Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,710)

Search Parameters:
Keywords = Filler

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3045 KiB  
Article
Biodegradable NR Latex Films with Lignocellulosic and Collagen Hydrolysate Fillers
by Magdalena Kmiotek, Mirosława Prochoń and Elżbieta Sąsiadek-Andrzejczak
Materials 2025, 18(15), 3711; https://doi.org/10.3390/ma18153711 (registering DOI) - 7 Aug 2025
Abstract
The objective of this study was to investigate the influence of the lignocellulose filler originating in wood and non-wood raw materials, alone or together with collagen hydrolysate, on the properties and biodegradation ability of natural rubber latex. The different hydrophobicity of the polymer [...] Read more.
The objective of this study was to investigate the influence of the lignocellulose filler originating in wood and non-wood raw materials, alone or together with collagen hydrolysate, on the properties and biodegradation ability of natural rubber latex. The different hydrophobicity of the polymer matrix and natural filler makes it difficult to obtain a homogenous structure of the composite. However, the easy biodegradation of the natural filler is a sufficient reason to seek a compromise between its useful properties and the environmental safety of the material. The composites were filled with lignocellulose filler: pine, spruce, and birch wood flour or willow, raspberry, and mallow non-wood flour. Collagen hydrolysate was used as a substitute for lignocellulosic filler, together or alone. The mechanical properties of the composites, their hardness, and equilibrium swelling were studied. In order to determine the morphology and interactions between filler and latex, scanning electron microscopy together with infrared spectroscopy were engaged. The results revealed that after the incorporation of 4 phr of the filler, the increase in mechanical strength was observed even despite the lack of compatibility between the filler and polymer matrix. The lignocellulose filler is a promising agent because its biodegradability contributes to the overall environmental safety of the polymer material. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Graphical abstract

10 pages, 1801 KiB  
Article
Strong Radiative Cooling Coating Containing In Situ Grown TiO2/CNT Hybrids and Polyacrylic Acid Matrix
by Jiaziyi Wang, Yong Liu, Dapeng Liu, Yong Mu and Xilai Jia
Coatings 2025, 15(8), 921; https://doi.org/10.3390/coatings15080921 (registering DOI) - 7 Aug 2025
Abstract
Traditional forced-air cooling systems suffer from excessive energy consumption and noise pollution. This study proposes an innovative passive cooling strategy through developing aqueous radiative cooling coatings made from a combination of TiO2-decorated carbon nanotube (TiO2-CNT) hybrids and polyacrylic acid [...] Read more.
Traditional forced-air cooling systems suffer from excessive energy consumption and noise pollution. This study proposes an innovative passive cooling strategy through developing aqueous radiative cooling coatings made from a combination of TiO2-decorated carbon nanotube (TiO2-CNT) hybrids and polyacrylic acid (PAA), designed to simultaneously enhance the heat dissipation and improve the mechanical strength of the coating films. Based on CNTs’ exceptional thermal conductivity and record-high infrared emissivity, bead-like TiO2-CNT architectures have been prepared as the filler in PAA. The TiO2 nanoparticles were in situ grown on CNTs, forming a rough surface that can produce asperity contacts and enhance the strength of the TiO2-CNT/PAA composite. Moreover, this composite enhanced heat dissipation and achieved remarkable cooling efficiency at a small fraction of the filler (0.1 wt%). The optimized coating demonstrated a temperature reduction of 23.8 °C at an operation temperature of 180.7 °C, coupled with obvious mechanical reinforcement (tensile strength from 13.7 MPa of pure PAA to 17.1 MPa). This work achieves the combination of CNT and TiO2 nanoparticles for strong radiative cooling coating, important for energy-efficient thermal management. Full article
Show Figures

Figure 1

16 pages, 3450 KiB  
Article
Comparative In Vitro Analysis of Composite Resins Used in Clear Aligner Attachments
by Francesca Gazzani, Denise Bellisario, Chiara Pavoni, Loredana Santo, Paola Cozza and Roberta Lione
Appl. Sci. 2025, 15(15), 8698; https://doi.org/10.3390/app15158698 (registering DOI) - 6 Aug 2025
Abstract
Background: Attachments are essential components in clear aligner therapy, enhancing retention and improving the predictability of tooth movements. Mechanical and wear properties of the composite resins used for attachment reproduction are critical to maintaining their integrity and shape over time. This study aimed [...] Read more.
Background: Attachments are essential components in clear aligner therapy, enhancing retention and improving the predictability of tooth movements. Mechanical and wear properties of the composite resins used for attachment reproduction are critical to maintaining their integrity and shape over time. This study aimed to evaluate and compare the mechanical properties, thermal behavior, and wear performance of the hybrid composite Aligner Connect (AC) and the flowable resin (Connect Flow, CF). Methods: Twenty samples (ten AC and ten CF) were reproduced. All specimens underwent differential scanning calorimetry (DSC), combustion analysis, flat instrumented indentation, compression stress relaxation tests, and tribological analysis. A 3D wear profile reconstruction was performed to assess wear surfaces. Results: DSC and combustion analyses revealed distinct thermal transitions, with CF showing significantly lower Tg values (103.8 °C/81.4 °C) than AC (110.8 °C/89.6 °C) and lower residual mass after combustion (23% vs. 61%), reflecting reduced filler content and greater polymer mobility. AC exhibited superior mechanical properties, with higher maximum load (585.9 ± 22.36 N) and elastic modulus (231.5 ± 9.1 MPa) than CF (290.2 ± 5.52 N; 156 ± 10.5 MPa). Stress relaxation decrease was less pronounced in AC (18 ± 4%) than in CF (20 ± 4%). AC also showed a significantly higher friction coefficient (0.62 ± 0.060) than CF (0.55 ± 0.095), along with greater wear volume (0.012 ± 0.0055 mm3 vs. 0.0070 ± 0.0083 mm3) and maximum depth (36.88 ± 3.642 µm vs. 17.91 ± 3.387 µm). Surface roughness before wear was higher for AC (Ra, 0.577 ± 0.035 µm; Rt, 4.369 ± 0.521 µm) than for CF (Ra, 0.337 ± 0.070 µm; Rt, 2.862 ± 0.549 µm). After wear tests, roughness values converged (Ra, 0.247 ± 0.036 µm for AC; Ra, 0.236 ± 0.019 µm for CF) indicating smoothened and similar surfaces for both composites. Conclusions: The hybrid nanocomposite demonstrated greater properties in terms of stiffness, load-bearing capacity, and structural integrity when compared with flowable resin. Its use may ensure more durable attachment integrity and improved aligner–tooth interface performance over time. Full article
(This article belongs to the Special Issue Innovative Materials and Technologies in Orthodontics)
Show Figures

Figure 1

40 pages, 7182 KiB  
Review
Additively Manufactured Polymers for Electronic Components
by Filippo Iervolino, Raffaella Suriano, Marco Cavallaro, Laura Castoldi and Marinella Levi
Appl. Sci. 2025, 15(15), 8689; https://doi.org/10.3390/app15158689 (registering DOI) - 6 Aug 2025
Abstract
Over the last decade, polymers have attracted increasing attention for the fabrication of electronic devices due to the innovative results that can be achieved using additive manufacturing (AM) processes. Intrinsically conductive polymers are commonly used to obtain flexible and stretchable devices. They also [...] Read more.
Over the last decade, polymers have attracted increasing attention for the fabrication of electronic devices due to the innovative results that can be achieved using additive manufacturing (AM) processes. Intrinsically conductive polymers are commonly used to obtain flexible and stretchable devices. They also enable the customisation of electronic devices when processed through AM. However, their main limitation is the reduction in electrical conductivity under mechanical deformation, such as bending. Extrinsically conductive nanocomposites, incorporating conductive fillers into polymer matrices, demonstrate the ability to retain electrical conductivity even following repeated bending, presenting a promising solution to the limitations of intrinsically conductive polymers. However, a gap remains in optimising their processing conditions for diverse 3D printing technologies. Moreover, fillers should be carefully selected according to the application’s specific needs. Dielectric polymers are also very promising for various electronic applications, but they are less investigated and have lower visibility than their conductive counterparts. This review presents three classes of polymer materials, i.e., intrinsically and extrinsically conductive polymers and insulators, discussing their advantages, drawbacks, and applications for 3D printing in electronics. This overview concludes with assessing future investigation areas needed to unlock the possibilities of 3D-printed polymers in electronics. Full article
(This article belongs to the Special Issue Feature Review Papers in Additive Manufacturing Technologies)
Show Figures

Figure 1

16 pages, 3103 KiB  
Article
Resin Composites with Anti-Biofouling Zwitterionic Polymer and Silica/Zirconia Filler for Digital Light Processing (DLP) of Dental Protheses
by Yun-Hee Lee, Jae-Min Jung, Gyu-Nam Kim and Young-Hag Koh
Materials 2025, 18(15), 3677; https://doi.org/10.3390/ma18153677 - 5 Aug 2025
Abstract
This study aimed to develop an innovative resin composite with anti-biofouling properties, tailored to prosthesis fabrication in dentistry using a digital light processing (DLP) 3D-printing technique. The resin composite was formulated using a blend of dental monomers, with the integration of 2-methacryloyloxylethyl phosphorylcholine [...] Read more.
This study aimed to develop an innovative resin composite with anti-biofouling properties, tailored to prosthesis fabrication in dentistry using a digital light processing (DLP) 3D-printing technique. The resin composite was formulated using a blend of dental monomers, with the integration of 2-methacryloyloxylethyl phosphorylcholine (MPC) with anti-biofouling behavior and γ-MPS-treated silica-zirconia powder for simultaneous mechanical reinforcement. The overall characterization of the resin composite was carried out using various contents of MPC incorporated into the resin (0–7 wt%) for examining the rheological behavior, photopolymerization, flexural strength/modulus, microstructure and anti-biofouling efficiency. The resin composite demonstrated a significant reduction in bacterial adhesion (97.4% for E. coli and 86.5% for S. aureus) and protein adsorption (reduced OD value from 1.3 ± 0.4 to 0.8 ± 0.2) with 7 wt% of MPC incorporation, without interfering with photopolymerization to demonstrate potential suitability for 3D printing without issues (p < 0.01, and p < 0.05, respectively). The incorporation and optimization of γ-MPS-treated silica-zirconia powder (10–40 vol%) enhanced mechanical properties, leading to a reasonable flexural strength (103.4 ± 6.1 MPa) and a flexural modulus (4.3 ± 0.4 GPa) at 30 vol% (n = 6). However, a further increase to 40 vol% resulted in a reduction in flexural strength and modulus; nevertheless, the results were above ISO 10477 standards for dental materials. Full article
(This article belongs to the Special Issue Innovative Restorative Dental Materials and Fabrication Techniques)
Show Figures

Figure 1

12 pages, 863 KiB  
Article
Hyaluronic and Succinic Acid: New Biostimulating Combination to Counteract Dermal and Subcutaneous Aging
by Alfredo Martinez-Gutierrez, Helena Cami, Teresa Noya, Susana Gómez-Escalante, Aina Miró Llosas and Mari Carmen González
Int. J. Mol. Sci. 2025, 26(15), 7548; https://doi.org/10.3390/ijms26157548 - 5 Aug 2025
Viewed by 59
Abstract
Various biomaterials are currently employed for dermal biostimulation and filling purposes, with hyaluronic acid (HA)-based fillers among those with the most favorable safety profile, albeit exhibiting a limited biostimulatory effect. This study suggests that hyaluronic acid and succinic acid (SA) can significantly induce [...] Read more.
Various biomaterials are currently employed for dermal biostimulation and filling purposes, with hyaluronic acid (HA)-based fillers among those with the most favorable safety profile, albeit exhibiting a limited biostimulatory effect. This study suggests that hyaluronic acid and succinic acid (SA) can significantly induce beneficial effects on skin cells by targeting key aging hallmarks. Human dermal senescent fibroblasts and aged adipocytes were treated with HA + SA, and various aging characteristics were examined through gene expression analysis and microscopy staining. HA was found to stimulate autophagy gene expression, while SA modulated senescence-gene expression, and the combination of these compounds induced mitophagy in senescent fibroblasts. Additionally, the HA + SA promoted adipogenesis, increased IGF1, and decreased TNFA gene expression in aged adipocytes. Furthermore, the conditioned medium from adipocytes treated with HA + SA upregulated key dermal genes such as COL3A1 and EGF. The findings of this study suggest that HA and SA compounds can be used for the biostimulation of aged skin through the regulation of senescence-associated gene expression and cell communication between dermal fibroblasts and subcutaneous adipocytes. Full article
(This article belongs to the Special Issue Molecular Biology of Senescence and Anti-Aging Strategies)
Show Figures

Graphical abstract

38 pages, 15791 KiB  
Article
Experimental and Statistical Evaluations of Recycled Waste Materials and Polyester Fibers in Enhancing Asphalt Concrete Performance
by Sara Laib, Zahreddine Nafa, Abdelghani Merdas, Yazid Chetbani, Bassam A. Tayeh and Yunchao Tang
Buildings 2025, 15(15), 2747; https://doi.org/10.3390/buildings15152747 - 4 Aug 2025
Viewed by 209
Abstract
This research aimed to evaluate the impact of using brick waste powder (BWP) and varying lengths of polyester fibers (PFs) on the performance properties of asphalt concrete (AC) mixtures. BWP was utilized as a replacement for traditional limestone powder (LS) filler, while PFs [...] Read more.
This research aimed to evaluate the impact of using brick waste powder (BWP) and varying lengths of polyester fibers (PFs) on the performance properties of asphalt concrete (AC) mixtures. BWP was utilized as a replacement for traditional limestone powder (LS) filler, while PFs of three lengths (3 mm, 8 mm, and 15 mm) were introduced. The study employed the response surface methodology (RSM) for experimental design and analysis of variance (ANOVA) to identify the influence of BWP and PF on the selected performance indicators. These indicators included bulk density, air voids, voids in the mineral aggregate, voids filled with asphalt, Marshall stability, Marshall flow, Marshall quotient, indirect tensile strength, wet tensile strength, and the tensile strength ratio. The findings demonstrated that BWP improved moisture resistance and the mechanical performance of AC mixes. Moreover, incorporating PF alongside BWP further enhanced these properties, resulting in superior overall performance. Using multi-objective optimization through RSM-based empirical models, the study identified the optimal PF length of 5 mm in combination with BWP for achieving the best AC properties. Validation experiments confirmed the accuracy of the predicted results, with an error margin of less than 8%. The study emphasizes the intriguing prospect of BWP and PF as sustainable alternatives for improving the durability, mechanical characteristics, and cost-efficiency of asphalt pavements. Full article
(This article belongs to the Special Issue Advanced Studies in Asphalt Mixtures)
Show Figures

Figure 1

19 pages, 9135 KiB  
Article
A Study on the Characterization of Asphalt Plant Reclaimed Powder Using Fourier Transform Infrared Spectroscopy
by Hao Wu, Daoan Yu, Wentao Wang, Chuanqi Yan, Rui Xiao, Rong Chen, Peng Zhang and Hengji Zhang
Materials 2025, 18(15), 3660; https://doi.org/10.3390/ma18153660 - 4 Aug 2025
Viewed by 176
Abstract
Asphalt plant reclaimed powder is a common solid waste in road engineering. Reusing reclaimed powder as filler holds significant importance for environmental protection and resource conservation. The key factors affecting the feasibility of reclaimed powder reuse are its acidity/alkalinity and cleanliness. Traditional evaluation [...] Read more.
Asphalt plant reclaimed powder is a common solid waste in road engineering. Reusing reclaimed powder as filler holds significant importance for environmental protection and resource conservation. The key factors affecting the feasibility of reclaimed powder reuse are its acidity/alkalinity and cleanliness. Traditional evaluation methods, such as the methylene blue test and plasticity index, can assess reclaimed powder properties to guide its recycling. However, these methods suffer from inefficiency, strong empirical dependence, and high variability. To address these limitations, this study proposes a rapid and precise evaluation method for reclaimed powder properties based on Fourier transform infrared spectroscopy (FTIR). To do so, five field-collected reclaimed powder samples and four artificial samples were evaluated. Scanning electron microscopy (SEM), X-ray fluorescence spectroscopy (XRF), and X-ray diffraction (XRD) were employed to characterize their microphase morphology, chemical composition, and crystal structure, respectively. Subsequently, FTIR was used to establish correlations between key acidity/alkalinity, cleanliness, and multiple characteristic peak intensities. Representative infrared characteristic peaks were selected, and a quantitative functional group index (Is) was proposed to simultaneously evaluate acidity/alkalinity and cleanliness. The results indicate that reclaimed powder primarily consists of tiny, crushed stone particles and dust, with significant variations in crystal structure and chemical composition, including calcium carbonate, silicon oxide, iron oxide, and aluminum oxide. Some samples also contained clay, which critically influenced the reclaimed powder properties. Since both filler acidity/alkalinity and cleanliness are affected by clay (silicon/carbon ratio determining acidity/alkalinity and aluminosilicate content affecting cleanliness), this study calculated four functional group indices based on FTIR absorption peaks, namely the Si-O-Si stretching vibration (1000 cm−1) and the CO32− asymmetric stretching vibration (1400 cm−1). These indices were correlated with conventional testing results (XRF for acidity/alkalinity, methylene blue value, and pull-off strength for cleanliness). The results show that the Is index exhibited strong correlations (R2 = 0.89 with XRF, R2 = 0.80 with methylene blue value, and R2 = 0.96 with pull-off strength), demonstrating its effectiveness in predicting both acidity/alkalinity and cleanliness. The developed method enhances reclaimed powder detection efficiency and facilitates high-value recycling in road engineering applications. Full article
(This article belongs to the Special Issue Innovative Approaches in Asphalt Binder Modification and Performance)
Show Figures

Figure 1

20 pages, 4961 KiB  
Article
Optimization of Thermal Conductivity of Bismaleimide/h-BN Composite Materials Based on Molecular Structure Design
by Weizhuo Li, Run Gu, Xuan Wang, Chenglong Wang, Mingzhe Qu, Xiaoming Wang and Jiahao Shi
Polymers 2025, 17(15), 2133; https://doi.org/10.3390/polym17152133 - 3 Aug 2025
Viewed by 236
Abstract
With the rapid development of information technology and semiconductor technology, the iteration speed of electronic devices has accelerated in an unprecedented manner, and the market demand for miniaturized, highly integrated, and highly intelligent devices continues to rise. But when these electronic devices operate [...] Read more.
With the rapid development of information technology and semiconductor technology, the iteration speed of electronic devices has accelerated in an unprecedented manner, and the market demand for miniaturized, highly integrated, and highly intelligent devices continues to rise. But when these electronic devices operate at high power, the electronic components generate a large amount of integrated heat. Due to the limitations of existing heat dissipation channels, the current heat dissipation performance of electronic packaging materials is struggling to meet practical needs, resulting in heat accumulation and high temperatures inside the equipment, seriously affecting operational stability. For electronic devices that require high energy density and fast signal transmission, improving the heat dissipation capability of electronic packaging materials can significantly enhance their application prospects. In order to improve the thermal conductivity of composite materials, hexagonal boron nitride (h-BN) was selected as the thermal filling material in this paper. The BMI resin was structurally modified through molecular structure design. The results showed that the micro-branched structure and h-BN synergistically improved the thermal conductivity and insulation performance of the composite material, with a thermal conductivity coefficient of 1.51 W/(m·K) and a significant improvement in insulation performance. The core mechanism is the optimization of the dispersion state of h-BN filler in the matrix resin through the free volume in the micro-branched structure, which improves the thermal conductivity of the composite material while maintaining high insulation. Full article
(This article belongs to the Special Issue Electrical Properties of Polymer Composites)
Show Figures

Figure 1

17 pages, 5354 KiB  
Article
Carboxymethyl Polysaccharides/Montmorillonite Biocomposite Films and Their Sorption Properties
by Adrian Krzysztof Antosik, Marcin Bartkowiak, Magdalena Zdanowicz and Katarzyna Wilpiszewska
Polymers 2025, 17(15), 2130; https://doi.org/10.3390/polym17152130 - 1 Aug 2025
Viewed by 308
Abstract
The production of bionanocomposite films based on carboxymethyl derivatives of starch and cellulose with sodium montmorillonite (MMT-Na) as a filler was described. The developed films with high absorbency can be used in the preparation of adhesive dressings for wounds oozing as a result [...] Read more.
The production of bionanocomposite films based on carboxymethyl derivatives of starch and cellulose with sodium montmorillonite (MMT-Na) as a filler was described. The developed films with high absorbency can be used in the preparation of adhesive dressings for wounds oozing as a result of abrasions or tattoos. Carboxymethyl cellulose (CMC), carboxymethyl starch (CMS), and potato starch were used as the raw materials for film manufacturing. Citric acid was used as a crosslinking agent and glycerol as a plasticizer. The following parameters were evaluated for the obtained films: solubility in water, swelling behavior, moisture absorption, and mechanical durability (tensile strength, elongation at break, and Young’s modulus). This study revealed that filler concentration has a significant influence on the stability, durability, and moisture absorption parameters of films. The best nanocomposite with a high absorption capacity was a two-component film CMS/CMC containing 5 pph of sodium montmorillonite and can be used as a base material for wound dressing, among other applications. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

18 pages, 4093 KiB  
Article
Study of Mechanical and Wear Properties of Fabricated Tri-Axial Glass Composites
by Raghu Somanna, Rudresh Bekkalale Madegowda, Rakesh Mahesh Bilwa, Prashanth Malligere Vishveshwaraiah, Prema Nisana Siddegowda, Sandeep Bagrae, Madhukar Beejaganahalli Sangameshwara, Girish Hunaganahalli Nagaraju and Madhusudan Puttaswamy
J. Compos. Sci. 2025, 9(8), 409; https://doi.org/10.3390/jcs9080409 - 1 Aug 2025
Viewed by 211
Abstract
This study investigates the mechanical, morphological, and wear properties of SiO2-filled tri-axial warp-knitted (TWK) glass fiber-reinforced vinyl ester matrix composites, with a focus on void fraction, tensile, flexural, hardness, and wear behavior. Adding SiO2 fillers reduced void fractions, enhancing composite [...] Read more.
This study investigates the mechanical, morphological, and wear properties of SiO2-filled tri-axial warp-knitted (TWK) glass fiber-reinforced vinyl ester matrix composites, with a focus on void fraction, tensile, flexural, hardness, and wear behavior. Adding SiO2 fillers reduced void fractions, enhancing composite strength, with values ranging from 1.63% to 5.31%. Tensile tests revealed that composites with 5 wt% SiO2 (GV1) exhibited superior tensile strength, Young’s modulus, and elongation due to enhanced fiber–matrix interaction. Conversely, composites with 10 wt% SiO2 (GV2) showed decreased tensile performance, indicating increased brittleness. Flexural tests demonstrated that GV1 outperformed GV2, showcasing higher flexural strength, elastic modulus, and deflection, reflecting improved load-bearing capacity at optimal filler content. Shore D hardness tests confirmed that GV1 had the highest hardness among the specimens. SEM analysis revealed wear behavior under various loads and sliding distances. GV1 exhibited minimal wear loss at lower loads and distances, while higher loads caused significant matrix detachment and fiber damage. These findings highlight the importance of optimizing SiO2 filler content to enhance epoxy composites’ mechanical and tribological performance. Full article
Show Figures

Figure 1

8 pages, 2132 KiB  
Proceeding Paper
Impact of Current Variations on Weld Bead Properties During the Cold Metal Transfer (CMT) Welding of 7075 Aluminium Using an ER4043 Filler Wire
by Vishal Bhardwaj, Siddharth Garg and Qasim Murtaza
Eng. Proc. 2025, 93(1), 22; https://doi.org/10.3390/engproc2025093022 - 1 Aug 2025
Viewed by 144
Abstract
This study investigated into how different current input levels during cold metal transfer (CMT) welding affected the characteristics of the weld bead. For the current variation, three input values were taken: 80 A, 90 A, and 100 A. Weld beads fabricated from all [...] Read more.
This study investigated into how different current input levels during cold metal transfer (CMT) welding affected the characteristics of the weld bead. For the current variation, three input values were taken: 80 A, 90 A, and 100 A. Weld beads fabricated from all three current inputs were compared by analysing their microstructure, microhardness, tensile strength, and residual stress. The microhardness of the weld bead decreased when the current parameter was increased from 80 A to 100 A. The average tensile strength increased from 80 A to 90 A. The lowest residual stress calculated was −135 MPa with 100 A current. Full article
Show Figures

Figure 1

12 pages, 866 KiB  
Article
Reuse of Activated Carbon Filter Waste as Filler in Vulcanized Rubber Composites
by Viviane Chaves de Souza, Henrique Pina Cardim, Carlos Toshiyuki Hiranobe, Guilherme Pina Cardim, Iago William Zapelini, Leonardo Lataro Paim, Gleyson Tadeu Almeida Santos, Silvio Rainho Teixeira, Erivaldo Antônio da Silva, Renivaldo José dos Santos and Flávio Camargo Cabrera
J. Compos. Sci. 2025, 9(8), 406; https://doi.org/10.3390/jcs9080406 - 1 Aug 2025
Viewed by 209
Abstract
The incorporation of residues into rubber composites has gained attention as a sustainable strategy to address waste management challenges while replacing commercial fillers. In this study, we investigated the potential use of water filter cartridge residue after exhaustion, composed of activated carbon, as [...] Read more.
The incorporation of residues into rubber composites has gained attention as a sustainable strategy to address waste management challenges while replacing commercial fillers. In this study, we investigated the potential use of water filter cartridge residue after exhaustion, composed of activated carbon, as a reinforcing filler in vulcanized natural rubber composites. Samples were prepared with 5, 10, 15, and 20 phr (per hundred rubber) of residue and compared to unfilled natural rubber. Stress vs. strain tests reached 13.9 MPa of tension at rupture for composites containing 10 phr of carbon-activated residues, representing a 21.9% increase compared to natural rubber. Interestingly, the tension at rupture for NR/AC10phr reached values close to those of NR/CB5phr (with carbon black N330) attaining 14.4 MPa. These results indicate that, even at relatively low concentrations, the carbon filter can offer partial substitution for commercial fillers. Moreover, the use of activated carbon from filter cartridges as filler in rubber composites provides an environmentally favorable alternative to energy-intensive regeneration processes for activated carbon. Full article
Show Figures

Graphical abstract

17 pages, 2269 KiB  
Article
Photocurable Resin Composites with Silica Micro- and Nano-Fillers for 3D Printing of Dental Restorative Materials
by Pirat Karntiang, Hiroshi Ikeda, Yuki Nagamatsu and Hiroshi Shimizu
J. Compos. Sci. 2025, 9(8), 405; https://doi.org/10.3390/jcs9080405 - 1 Aug 2025
Viewed by 285
Abstract
This study aimed to develop experimental filler-reinforced resin composites for vat-photopolymerization 3D printing and to evaluate the effects of filler addition on their mechanical, physicochemical, and bonding properties for dental restorative applications. Silanized nano- and/or micro-fillers were incorporated into acrylic resin monomers to [...] Read more.
This study aimed to develop experimental filler-reinforced resin composites for vat-photopolymerization 3D printing and to evaluate the effects of filler addition on their mechanical, physicochemical, and bonding properties for dental restorative applications. Silanized nano- and/or micro-fillers were incorporated into acrylic resin monomers to formulate photocurable resins suitable for vat-photopolymerization. The rheological behavior of these liquid-state resins was assessed through viscosity measurements. Printed resin composites were fabricated and characterized for mechanical properties—including flexural strength, flexural modulus, and Vickers hardness—both before and after 8 weeks of water immersion. Physicochemical properties, such as water sorption, water solubility, and degree of conversion, were also evaluated. Additionally, shear bond strength to a resin-based luting agent was measured before and after artificial aging via thermocycling. A commercial dental CAD-CAM resin composite served as a reference material. Filler incorporation significantly improved the mechanical properties of the printed composites. The highest performance was observed in the composite containing 60 wt% micro-fillers, with a flexural strength of 168 ± 10 MPa, flexural modulus of 6.3 ± 0.4 GPa, and Vickers hardness of 63 ± 1 VHN, while the commercial CAD-CAM composite showed values of 152 ± 8 MPa, 7.9 ± 0.3 GPa, and 66 ± 2 VHN, respectively. Filler addition did not adversely affect the degree of conversion, although the relatively low conversion led to the elution of unpolymerized monomers and increased water solubility. The shear bond strength of the optimal printed composite remained stable after aging without silanization, demonstrating superior bonding performance compared with the CAD-CAM composite. These findings suggest that the developed 3D-printed resin composite is a promising candidate for dental restorative materials. Full article
(This article belongs to the Special Issue Innovations in Direct and Indirect Dental Composite Restorations)
Show Figures

Figure 1

37 pages, 1664 KiB  
Review
Mining Waste in Asphalt Pavements: A Critical Review of Waste Rock and Tailings Applications
by Adeel Iqbal, Nuha S. Mashaan and Themelina Paraskeva
J. Compos. Sci. 2025, 9(8), 402; https://doi.org/10.3390/jcs9080402 - 1 Aug 2025
Viewed by 228
Abstract
This paper presents a critical and comprehensive review of the application of mining waste, specifically waste rock and tailings, in asphalt pavements, with the aim of synthesizing performance outcomes and identifying key research gaps. A systematic literature search yielded a final dataset of [...] Read more.
This paper presents a critical and comprehensive review of the application of mining waste, specifically waste rock and tailings, in asphalt pavements, with the aim of synthesizing performance outcomes and identifying key research gaps. A systematic literature search yielded a final dataset of 41 peer-reviewed articles for detailed analysis. Bibliometric analysis indicates a notable upward trend in annual publications, reflecting growing academic and practical interest in this field. Performance-based evaluations demonstrate that mining wastes, particularly iron and copper tailings, have the potential to enhance the high-temperature performance (i.e., rutting resistance) of asphalt binders and mixtures when utilized as fillers or aggregates. However, their effects on fatigue life, low-temperature cracking, and moisture susceptibility are inconsistent, largely influenced by the physicochemical properties and dosage of the specific waste material. Despite promising results, critical knowledge gaps remain, particularly in relation to long-term durability, comprehensive environmental and economic Life-Cycle Assessments (LCA), and the inherent variability of waste materials. This review underscores the substantial potential of mining wastes as sustainable alternatives to conventional pavement materials, while emphasizing the need for further multidisciplinary research to support their broader implementation. Full article
(This article belongs to the Special Issue Advanced Asphalt Composite Materials)
Show Figures

Figure 1

Back to TopTop