbon energy transition, the increasing integration of grid-following (GFL) and grid-forming (GFM) converters into power systems is profoundly altering transient synchronous stability. A critical challenge lies in analyzing synchronous stability in grids with high penetration converters and improving converter [...] Read more.
Under the backdrop of low-carbon energy transition, the increasing integration of grid-following (GFL) and grid-forming (GFM) converters into power systems is profoundly altering transient synchronous stability. A critical challenge lies in analyzing synchronous stability in grids with high penetration converters and improving converter control strategies to enhance stability. This paper selects virtual synchronous generator (VSG)-based converters as representative GFM units to investigate synchronous stability and control in hybrid systems with both VSG and GFL converters. To simplify stability analysis, this study proposes a novel distribution scheme of power supplies based on an assessment of the ability of different sources to reshape synchronous stability. Specifically, synchronous generators (SGs) and GFL converters are located in the power sending area, while VSGs are deployed in the power receiving area. Under this configuration, synchronous risk is predominantly determined by the power-angle difference between VSGs and SGs. Subsequently, the mechanism by which voltage stability affects synchronous stability between SGs and VSGs is revealed. Furthermore, enhanced control strategies for both VSG and GFL converters are proposed which adjust their transient active/reactive power response characteristics to enhance synchronous stability between SGs and VSGs. Finally, the theoretical analysis and control strategies are validated through simulations on a multi-machine, two-area interconnected power system. Under the proposed enhanced control strategies for GFLs and VSGs, the first-swing power-angle amplitude between VSGs and SGs is reduced by 60% and 49%. Full article
Show Figures

Figure 1

27 pages, 11538 KB  
Article
Adaptive Transient Power Angle Control for Virtual Synchronous Generators via Physics-Embedded Reinforcement Learning
by Jiemai Gao, Siyuan Chen, Shixiong Fan, Jun Jason Zhang, Deping Ke, Hao Jun, Kezheng Jiang and David Wenzhong Gao
Electronics 2025, 14(17), 3503; https://doi.org/10.3390/electronics14173503 - 1 Sep 2025
Viewed by 613
Abstract
With the increasing integration of renewable energy sources and power electronic converters, Grid-Forming (GFM) technologies such as Virtual Synchronous Generators (VSGs) have emerged as key enablers of future power systems. However, conventional VSG control strategies with fixed parameters often fail to maintain transient [...] Read more.
With the increasing integration of renewable energy sources and power electronic converters, Grid-Forming (GFM) technologies such as Virtual Synchronous Generators (VSGs) have emerged as key enablers of future power systems. However, conventional VSG control strategies with fixed parameters often fail to maintain transient stability under dynamic grid conditions. This paper proposes a novel adaptive GFM control framework based on physics-informed reinforcement learning, targeting transient power angle stability in systems with high renewable penetration. An adaptive controller, termed the 3N-D controller, is developed to periodically update the virtual inertia and damping coefficients of VSGs based on real-time system observations, enabling anticipatory adjustments to evolving operating conditions. The controller leverages a reinforcement learning architecture embedded with physical priors, which captures the high-order differential relationships between rotor angle dynamics and control variables. This approach enhances generalization, reduces data dependency, and mitigates the risk of local optima. Comprehensive simulations on the IEEE-39 bus system with varying VSG penetration levels validate the proposed method’s effectiveness in improving system stability and control flexibility. The results demonstrate that the physics-embedded GFM strategy can significantly enhance the transient stability and adaptability of future power grids. Full article
Show Figures

Figure 1

21 pages, 6382 KB  
Article
Stability Analysis and Enhanced Control of Wind Turbine Generators Based on Hybrid GFL-GFM Control
by Sijia Huang, Zhenbin Zhang, Zhihao Chen, Huimin Huang and Zhen Li
Energies 2025, 18(17), 4590; https://doi.org/10.3390/en18174590 - 29 Aug 2025
Viewed by 488
Abstract
With the proliferation of wind power generation, the receiving end grids exhibit unprecedented dynamic characteristics, imposing critical stability challenges on grid-connected wind turbine’s converter. To address this, wind turbine converter control strategies have evolved beyond traditional grid-following (GFL) methods to include grid-forming (GFM), [...] Read more.
With the proliferation of wind power generation, the receiving end grids exhibit unprecedented dynamic characteristics, imposing critical stability challenges on grid-connected wind turbine’s converter. To address this, wind turbine converter control strategies have evolved beyond traditional grid-following (GFL) methods to include grid-forming (GFM), mode-switching, and hybrid GFL-GFM controls. This paper establishes a small-signal model for hybrid GFL-GFM-controlled wind turbines to analyze stability at varying grid strengths, guiding the selection of coefficients in hybrid mode. Simulation tests validate the theoretical framework. Full article
(This article belongs to the Special Issue Advances in Wind Turbine Optimization and Control)
Show Figures

Figure 1

21 pages, 4190 KB  
Article
Transient Overvoltage Assessment and Influencing Factors Analysis of the Hybrid Grid-Following and Grid-Forming System
by Xindi Liu, Jiawen Cao and Changgang Li
Processes 2025, 13(9), 2763; https://doi.org/10.3390/pr13092763 - 28 Aug 2025
Viewed by 592
Abstract
With the large-scale integration of renewable energy devices into the power grid, the voltage stability of the renewable energy base is becoming increasingly weak, and the problem of transient overvoltage is becoming increasingly severe. Grid-forming (GFM) converters can provide strong voltage support. When [...] Read more.
With the large-scale integration of renewable energy devices into the power grid, the voltage stability of the renewable energy base is becoming increasingly weak, and the problem of transient overvoltage is becoming increasingly severe. Grid-forming (GFM) converters can provide strong voltage support. When GFM converters are paralleled with grid-following (GFL) converters, they can effectively reduce transient overvoltage. However, hybrid systems involve many parameters and exhibit complex dynamics, making assessment of transient overvoltage difficult. To address this, this paper first uses Thevenin’s theorem to reduce the renewable transmission system to an equivalent model. Next, the voltage assessment of the hybrid system is analyzed across the pre-fault, mid-fault, and post-fault stages of a short-circuit fault. Then, based on the characteristics of a phase-locked loop (PLL), this paper innovatively derives an assessment method for transient overvoltage at the common coupling point (PCC) under different PLL stability conditions. Additionally, the influence of GFL converter parameters, GFM converter parameters, the GFM capacity ratio on transient overvoltage, and the external system reactance are analyzed. Finally, the proposed evaluation method and factor analysis are validated through electromechanical transient simulation using the simulation software STEPS v2.2.0. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 4010 KB  
Article
Transient Stability Analysis and Enhancement Strategies for AC Side of Hydro-Wind-PV VSC-HVDC Transmission System
by Xinwei Li, Yanjun Ma, Jie Fang, Kai Ma, Han Jiang, Zheren Zhang and Zheng Xu
Appl. Sci. 2025, 15(17), 9456; https://doi.org/10.3390/app15179456 - 28 Aug 2025
Viewed by 410
Abstract
To analyze and enhance the transient stability of a hydro-wind-PV VSC-HVDC transmission system, this paper establishes a transient stability analytical model and proposes strategies for stability improvement. Based on the dynamic interaction mechanisms of multiple types of power sources, an analytical model integrating [...] Read more.
To analyze and enhance the transient stability of a hydro-wind-PV VSC-HVDC transmission system, this paper establishes a transient stability analytical model and proposes strategies for stability improvement. Based on the dynamic interaction mechanisms of multiple types of power sources, an analytical model integrating GFM converters, GFL converters, and SGs is first developed. The EAC is employed to investigate how the factors such as current-limiting thresholds and fault locations influence transient stability. Subsequently, a parameter tuning method based on optimal phase angle calculation and delayed control of current-limiting modes is proposed. Theoretical analysis and PSCAD simulations demonstrate that various factors affect transient stability by influencing the PLL of converters and the electromagnetic power of synchronous machines. The energy transfer path during transient processes is related to fault locations, parameter settings of current-limiting modes in converters, and the operational states of equipment. The proposed strategy significantly improves the transient synchronization stability of multi-source coupled systems. The research findings reveal the transient stability mechanisms of hydro-wind-PV VSC-HVDC transmission systems, and the proposed stability enhancement method combines theoretical innovation with engineering practicality, providing valuable insights for the planning and design of such scenarios. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

27 pages, 4682 KB  
Article
Optimal Configuration for Photovoltaic and Energy Storage in Distribution Network Using Comprehensive Evaluation Model
by Rui Gao, Dan Wang, Chengxiong Mao, Bin Liu, Bingzhao Zhu, Jiawei Huang and Shengjun Wu
Energies 2025, 18(16), 4431; https://doi.org/10.3390/en18164431 - 20 Aug 2025
Viewed by 731
Abstract
To enhance the efficiency of renewable energy consumption and reduce reliance on fossil fuels, the study addresses the challenges of distributed photovoltaic and energy storage integration in distribution networks, such as voltage fluctuations, safety risks, and insufficient converter considerations to the distribution network. [...] Read more.
To enhance the efficiency of renewable energy consumption and reduce reliance on fossil fuels, the study addresses the challenges of distributed photovoltaic and energy storage integration in distribution networks, such as voltage fluctuations, safety risks, and insufficient converter considerations to the distribution network. Through a four-dimensional comprehensive evaluation system including grid-strength quantification indicators like the generalized short-circuit ratio, a multi-objective mathematical model-based performance evaluation system using an analytic hierarchy process and criteria importance through the intercriteria correlation method has been established, and an optimization model for the configuration of photovoltaic and energy storage equipment is optimized. The study innovatively proposes a multi-type synchronous control framework enabling dynamic GFL/GFM converter selection at different nodes, overcoming traditional single-control limitations. The simulation results show that the proposed optimal configuration scheme can effectively improve the operating states and reduce the energy consumption of the distribution network. Full article
(This article belongs to the Special Issue Searching for Ways of Optimizing the Attainment and Use of Energy)
Show Figures

Figure 1

Back to TopTop