Impact of Current Variations on Weld Bead Properties During the Cold Metal Transfer (CMT) Welding of 7075 Aluminium Using an ER4043 Filler Wire †
Abstract
1. Introduction
2. Experimental Methods and Materials
3. Microstructural Analysis
4. Microhardness Analysis
5. Effect of Current on Tensile Strength
6. Residual Stress Analysis
7. Conclusions
- The microstructural investigation revealed that as the current input increased, the grain size also increased in the HAZ and bead region.
- When the current input increased from 80 A to 100 A, the hardness decreased in the WM. The reason behind this increase was the increase in grain size due to the high heat input.
- The average tensile strength exhibited by the 90 A current samples reached a maximum (450 MPa). This was because of the satisfactory fusion of the weld metal with the base metal.
- The calculated residual stress decreased as the current parameter increased, reaching its lowest value at −135 MPa with 100 A current; this is explained by the weld’s increased heat input and quicker cooling rate.
- Ultimately, it was determined that when using the ER4043 filler wire to fabricate Al 7075, the 90 A weld bead produced the best results.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayat, F. Electron Beam Welding of 7075 Aluminum Alloy: Microstructure and Fracture Properties. Eng. Sci. Technol. Int. J. 2022, 34, 101093. [Google Scholar] [CrossRef]
- Ion, J.C. Laser Beam Welding of Wrought Aluminium Alloys. Sci. Technol. Weld. Join. 2000, 5, 265–276. [Google Scholar] [CrossRef]
- Hirsch, J. Recent Development in Aluminium for Automotive Applications. Trans. Nonferrous Met. Soc. China 2014, 24, 1995–2002. [Google Scholar] [CrossRef]
- Vimal, K.E.K.; Naveen Srinivas, M.; Rajak, S. Wire Arc Additive Manufacturing of Aluminium Alloys: A Review. Mater. Today Proc. 2021, 41, 1139–1145. [Google Scholar] [CrossRef]
- Izan, N.; Hussein, S.; Ket, G.C.; Rahim, A.; Ayof, M.N.; Zaimi, M.; Abidin, Z.; Srithorn, J. Process and Heat Resources for Wire Arc Additive Manufacturing of Aluminium Alloy ER4043: A Review. J. Mech. Eng. 2023, 20, 21–41. [Google Scholar] [CrossRef]
- Nandan, G.; Arora, K.S.; Singh, J.; Kumar, A. Influence of Process Parameters on Bead Geometry and Its Effect on Mechanical Properties of CMT Welding of Automotive Grade Steel and Aluminium Alloy Using Aluminium Based Filler Wire. Weld. Int. 2023, 37, 493–506. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Singh, I.J.; Murtaza, Q. Progressive Developments in Cold Metal Transfer Welding Technique: A Review and Trends. J. Polym. Compos. 2024. Available online: https://journals.stmjournals.com/jopc/article=2024/view=137975/ (accessed on 2 April 2024).
- Bellamkonda, P.N.; Sudersanan, M.; Visvalingam, B. A Study on Tensile Properties and Microstructural Characteristics of Wire Arc Additive Manufactured Low Carbon Steel Cylindrical Components. Weld. Int. 2022, 36, 443–454. [Google Scholar] [CrossRef]
- İrizalp, A.O.; Durmuş, H.; Yüksel, N.; Türkmen, İ. Cold Metal Transfer Welding of AA1050 Aluminum Thin Sheets. Rev. Mater. 2016, 21, 615–622. [Google Scholar] [CrossRef]
- Kannan, R.A.; Shanmugam, N.S.; Naveenkumar, S. Effect of Arc Length Correction on Weld Bead Geometry and Mechanical Properties of AISI 316L Weldments by Cold Metal Transfer (CMT) Process. Mater. Today Proc. 2019, 18, 3916–3921. [Google Scholar] [CrossRef]
- Garg, S.; Bansal, S.; Murtaza, Q. Failure Investigation of an Elbow Pipe Used in Sewage Water Treatment Facility. Mater. Corros. 2024, 75, 1185–1192. [Google Scholar] [CrossRef]
- Garg, S.; Murtaza, Q. Effect of Filler Paste’s Mixing Ratio on the Properties of Al-64430 Dip-Brazed Joints. Weld. World 2024, 68, 2459–2471. [Google Scholar] [CrossRef]
- Chauhan, G.; Sahu, M.; Prasad, P.; Bhattacharya, S.; Ganguly, S. Evolution of Residual Stresses in Friction Stir Welded Joints of AA7039. J. Inst. Eng. (India) Ser. D 2023, 104, 213–223. [Google Scholar] [CrossRef]
- Babu, S.; Panigrahi, S.K.; Janaki Ram, G.D.; Venkitakrishnan, P.V.; Suresh Kumar, R. Cold Metal Transfer Welding of Aluminium Alloy AA 2219 to Austenitic Stainless Steel AISI 321. J. Mater. Process Technol. 2019, 266, 155–164. [Google Scholar] [CrossRef]
- Garg, S.; Murtaza, Q. Comparative Analysis of Dip-Brazing and TIG Welding on the Properties of Al-64430 Joints. J. Adhes. Sci. Technol. 2024, 39, 386–400. [Google Scholar] [CrossRef]
- Wu, S.; Yu, X.; Zuo, R.; Zhang, W.; Xie, H.; Jiang, J. Porosity, Element Loss, and Strength Model on Softening Behavior of Hybrid Laser Arc Welded Al-Zn-Mg-Cu Alloy with Synchrotron Radiation Analysis. Weld. J. 2013, 92, 64–71. [Google Scholar]
- Masumura, R.A.; Hazzledine, P.M.; Pande, C.S. Yield Stress of Fine Grained Materials. Acta Mater. 1998, 46, 4527–4534. [Google Scholar] [CrossRef]
- Koli, Y.; Yuvaraj, N.; Aravindan, S. Vipin Enhancement of Mechanical Properties of 6061/6082 Dissimilar Aluminium Alloys Through Ultrasonic-Assisted Cold Metal Transfer Welding. Arab. J. Sci. Eng. 2021, 46, 12089–12104. [Google Scholar] [CrossRef]
- Pramod, R.; Shanmugam, N.S.; Krishnadasan, C.K. Studies on Cold Metal Transfer Welding of Aluminium Alloy 6061-T6 Using ER 4043. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2020, 234, 924–937. [Google Scholar] [CrossRef]
- Koli, Y.; Yuvaraj, N.; Vipin; Aravindan, S. Investigations on Weld Bead Geometry and Microstructure in CMT, MIG Pulse Synergic and MIG Welding of AA6061-T6. Mater. Res. Express 2019, 6, 1265e5. [Google Scholar] [CrossRef]
Material | Al | Cu | Zn | Si | Mg | Fe | Mn | Cr | Ti |
---|---|---|---|---|---|---|---|---|---|
Al 7075 | 90.2 | 1.2 | 5.1 | 0.4 | 1.9 | 0.5 | 0.3 | 0.2 | 0.2 |
ER4043 | 93.03 | 0.3 | 0.1 | 5.6 | 0.05 | 0.8 | 0.05 | 0.05 | 0.02 |
Current (A) | Voltage (V) | Wire Feed Rate (m/min) | Time (s) | Length (mm) | Gas Flow Rate (L/min) | Heat Input (kJ) |
---|---|---|---|---|---|---|
80 | 14 | 4.80 | 10 | 100 | 15 | 0.102 |
90 | 14.8 | 4.89 | 10 | 100 | 15 | 0.121 |
100 | 15.5 | 5.10 | 10 | 100 | 15 | 0.143 |
Current (A) | Average Tensile Strength (MPa) | Elongation (%) |
---|---|---|
80 | 420 | 9.5 |
90 | 450 | 8 |
100 | 400 | 6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhardwaj, V.; Garg, S.; Murtaza, Q. Impact of Current Variations on Weld Bead Properties During the Cold Metal Transfer (CMT) Welding of 7075 Aluminium Using an ER4043 Filler Wire. Eng. Proc. 2025, 93, 22. https://doi.org/10.3390/engproc2025093022
Bhardwaj V, Garg S, Murtaza Q. Impact of Current Variations on Weld Bead Properties During the Cold Metal Transfer (CMT) Welding of 7075 Aluminium Using an ER4043 Filler Wire. Engineering Proceedings. 2025; 93(1):22. https://doi.org/10.3390/engproc2025093022
Chicago/Turabian StyleBhardwaj, Vishal, Siddharth Garg, and Qasim Murtaza. 2025. "Impact of Current Variations on Weld Bead Properties During the Cold Metal Transfer (CMT) Welding of 7075 Aluminium Using an ER4043 Filler Wire" Engineering Proceedings 93, no. 1: 22. https://doi.org/10.3390/engproc2025093022
APA StyleBhardwaj, V., Garg, S., & Murtaza, Q. (2025). Impact of Current Variations on Weld Bead Properties During the Cold Metal Transfer (CMT) Welding of 7075 Aluminium Using an ER4043 Filler Wire. Engineering Proceedings, 93(1), 22. https://doi.org/10.3390/engproc2025093022