Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (374)

Search Parameters:
Keywords = Fluorescence Excitation Spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4676 KiB  
Article
Multifunctional, Biocompatible Hybrid Surface Coatings Combining Antibacterial, Hydrophobic and Fluorescent Applications
by Gökçe Asan and Osman Arslan
Polymers 2025, 17(15), 2139; https://doi.org/10.3390/polym17152139 - 5 Aug 2025
Abstract
The hybrid inorganic–organic material concept plays a bold role in multifunctional materials, combining different features on one platform. Once varying properties coexist without cancelling each other on one matrix, a new type of supermaterial can be formed. This concept showed that silver nanoparticles [...] Read more.
The hybrid inorganic–organic material concept plays a bold role in multifunctional materials, combining different features on one platform. Once varying properties coexist without cancelling each other on one matrix, a new type of supermaterial can be formed. This concept showed that silver nanoparticles can be embedded together with inorganic and organic surface coatings and silicon quantum dots for symbiotic antibacterial character and UV-excited visible light fluorescent features. Additionally, fluorosilane material can be coupled with this prepolymeric structure to add the hydrophobic feature, showing water contact angles around 120°, providing self-cleaning features. Optical properties of the components and the final material were investigated by UV-Vis spectroscopy and PL analysis. Atomic investigations and structural variations were detected by XPS, SEM, and EDX atomic mapping methods, correcting the atomic entities inside the coating. FT-IR tracked surface features, and statistical analysis of the quantum dots and nanoparticles was conducted. Multifunctional final materials showed antibacterial properties against E. coli and S. aureus, exhibiting self-cleaning features with high surface contact angles and visible light fluorescence due to the silicon quantum dot incorporation into the sol-gel-produced nanocomposite hybrid structure. Full article
(This article belongs to the Special Issue Polymer Coatings for High-Performance Applications)
Show Figures

Figure 1

25 pages, 2023 KiB  
Article
Geographical Origin Authentication of Leaves and Drupes from Olea europaea via 1H NMR and Excitation–Emission Fluorescence Spectroscopy: A Data Fusion Approach
by Duccio Tatini, Flavia Bisozzi, Sara Costantini, Giacomo Fattori, Amedeo Boldrini, Michele Baglioni, Claudia Bonechi, Alessandro Donati, Cristiana Tozzi, Angelo Riccaboni, Gabriella Tamasi and Claudio Rossi
Molecules 2025, 30(15), 3208; https://doi.org/10.3390/molecules30153208 - 30 Jul 2025
Viewed by 213
Abstract
Geographical origin authentication of agrifood products is essential for ensuring their quality, preventing fraud, and maintaining consumers’ trust. In this study, we used proton nuclear magnetic resonance (1H NMR) and excitation–emission matrix (EEM) fluorescence spectroscopy combined with chemometric methods for the [...] Read more.
Geographical origin authentication of agrifood products is essential for ensuring their quality, preventing fraud, and maintaining consumers’ trust. In this study, we used proton nuclear magnetic resonance (1H NMR) and excitation–emission matrix (EEM) fluorescence spectroscopy combined with chemometric methods for the geographical origin characterization of olive drupes and leaves from different Tuscany subregions, where olive oil production is relevant. Single-block approaches were implemented for individual datasets, using principal component analysis (PCA) for data visualization and Soft Independent Modeling of Class Analogy (SIMCA) for sample classification. 1H NMR spectroscopy provided detailed metabolomic profiles, identifying key compounds such as polyphenols and organic acids that contribute to geographical differentiation. EEM fluorescence spectroscopy, in combination with Parallel Factor Analysis (PARAFAC), revealed distinctive fluorescence signatures associated with polyphenolic content. A mid-level data fusion strategy, integrating the common dimensions (ComDim) method, was explored to improve the models’ performance. The results demonstrated that both spectroscopic techniques independently provided valuable insights in terms of geographical characterization, while data fusion further improved the model performances, particularly for olive drupes. Notably, this study represents the first attempt to apply EEM fluorescence for the geographical classification of olive drupes and leaves, highlighting its potential as a complementary tool in geographic origin authentication. The integration of advanced spectroscopic and chemometric methods offers a reliable approach for the differentiation of samples from closely related areas at a subregional level. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Graphical abstract

14 pages, 1953 KiB  
Article
Laser-Induced Solid-Phase UV Fluorescence Spectroscopy for Rapid Detection of Polycyclic Aromatic Hydrocarbons in the Land Snail Bioindicator, Cantareus aspersus
by Maxime Louzon, Thomas Bertoncini, Noah Casañas, Yves Perrette, Gaël Plassart, Marine Quiers, Tanguy Wallet, Mohamed Kamel and Lotfi Aleya
Biosensors 2025, 15(7), 450; https://doi.org/10.3390/bios15070450 - 14 Jul 2025
Viewed by 419
Abstract
In ecotoxicological risk assessment, current methods for measuring the transfer and bioavailability of organic pollutants like polycyclic aromatic hydrocarbons (PAHs) in bioindicators are often destructive and environmentally unfriendly. These limitations are especially problematic when only small amounts of biological material are available. Here, [...] Read more.
In ecotoxicological risk assessment, current methods for measuring the transfer and bioavailability of organic pollutants like polycyclic aromatic hydrocarbons (PAHs) in bioindicators are often destructive and environmentally unfriendly. These limitations are especially problematic when only small amounts of biological material are available. Here, we present a novel, high-throughput method combining laser-induced UV fluorescence spectroscopy (UV-LIF) and solid-phase spectroscopy (SPS) for rapid, in situ quantification of PAHs in land snails—a key bioindicator species. Using dual excitation wavelengths (266 nm and 355 nm), our method reliably detected pyrene and fluoranthene in snails exposed to varying concentrations, demonstrating clear dose-responses and inter-individual differences in bioaccumulation. The analysis time per sample was under four minutes. This approach allows simultaneous measurement of internal contaminant levels and health biomarkers in individual organisms and aligns with green chemistry principles. These findings establish a new, scalable tool for routine assessment of PAH transfer and bioavailability in diverse ecosystems. Full article
Show Figures

Figure 1

13 pages, 2729 KiB  
Article
Natural Colorants for a Bio-Based Economy—Recovering a Lost Knowledge for Novel Applications of Chrozophora tinctoria Extracts as Paints Through a Multi-Analytical Approach
by Imogen Cleveland, Andrew Beeby, Márcia Vieira, Fernando Pina, Paula S. Branco, Paula Nabais and Maria J. Melo
Molecules 2025, 30(13), 2860; https://doi.org/10.3390/molecules30132860 - 4 Jul 2025
Viewed by 394
Abstract
Natural colorants, with their sustainable origins, offer a promising alternative for various applications. Advanced studies have unveiled the remarkable properties, resilience, and durability of these ancient dyes, which our ancestors developed through sustainable material processing. This serves as a testament to the potential [...] Read more.
Natural colorants, with their sustainable origins, offer a promising alternative for various applications. Advanced studies have unveiled the remarkable properties, resilience, and durability of these ancient dyes, which our ancestors developed through sustainable material processing. This serves as a testament to the potential of sustainable solutions in our field. As part of our research, we prepared three medieval temperas using gum arabic, parchment glue, and casein glue. These tempera were explicitly designed to protect the purples obtained from Chrozophora tinctoria extracts. A comprehensive multi-analytical approach guides our research on natural colorants. Central to this approach is the use of molecular fluorescence by microspectrofluorimetry, a key tool in our study. By analyzing the emission and excitation spectra in the visible range, we can identify specific formulations. This method is further supported by fingerprinting techniques, including Fourier Transform Infrared Spectroscopy (FTIR) and High-Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD). These are further complemented by Fiber Optics Reflectance Spectroscopy (FORS) and colorimetry. Building on our understanding of orcein purples, we have extended our research to purples derived from Chrozophora tinctoria extracts. Our findings reveal the unique properties of Chrozophora tinctoria, which can be accurately distinguished from orcein purples, highlighting the distinctiveness of each. Full article
Show Figures

Figure 1

18 pages, 15114 KiB  
Article
Blue Light Fluorescence in Marine Sediments
by Emily Carter Jones, Kelsey A. Williams, Ervan G. Garrison and Paul A. Schroeder
Geosciences 2025, 15(6), 231; https://doi.org/10.3390/geosciences15060231 - 17 Jun 2025
Viewed by 592
Abstract
Mineral fluorescence under different portions of the visible and invisible light spectrum has a long history of scientific study. In our study of marine sediments from the Georgia Bight, we have utilized the blue portion of the light spectrum in the 445 nanometer [...] Read more.
Mineral fluorescence under different portions of the visible and invisible light spectrum has a long history of scientific study. In our study of marine sediments from the Georgia Bight, we have utilized the blue portion of the light spectrum in the 445 nanometer (nm) range. The use of fluorescence has proven very useful in microscopic analyses of carbonate minerals. While the sediment prism of the inner-to-mid continental shelf in the southeastern Atlantic is predominantly siliceous, the dissolution and deterioration of marine shell contribute a significant amount to the fabric of any sediment sample. Together with carbonate minerals such as dolomite, eroded from basement rock and redeposited on the shelf, a potentially robust fluorescent response was expected and observed in samples. In marine sediments, blue light illumination has produced an easily observed fluorescent response in both underwater and in laboratory settings. This fluorescence can be attributed to carbonate minerals—calcite/aragonite. Feldspars are major accessory minerals in the sediment prism of the Georgia Bight, and much of the observed fluorescence in our samples can be attributed to their presence. To identify specific minerals responsible for any observed fluorescence, X-ray diffraction and energy dispersive spectroscopy were utilized. This combined methodology of luminescent excitation, X-ray diffractometry and spectroscopy has produced the results reported herein. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

12 pages, 1598 KiB  
Article
Autofluorescence Imaging of Parathyroid and Thyroid Under Visible and Near-IR Light Excitation
by Zhenguo Wu, Sam M. Wiseman and Haishan Zeng
Biosensors 2025, 15(6), 352; https://doi.org/10.3390/bios15060352 - 3 Jun 2025
Viewed by 611
Abstract
Identifying parathyroid glands during surgery is challenging and time-consuming due to their small size (3–5 mm) and camouflaged appearance in the background of the thyroid, lymph nodes, fat, and other neck structures. For the gland itself, it is also important to differentiate abnormal [...] Read more.
Identifying parathyroid glands during surgery is challenging and time-consuming due to their small size (3–5 mm) and camouflaged appearance in the background of the thyroid, lymph nodes, fat, and other neck structures. For the gland itself, it is also important to differentiate abnormal ones from normal ones. Accidental damage or removal of the normal glands can result in complications like hypocalcemia, which may necessitate lifelong medication dependence, and, in extreme cases, lead to death. The study of autofluorescence optical properties of normal and abnormal parathyroid glands and the surrounding tissue will be helpful for developing non-invasive detection devices. The near-infrared (NIR) autofluorescence characteristics of parathyroid and thyroid tissues have been studied extensively and are now used for parathyroid gland detection during surgery. Additionally, there have been a few reports on the UV-visible light-excited autofluorescence characteristics of these tissues with a focus on spectroscopy. However, there is a lack of high-resolution, side-by-side autofluorescence imaging comparisons of both tissue types under various excitation wavelengths, ranging from visible to NIR. We developed a standalone tabletop autofluorescence imaging system to acquire images of ex vivo specimens in the operating room under different excitation wavelengths: visible 405 nm, 454 nm, 520 nm, 628 nm, and NIR 780 nm. Autofluorescence imaging features of parathyroid adenomas for each excitation wavelength were described and compared. It was found that visible light excites much stronger autofluorescence from parathyroid adenoma tissue compared to NIR light. However, NIR excitation provides the best intensity difference/contrast between parathyroid adenoma and thyroid tissue, making it optimal for differentiating these two tissue types, and detecting parathyroid adenoma during surgery. The high fluorescent site under the NIR 780 nm excitation also generates high fluorescence under visible excitation wavelengths. Heterogeneous fluorescence patterns were observed in most of the parathyroid adenoma cases across all the excitation wavelengths. Full article
(This article belongs to the Special Issue Advanced Optical Methods for Biosensing)
Show Figures

Figure 1

18 pages, 3754 KiB  
Article
N, S-Doped Carbon Dots (N, S-CDs) for Perfluorooctane Sulfonic Acid (PFOS) Detection
by Hani Nasser Abdelhamid
C 2025, 11(2), 36; https://doi.org/10.3390/c11020036 - 29 May 2025
Cited by 1 | Viewed by 1545
Abstract
Nitrogen and sulfur-co-doped carbon dots (N, S-CDs) were synthesized using a simple, eco-friendly hydrothermal technique with L-cysteine as the precursor. The synthesis approach produced highly water-dispersible, heteroatom-doped CDs with surface functional groups comprising amine, carboxyl, thiol, and sulfonic acid. Data analysis of X-ray [...] Read more.
Nitrogen and sulfur-co-doped carbon dots (N, S-CDs) were synthesized using a simple, eco-friendly hydrothermal technique with L-cysteine as the precursor. The synthesis approach produced highly water-dispersible, heteroatom-doped CDs with surface functional groups comprising amine, carboxyl, thiol, and sulfonic acid. Data analysis of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) confirmed their amorphous nature, nanoscale dimensions (1–8 nm, average particle size of 2.6 nm), and surface chemistry. Optical examination revealed intense and pure blue fluorescence emission under UV excitation, with excitation-dependent emission behavior attributed to surface defects and heteroatom doping. The N, S-CDs were applied as fluorescent probes for detecting perfluorooctanesulfonic acid (PFOS), a notable component of the perfluoroalkyl substances (PFAS) family, demonstrating pronounced and concentration-dependent fluorescence quenching. A linear detection range of 3.33–20 µM and a limit of detection (LOD) of 2 µM were reported using the N, S-CDs probe. UV-Vis spectral shifts and dye-interaction investigations indicated that the sensing mechanism is regulated by non-covalent interactions, primarily electrostatic and hydrophobic forces. These findings confirm the potential of N, S-CDs to be used as effective optical sensors for detecting PFOS in environmental monitoring applications. Full article
Show Figures

Graphical abstract

13 pages, 2415 KiB  
Article
Synthesis, Characterization, and Biological Activities of Rare Earth Metal Complexes with Gallic Acid
by Nguyen Thi Hien Lan, Hoang Phu Hiep, Dinh Cong Trinh and Pham Van Khang
Inorganics 2025, 13(6), 180; https://doi.org/10.3390/inorganics13060180 - 28 May 2025
Viewed by 550
Abstract
This study reports the synthesis and characterization of four novel rare earth-gallic acid complexes, Sm(Gal)3·4H2O, Eu(Gal)3·4H2O, Tb(Gal)3·4H2O, and Dy(Gal)3·4H2O. These complexes were synthesized under optimized conditions (60 [...] Read more.
This study reports the synthesis and characterization of four novel rare earth-gallic acid complexes, Sm(Gal)3·4H2O, Eu(Gal)3·4H2O, Tb(Gal)3·4H2O, and Dy(Gal)3·4H2O. These complexes were synthesized under optimized conditions (60 °C, pH 4–5) and characterized using the Ln3+ elemental content method, infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), mass spectrometry (MS), and fluorescence spectroscopy. IR spectra confirmed the coordination of rare earth ions (Ln3+) with gallic acid through carboxylate oxygen atoms. TGA revealed the thermal decomposition pathways, while MS identified the molecular ion peaks and fragmentation patterns. All complexes exhibited strong luminescence under UV excitation, with emission peaks corresponding to characteristic transitions of Sm3+, Eu3+, Tb3+, and Dy3+. Biological assays demonstrated significant antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, with Dy(Gal)3·4H2O showing the highest efficacy. Additionally, the complexes displayed inhibitory effects on MCF7 breast cancer cells, with Tb(Gal)3·4H2O exhibiting the lowest IC50 value (11.3 µM). These findings suggest that rare earth metal complexes with gallic acid have potential applications in biomedical fields, particularly as antimicrobial and anticancer agents. Full article
Show Figures

Figure 1

19 pages, 12530 KiB  
Article
Synergistic Ozone-Ultrasonication Pretreatment for Enhanced Algal Bioresource Recovery: Optimization and Detoxification
by Tianyin Huang, Yefeng Zhu, Junjun Liu, Xinyi Zhou, Bingdang Wu, Jinlong Zhuang and Jingjing Yang
Water 2025, 17(11), 1614; https://doi.org/10.3390/w17111614 - 26 May 2025
Viewed by 448
Abstract
Although algae possess a high capacity for carbon sequestration, the recalcitrant multilayered cell wall structure and residual microcystin toxicity associated with Microcystis aeruginosa significantly hinder the efficient recovery of algal biomass resources. This study developed a synergistic ozone-ultrasonication (O3-US) pretreatment strategy, [...] Read more.
Although algae possess a high capacity for carbon sequestration, the recalcitrant multilayered cell wall structure and residual microcystin toxicity associated with Microcystis aeruginosa significantly hinder the efficient recovery of algal biomass resources. This study developed a synergistic ozone-ultrasonication (O3-US) pretreatment strategy, systematically comparing its cell-disruption efficacy with standalone O3 or US, using harvested algal biomass from natural aquatic systems dominated by Microcystis aeruginosa. The synergistic effects revealed were: (1) O3-mediated oxidation of extracellular polymeric substances and cell wall matrices, (2) the release of ultrasound-induced cavitation-enhancing intracellular components, and (3) an improvement in the O3 mass transfer by hydrodynamic shear forces. Through response surface methodology optimization, the O3-US process achieved maximal performance at 0.14 gO3/gTSS, with a 4 W/mL ultrasonic intensity, and a 20 min duration. Remarkably, the released protein was 289.2 mg/gTSS, which was 4.3-fold and 1.9-fold, respectively, more than that released in O3 pretreatment and US pretreatment, while the polysaccharide was 87.5 mg/gTSS, increased by 2.4-fold and 3.1-fold respectively, compared to O3 alone and US alone. The released solubilized chemical oxygen demand (SCOD) was 1037.1 mg/gTSS, increased by 43.3% and 216.1%, respectively, relative to O3 alone and US alone. DNA quantification further validated the synergistic cell disruption caused by O3-US. Fluorescence excitation-emission matrix (EEM) spectroscopy identified biodegradable aromatic proteins (Regions I-II) and soluble microbial byproducts (Region IV) as dominant organic fractions, demonstrating enhanced bioavailability. The hybrid process reduced energy consumption by 33.3% in ultrasonic intensity and 60% in duration versus US alone, while achieving 94.5% microcystin-LR (MC-LR) degradation, which showed a 96.6% risk reduction compared to ultrasonic treatment. This work establishes an efficient, low-energy, and safe pretreatment technology for algal resource recovery, synergistically enhancing intracellular resource release while mitigating cyanotoxin hazards in algal biomass valorization. Full article
(This article belongs to the Special Issue Microalgae Control and Utilization: Challenges and Perspectives)
Show Figures

Graphical abstract

16 pages, 2889 KiB  
Article
Characteristics of Soil Dissolved Organic Matter Structure in Albi-Boric Argosols Profiles Through Straw Incorporation: A Fluorescence Spectroscopy Study
by Baoguo Zhu, Enjun Kuang, Qingying Meng, Haoyuan Feng, Miao Wang, Xingjie Zhong, Zhichun Wang, Lei Qiu, Qingsheng Wang and Zijie Wang
Plants 2025, 14(11), 1581; https://doi.org/10.3390/plants14111581 - 22 May 2025
Viewed by 447
Abstract
Albi-boric argosols, mainly distributed in the Sanjiang Plain of Heilongjiang Province, China, accounting for over 80% of the total cultivated land area, is characterized by a nutrient-deficient layer beneath black soil. This study addresses the challenges of modern agriculture by investigating the impact [...] Read more.
Albi-boric argosols, mainly distributed in the Sanjiang Plain of Heilongjiang Province, China, accounting for over 80% of the total cultivated land area, is characterized by a nutrient-deficient layer beneath black soil. This study addresses the challenges of modern agriculture by investigating the impact of straw incorporation on soil dissolved organic carbon (DOC) and its structures in albi-boric argosols, profiles, using fluorescence excitation–emission spectroscopy and parallel factor analysis (PARAFAC). Three treatments were applied: undisturbed albi-boric argosols (C), mixed albic and illuvium layers (M), and mixed albic and illuvium layers with straw (MS). Results showed that the yield of M and MS increased by 9.9% and 13.0%, respectively. There was a significant increase in DOC content, particularly in the MS treatment. Fluorescence index (FI) values ranged from 1.65 to 1.86, biological index (BIX) values were less than 1, and humification index (HIX) values were below 0.75, indicating a mix of plant and microbial sources for DOC, autochthonous characteristics, and weaker humification degree. PARAFAC identified two/three individual fluorophore moieties that were attributed to fulvic acid substances, soluble microbial products, and tyrosine-like substances, with microbial products as the dominant component. This study demonstrates the effect of improving barrier soil and maintaining sustainable agriculture by enhancing soil quality. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

17 pages, 8350 KiB  
Article
Differential Molecular Interactions of Imidacloprid with Dissolved Organic Matter in Citrus Soils with Diverse Planting Ages
by Junquan Chen, Yawen Zhang, Yanqi Guo, Kai Jiang, Duo Li and Taihui Zheng
Agriculture 2025, 15(9), 997; https://doi.org/10.3390/agriculture15090997 - 4 May 2025
Viewed by 671
Abstract
The interactions between dissolved organic matter (DOM) and agrochemicals (e.g., neonicotinoid insecticides, NIs) govern the distribution, migration, and potential environmental risks of agrochemicals. However, the long-term effects of agricultural management on the DOM components and structure, as well as their further influences on [...] Read more.
The interactions between dissolved organic matter (DOM) and agrochemicals (e.g., neonicotinoid insecticides, NIs) govern the distribution, migration, and potential environmental risks of agrochemicals. However, the long-term effects of agricultural management on the DOM components and structure, as well as their further influences on the interactions between DOM and agrochemicals, remain unclear. Here, spectroscopic techniques, including Fourier transform infrared spectroscopy, two-dimensional correlation spectroscopy, and three-dimensional excitation–emission matrix fluorescence spectroscopy were employed to delve into the interaction mechanism between the DOM from citrus orchards with distinct cultivation ages (10, 30, and 50 years) and imidacloprid, which is a type of pesticide widely used in agricultural production. The findings revealed that the composition and structure of soil DOM significantly change with increasing cultivation age, characterized by an increase in humic substances and the emergence of new organic components, indicating complex biodegradation and chemical transformation processes of soil organic matter. Imidacloprid primarily interacts with fulvic acid-like fractions of DOM, and its binding affinity decreases with increasing cultivation age. Additionally, the interactions of protein-like fractions with imidacloprid occur after humic-like fractions, suggesting differential binding behaviors among DOM fractions. These results demonstrate that cultivation age significantly influences the composition and structural characteristics of soil DOM in citrus orchards, subsequently affecting its sorption capacity to imidacloprid. This study enhances the understanding of imidacloprid’s environmental behavior and provides theoretical support for the environmental risk management of neonicotinoid pesticides. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

20 pages, 6769 KiB  
Article
Overcoming the pH Dependence of Iron-Based Catalysts and Efficient Generation of High-Valent Ferrite by Constructing a Neutral Microenvironment
by Jingwei Chen and Kangping Cui
Appl. Sci. 2025, 15(9), 5100; https://doi.org/10.3390/app15095100 - 3 May 2025
Viewed by 495
Abstract
The reliance on acidic working environments presents a significant bottleneck in the development and widespread application of peroxymonosulfate (PMS)-activated high-valent iron-oxo systems and iron-based catalysts. In this study, we present a system of non-homogeneous activation of peroxymonosulfate that is capable of overcoming the [...] Read more.
The reliance on acidic working environments presents a significant bottleneck in the development and widespread application of peroxymonosulfate (PMS)-activated high-valent iron-oxo systems and iron-based catalysts. In this study, we present a system of non-homogeneous activation of peroxymonosulfate that is capable of overcoming the acidic environment in heterogeneous to generate continuous non-radicals for the selective degradation of organic pollutants such as sulfamethoxazole. The system takes advantage of amphiprotic hydroxides to create a homogeneous neutral pH microenvironment at the heterogeneous interface of the catalyst. The generation of the neutral pH microenvironment is capable of inducing the formation of high-valent iron-oxo species and a more stable cycling of iron ions in the iron-based material., promoting sustained catalytic activity A series of design quenching experiments, electron paramagnetic resonance (EPR) experiments, and three-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM) which were conducted to assess the selectivity of FeCo-LDH/PMS under high salt or natural organic conditions, as well as its effectiveness in treating real wastewater. These findings offer a novel approach to overcoming pH limitations and enhancing the selectivity of target pollutants in advanced oxidation processes (AOPs). Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

17 pages, 3128 KiB  
Article
Transmission Raman Spectroscopy for Inner Layers Chemical Analysis of Fresh Produce
by Rani Arielly
Sensors 2025, 25(9), 2805; https://doi.org/10.3390/s25092805 - 29 Apr 2025
Viewed by 2567
Abstract
Identification of chemical properties in the inner tissues of fresh produce would enable us to identify major issues plaguing the agriculture supply chain, like off-flavors and core rot since these are caused by or accompanied by known chemical elements. We show the development [...] Read more.
Identification of chemical properties in the inner tissues of fresh produce would enable us to identify major issues plaguing the agriculture supply chain, like off-flavors and core rot since these are caused by or accompanied by known chemical elements. We show the development of transmission Raman spectroscopy system for identifying these elements by addressing several issues: we located an optimal spectral window by conducting optical attenuation measurements and calculated the required LASER power in that range. For apple tissues, this optical window was found in the 700–950 nm range, and the required LASER power range was calculated to be in the 40–700 mW range. We also calculated that the optimal shifted-excitation Raman difference spectroscopy wavelengths should be separated by 0.7 nm in order to optimally produce narrow and high-intensity Raman peak features and eliminate the competing fluorescence signal. Finally, we provide a complete optical system design with exact optimal parameters. In contrast to other fields like pharmaceuticals and medicine, transmission Raman spectroscopy has not been applied extensively in agriculture. Therefore, this study fills a gap in that field’s applicability. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

9 pages, 8350 KiB  
Communication
Asymmetry Analysis of the Autler–Townes Doublet in the Trap-Loss Fluorescence Spectroscopy of Cesium MOT with Single-Step Rydberg Excitation
by Xiaokai Hou, Yuewei Wang, Jun He and Junmin Wang
Photonics 2025, 12(5), 412; https://doi.org/10.3390/photonics12050412 - 24 Apr 2025
Viewed by 418
Abstract
The Autler–Townes (AT) doublet, a fundamental manifestation of quantum interference effects, serves as a critical tool for studying the dynamic behavior of Rydberg atoms. Here, we investigate the asymmetry of the Autler–Townes (AT) doublet in the trap-loss fluorescence spectroscopy (TLFS) of cesium (Cs) [...] Read more.
The Autler–Townes (AT) doublet, a fundamental manifestation of quantum interference effects, serves as a critical tool for studying the dynamic behavior of Rydberg atoms. Here, we investigate the asymmetry of the Autler–Townes (AT) doublet in the trap-loss fluorescence spectroscopy (TLFS) of cesium (Cs) atoms confined in a magneto-optical trap (MOT) with single-step Rydberg excitation using a 319-nm ultraviolet (UV) laser. A V-type three-level system involving the ground state 6S1/2 (F = 4), excited state 6P3/2 (F = 5), and Rydberg state (nP3/2 (mJ = +3/2)) is theoretically modeled to analyze the nonlinear dependence of the AT doublet’s asymmetry and interval on the cooling laser’s detuning. Experiments reveal that as the cooling laser detuning Δ1 decreases from −15 MHz to −10 MHz, the AT doublet exhibits increasing symmetry, while its interval shows a nonlinear decrease. Theoretical simulations based on the density matrix equation and Lindblad master equation align closely with experimental data, confirming the model’s validity. This study provides insights into quantum interference dynamics in multi-level systems and offers a systematic approach for optimizing precision measurements in cold atom spectroscopy. Full article
Show Figures

Figure 1

21 pages, 14047 KiB  
Article
Characteristics of Peanut Protein-Derived Carbon Dots and Their Application in Cell Imaging and Sensing of Metronidazole
by Junyan Liao, Zhixiong Hu, Weinong Zhang, Yanpeng Zhang, Jiangrong Xiao and Shenglan Lei
Chemosensors 2025, 13(4), 151; https://doi.org/10.3390/chemosensors13040151 - 19 Apr 2025
Viewed by 558
Abstract
In this paper, peanut protein (PP) was used as the sole raw material for the preparation of fluorescent carbon dots (PP-CDs) by hydrothermal method. The PP-CDs exhibit good dispersibility, spherical-like shapes, and uniform sizes; the average particle size of the PP-CDs was 3.18 [...] Read more.
In this paper, peanut protein (PP) was used as the sole raw material for the preparation of fluorescent carbon dots (PP-CDs) by hydrothermal method. The PP-CDs exhibit good dispersibility, spherical-like shapes, and uniform sizes; the average particle size of the PP-CDs was 3.18 ± 0.17 nm. The Fourier transform infrared spectroscopy (FTIR) results show that the surface of PP-CDs is rich in hydrophilic groups such as hydroxyl, carboxyl and amide groups. The PP-CDs exhibit good fluorescence emission properties and excitation wavelength dependence, with the optimal excitation wavelength and emission wavelength at 348 nm and 452 nm, respectively. According to the fluorescence quenching effect of metronidazole (MTZ) and tinidazole (TDZ) on PP-CDs, a highly linear fluorescence sensor was established, with a concentration range of 0.10–60.0 µM, and the detection limits of MTZ and TDZ are 32.0 nM and 48.0 nM, respectively. The result of CCK-8 test and imaging of HepG-2 cells and onion epidermal cells reveal that PP-CDs have good membrane permeability, biocompatibility and imaging ability. Full article
(This article belongs to the Section (Bio)chemical Sensing)
Show Figures

Graphical abstract

Back to TopTop