Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,950)

Search Parameters:
Keywords = Electrophysiology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6895 KiB  
Article
Generation of Individualized, Standardized, and Electrically Synchronized Human Midbrain Organoids
by Sanae El Harane, Bahareh Nazari, Nadia El Harane, Manon Locatelli, Bochra Zidi, Stéphane Durual, Abderrahim Karmime, Florence Ravier, Adrien Roux, Luc Stoppini, Olivier Preynat-Seauve and Karl-Heinz Krause
Cells 2025, 14(15), 1211; https://doi.org/10.3390/cells14151211 - 6 Aug 2025
Abstract
Organoids allow to model healthy and diseased human tissues. and have applications in developmental biology, drug discovery, and cell therapy. Traditionally cultured in immersion/suspension, organoids face issues like lack of standardization, fusion, hypoxia-induced necrosis, continuous agitation, and high media volume requirements. To address [...] Read more.
Organoids allow to model healthy and diseased human tissues. and have applications in developmental biology, drug discovery, and cell therapy. Traditionally cultured in immersion/suspension, organoids face issues like lack of standardization, fusion, hypoxia-induced necrosis, continuous agitation, and high media volume requirements. To address these issues, we developed an air–liquid interface (ALi) technology for culturing organoids, termed AirLiwell. It uses non-adhesive microwells for generating and maintaining individualized organoids on an air–liquid interface. This method ensures high standardization, prevents organoid fusion, eliminates the need for agitation, simplifies media changes, reduces media volume, and is compatible with Good Manufacturing Practices. We compared the ALi method to standard immersion culture for midbrain organoids, detailing the process from human pluripotent stem cell (hPSC) culture to organoid maturation and analysis. Air–liquid interface organoids (3D-ALi) showed optimized size and shape standardization. RNA sequencing and immunostaining confirmed neural/dopaminergic specification. Single-cell RNA sequencing revealed that immersion organoids (3D-i) contained 16% fibroblast-like, 23% myeloid-like, and 61% neural cells (49% neurons), whereas 3D-ALi organoids comprised 99% neural cells (86% neurons). Functionally, 3D-ALi organoids showed a striking electrophysiological synchronization, unlike the heterogeneous activity of 3D-i organoids. This standardized organoid platform improves reproducibility and scalability, demonstrated here with midbrain organoids. The use of midbrain organoids is particularly relevant for neuroscience and neurodegenerative diseases, such as Parkinson’s disease, due to their high incidence, opening new perspectives in disease modeling and cell therapy. In addition to hPSC-derived organoids, the method’s versatility extends to cancer organoids and 3D cultures from primary human cells. Full article
(This article belongs to the Special Issue The Current Applications and Potential of Stem Cell-Derived Organoids)
Show Figures

Figure 1

19 pages, 4247 KiB  
Article
Assessing CFTR Function and Epithelial Morphology in Human Nasal Respiratory Cell Cultures: A Combined Immunofluorescence and Electrophysiological Study
by Roshani Narayan Singh, Vanessa Mete, Willy van Driessche, Heymut Omran, Wolf-Michael Weber and Jörg Grosse-Onnebrink
Int. J. Mol. Sci. 2025, 26(15), 7618; https://doi.org/10.3390/ijms26157618 - 6 Aug 2025
Abstract
Cystic fibrosis (CF), the most common hereditary lung disease in Caucasians, is caused by dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR). We evaluated CFTR function using a newly developed Ussing chamber system, the Multi Trans Epithelial Current Clamp (MTECC), in an [...] Read more.
Cystic fibrosis (CF), the most common hereditary lung disease in Caucasians, is caused by dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR). We evaluated CFTR function using a newly developed Ussing chamber system, the Multi Trans Epithelial Current Clamp (MTECC), in an in vitro model of human airway epithelia. Air–liquid interface (ALI) cultures were established from nasal brushings of healthy controls (HC) and CF patients with biallelic CFTR variants. ALI layer thickness was similar between groups (HC: 62 ± 13 µm; CF: 55 ± 9 µm). Immunofluorescence showed apical CFTR expression in HC, but reduced or absent signal in CF cultures. MTECC enabled continuous measurement of transepithelial resistance (Rt), potential difference (PD), and conductance (Gt). Gt was significantly reduced in CF cultures compared to HC (0.825 ± 0.024 vs. −0.054 ± 0.016 mS/cm2), indicating impaired cAMP-inducible ion transport by CFTR. Treatment of CF cultures with elexacaftor, tezacaftor, and ivacaftor (Trikafta®) increased Gt, reflecting partial restoration of CFTR function. These findings demonstrate the utility of MTECC in detecting functional differences in CFTR activity and support its use as a platform for evaluating CFTR-modulating therapies. Our model may contribute to the development of personalized treatment strategies for CF patients. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Pathophysiology of Cystic Fibrosis)
Show Figures

Figure 1

16 pages, 1541 KiB  
Article
A Ubiquitous Volatile in Noctuid Larval Frass Attracts a Parasitoid Species
by Chaowei Wang, Xingzhou Liu, Sylvestre T. O. Kelehoun, Kai Dong, Yueying Wang, Maozhu Yin, Jinbu Li, Yu Gao and Hao Xu
Biology 2025, 14(8), 1007; https://doi.org/10.3390/biology14081007 - 6 Aug 2025
Abstract
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda [...] Read more.
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda (JE Smith), along with the larval endoparasitoid Microplitis mediator (Haliday) to address the question. Extracts of larval frass of both the noctuid species were strongly attractive to M. mediator females when hosts were fed either maize, cotton, soybean leaves, or an artificial diet without leaf tissues. By using a combination of electrophysiological measurements and behavioral tests, we found that the attractiveness of frass mainly relied on a volatile compound ethyl palmitate. The compound was likely to be a by-product of host digestion involving gut bacteria because an antibiotic supplement in diets reduced the production of the compound in frass and led to the decreased attractiveness of frass to the parasitoids. In contrast, extracts of the larval bodies of both the noctuid species appeared to be less attractive to the parasitoids than their respective fecal extracts, independently of types of food supplied to the larvae. Altogether, larval frass of the two noctuid species was likely to be more important than their bodies in attracting the endoparasitoid species, and the main attractant of frass was probably one of the common metabolites of digestion involving gut microbes, and its emission is likely to be independent of host plant species. Full article
(This article belongs to the Special Issue The Biology, Ecology, and Management of Plant Pests)
Show Figures

Figure 1

26 pages, 1203 KiB  
Review
Deciphering the Role of Functional Ion Channels in Cancer Stem Cells (CSCs) and Their Therapeutic Implications
by Krishna Samanta, Gali Sri Venkata Sai Rishma Reddy, Neeraj Kumar Sharma and Pulak Kar
Int. J. Mol. Sci. 2025, 26(15), 7595; https://doi.org/10.3390/ijms26157595 - 6 Aug 2025
Abstract
Despite advances in medicine, cancer remains one of the foremost global health concerns. Conventional treatments like surgery, radiotherapy, and chemotherapy have advanced with the emergence of targeted and immunotherapy approaches. However, therapeutic resistance and relapse remain major barriers to long-term success in cancer [...] Read more.
Despite advances in medicine, cancer remains one of the foremost global health concerns. Conventional treatments like surgery, radiotherapy, and chemotherapy have advanced with the emergence of targeted and immunotherapy approaches. However, therapeutic resistance and relapse remain major barriers to long-term success in cancer treatment, often driven by cancer stem cells (CSCs). These rare, resilient cells can survive therapy and drive tumour regrowth, urging deeper investigation into the mechanisms underlying their persistence. CSCs express ion channels typical of excitable tissues, which, beyond electrophysiology, critically regulate CSC fate. However, the underlying regulatory mechanisms of these channels in CSCs remain largely unexplored and poorly understood. Nevertheless, the therapeutic potential of targeting CSC ion channels is immense, as it offers a powerful strategy to disrupt vital signalling pathways involved in numerous pathological conditions. In this review, we explore the diverse repertoire of ion channels expressed in CSCs and highlight recent mechanistic insights into how these channels modulate CSC behaviours, dynamics, and functions. We present a concise overview of ion channel-mediated CSC regulation, emphasizing their potential as novel diagnostic markers and therapeutic targets, and identifying key areas for future research. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs 2.0)
Show Figures

Figure 1

13 pages, 322 KiB  
Article
Clinical Perspectives on Cochlear Implantation in Pediatric Patients with Cochlear Nerve Aplasia or Hypoplasia
by Ava Raynor, Sara Perez, Megan Worthington and Valeriy Shafiro
Audiol. Res. 2025, 15(4), 96; https://doi.org/10.3390/audiolres15040096 (registering DOI) - 5 Aug 2025
Viewed by 17
Abstract
Background: Cochlear implantation (CI) in pediatric patients with cochlear nerve deficiencies (CND) remains controversial due to a highly variable clinical population, lack of evidence-based guidelines, and mixed research findings. This study assessed current clinical perspectives and practices regarding CI candidacy in children [...] Read more.
Background: Cochlear implantation (CI) in pediatric patients with cochlear nerve deficiencies (CND) remains controversial due to a highly variable clinical population, lack of evidence-based guidelines, and mixed research findings. This study assessed current clinical perspectives and practices regarding CI candidacy in children with CND among hearing healthcare professionals in the USA. Methods: An anonymous 19-question online survey was distributed to CI clinicians nationwide. The survey assessed professional background, experience with aplasia and hypoplasia, and perspectives on CI versus auditory brainstem implant (ABI) candidacy, including imaging practices and outcome expectations. Both multiple-choice and open-ended responses were analyzed to identify trends and reasoning. Results: Seventy-two responses were analyzed. Most clinicians supported CI for hypoplasia (60.2%) and, to a lesser extent, for aplasia (41.7%), with audiologists more likely than neurotologists to favor CI. Respondents cited lower risk, accessibility, and the potential for benefit as reasons to attempt CI before ABI. However, many emphasized a case-by-case approach, incorporating imaging, electrophysiological testing, and family counseling. Only 22.2% considered structural factors the best predictors of CI success. Conclusions: Overall, hearing health professionals in the USA tend to favor CI as a first-line option, while acknowledging the limitations of current diagnostic tools and the importance of individualized, multidisciplinary decision-making in CI candidacy for children with CND. Findings reveal a high variability in clinical perspectives on CI implantation for pediatric aplasia and hypoplasia and a lack of clinical consensus, highlighting the need for more standardized assessment and imaging protocols to provide greater consistency across centers and enable the development of evidence-based guidelines. Full article
(This article belongs to the Section Hearing)
Show Figures

Figure 1

24 pages, 4294 KiB  
Article
Post Hoc Event-Related Potential Analysis of Kinesthetic Motor Imagery-Based Brain-Computer Interface Control of Anthropomorphic Robotic Arms
by Miltiadis Spanos, Theodora Gazea, Vasileios Triantafyllidis, Konstantinos Mitsopoulos, Aristidis Vrahatis, Maria Hadjinicolaou, Panagiotis D. Bamidis and Alkinoos Athanasiou
Electronics 2025, 14(15), 3106; https://doi.org/10.3390/electronics14153106 - 4 Aug 2025
Viewed by 128
Abstract
Kinesthetic motor imagery (KMI), the mental rehearsal of a motor task without its actual performance, constitutes one of the most common techniques used for brain–computer interface (BCI) control for movement-related tasks. The effect of neural injury on motor cortical activity during execution and [...] Read more.
Kinesthetic motor imagery (KMI), the mental rehearsal of a motor task without its actual performance, constitutes one of the most common techniques used for brain–computer interface (BCI) control for movement-related tasks. The effect of neural injury on motor cortical activity during execution and imagery remains under investigation in terms of activations, processing of motor onset, and BCI control. The current work aims to conduct a post hoc investigation of the event-related potential (ERP)-based processing of KMI during BCI control of anthropomorphic robotic arms by spinal cord injury (SCI) patients and healthy control participants in a completed clinical trial. For this purpose, we analyzed 14-channel electroencephalography (EEG) data from 10 patients with cervical SCI and 8 healthy individuals, recorded through Emotiv EPOC BCI, as the participants attempted to move anthropomorphic robotic arms using KMI. EEG data were pre-processed by band-pass filtering (8–30 Hz) and independent component analysis (ICA). ERPs were calculated at the sensor space, and analysis of variance (ANOVA) was used to determine potential differences between groups. Our results showed no statistically significant differences between SCI patients and healthy control groups regarding mean amplitude and latency (p < 0.05) across the recorded channels at various time points during stimulus presentation. Notably, no significant differences were observed in ERP components, except for the P200 component at the T8 channel. These findings suggest that brain circuits associated with motor planning and sensorimotor processes are not disrupted due to anatomical damage following SCI. The temporal dynamics of motor-related areas—particularly in channels like F3, FC5, and F7—indicate that essential motor imagery (MI) circuits remain functional. Limitations include the relatively small sample size that may hamper the generalization of our findings, the sensor-space analysis that restricts anatomical specificity and neurophysiological interpretations, and the use of a low-density EEG headset, lacking coverage over key motor regions. Non-invasive EEG-based BCI systems for motor rehabilitation in SCI patients could effectively leverage intact neural circuits to promote neuroplasticity and facilitate motor recovery. Future work should include validation against larger, longitudinal, high-density, source-space EEG datasets. Full article
(This article belongs to the Special Issue EEG Analysis and Brain–Computer Interface (BCI) Technology)
Show Figures

Figure 1

42 pages, 3822 KiB  
Article
The Criticality of Consciousness: Excitatory–Inhibitory Balance and Dual Memory Systems in Active Inference
by Don M. Tucker, Phan Luu and Karl J. Friston
Entropy 2025, 27(8), 829; https://doi.org/10.3390/e27080829 - 4 Aug 2025
Viewed by 248
Abstract
The organization of consciousness is described through increasingly rich theoretical models. We review evidence that working memory capacity—essential to generating consciousness in the cerebral cortex—is supported by dual limbic memory systems. These dorsal (Papez) and ventral (Yakovlev) limbic networks provide the basis for [...] Read more.
The organization of consciousness is described through increasingly rich theoretical models. We review evidence that working memory capacity—essential to generating consciousness in the cerebral cortex—is supported by dual limbic memory systems. These dorsal (Papez) and ventral (Yakovlev) limbic networks provide the basis for mnemonic processing and prediction in the dorsal and ventral divisions of the human neocortex. Empirical evidence suggests that the dorsal limbic division is (i) regulated preferentially by excitatory feedforward control, (ii) consolidated by REM sleep, and (iii) controlled in waking by phasic arousal through lemnothalamic projections from the pontine brainstem reticular activating system. The ventral limbic division and striatum, (i) organizes the inhibitory neurophysiology of NREM to (ii) consolidate explicit memory in sleep, (iii) operating in waking cognition under the same inhibitory feedback control supported by collothalamic tonic activation from the midbrain. We propose that (i) these dual (excitatory and inhibitory) systems alternate in the stages of sleep, and (ii) in waking they must be balanced—at criticality—to optimize the active inference that generates conscious experiences. Optimal Bayesian belief updating rests on balanced feedforward (excitatory predictive) and feedback (inhibitory corrective) control biases that play the role of prior and likelihood (i.e., sensory) precision. Because the excitatory (E) phasic arousal and inhibitory (I) tonic activation systems that regulate these dual limbic divisions have distinct affective properties, varying levels of elation for phasic arousal (E) and anxiety for tonic activation (I), the dual control systems regulate sleep and consciousness in ways that are adaptively balanced—around the entropic nadir of EI criticality—for optimal self-regulation of consciousness and psychological health. Because they are emotive as well as motive control systems, these dual systems have unique qualities of feeling that may be registered as subjective experience. Full article
(This article belongs to the Special Issue Active Inference in Cognitive Neuroscience)
Show Figures

Figure 1

7 pages, 1048 KiB  
Proceeding Paper
Exploring Cortical Connectivity of Visual Prosthesis Users: Resting-State Study
by María del Mar Ayuso Arroyave, Fernando Daniel Farfán, Leili Soo, Ana Lía Albarracín and Eduardo Fernández
Eng. Proc. 2024, 81(1), 20; https://doi.org/10.3390/engproc2024081020 - 4 Aug 2025
Viewed by 101
Abstract
Electrophysiological studies reveal significant organizational and functional differences in the cortex of blind individuals compared to sighted individuals. These differences result from the nervous system’s reorganization to adapt to new sensory modalities used in daily life. Cortical visual prostheses offer a means to [...] Read more.
Electrophysiological studies reveal significant organizational and functional differences in the cortex of blind individuals compared to sighted individuals. These differences result from the nervous system’s reorganization to adapt to new sensory modalities used in daily life. Cortical visual prostheses offer a means to restore visual sensations in blind individuals by generating phosphenes, luminous perceptions that provide information about their surroundings. This study investigates the cortical changes associated with the use of a visual neuroprosthesis, focusing on how the brain adapts to the restored visual input. Our findings aim to contribute to understanding neuroplasticity in sensory restoration processes. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Bioengineering)
Show Figures

Figure 1

18 pages, 3891 KiB  
Review
Navigating Brain Organoid Maturation: From Benchmarking Frameworks to Multimodal Bioengineering Strategies
by Jingxiu Huang, Yingli Zhu, Jiong Tang, Yang Liu, Ming Lu, Rongxin Zhang and Alfred Xuyang Sun
Biomolecules 2025, 15(8), 1118; https://doi.org/10.3390/biom15081118 - 4 Aug 2025
Viewed by 266
Abstract
Brain organoid technology has revolutionized in vitro modeling of human neurodevelopment and disease, providing unprecedented insights into cortical patterning, neural circuit assembly, and pathogenic mechanisms of neurological disorders. Critically, human brain organoids uniquely recapitulate human-specific developmental processes—such as the expansion of outer radial [...] Read more.
Brain organoid technology has revolutionized in vitro modeling of human neurodevelopment and disease, providing unprecedented insights into cortical patterning, neural circuit assembly, and pathogenic mechanisms of neurological disorders. Critically, human brain organoids uniquely recapitulate human-specific developmental processes—such as the expansion of outer radial glia and neuromelanin—that are absent in rodent models, making them indispensable for studying human brain evolution and dysfunction. However, a major bottleneck persists: Extended culture periods (≥6 months) are empirically required to achieve late-stage maturation markers like synaptic refinement, functional network plasticity, and gliogenesis. Yet prolonged conventional 3D culture exacerbates metabolic stress, hypoxia-induced necrosis, and microenvironmental instability, leading to asynchronous tissue maturation—electrophysiologically active superficial layers juxtaposed with degenerating cores. This immaturity/heterogeneity severely limits their utility in modeling adult-onset disorders (e.g., Alzheimer’s disease) and high-fidelity drug screening, as organoids fail to recapitulate postnatal transcriptional signatures or neurovascular interactions without bioengineering interventions. We summarize emerging strategies to decouple maturation milestones from rigid temporal frameworks, emphasizing the synergistic integration of chronological optimization (e.g., vascularized co-cultures) and active bioengineering accelerators (e.g., electrical stimulation and microfluidics). By bridging biological timelines with scalable engineering, this review charts a roadmap to generate translationally relevant, functionally mature brain organoids. Full article
Show Figures

Figure 1

15 pages, 2903 KiB  
Article
Electrophysiological Substrate and Pulmonary Vein Reconnection Patterns in Recurrent Atrial Fibrillation: Comparing Thermal Strategies in Patients Undergoing Redo Ablation
by Krisztian Istvan Kassa, Adwity Shakya, Zoltan Som, Csaba Foldesi and Attila Kardos
J. Cardiovasc. Dev. Dis. 2025, 12(8), 298; https://doi.org/10.3390/jcdd12080298 - 2 Aug 2025
Viewed by 270
Abstract
Background: The influence of the initial ablation modality on pulmonary vein (PV) reconnection and substrate characteristics in redo procedures for recurrent atrial fibrillation (AF) remains unclear. We assessed how different thermal strategies—ablation index (AI)-guided radiofrequency (RF) versus cryoballoon (CB) ablation—affect remapping findings during [...] Read more.
Background: The influence of the initial ablation modality on pulmonary vein (PV) reconnection and substrate characteristics in redo procedures for recurrent atrial fibrillation (AF) remains unclear. We assessed how different thermal strategies—ablation index (AI)-guided radiofrequency (RF) versus cryoballoon (CB) ablation—affect remapping findings during redo pulmonary vein isolation (PVI). Methods: We included patients undergoing redo ablation between 2015 and 2024 with high-density electroanatomic mapping. Initial PVI modalities were retrospectively classified as low-power, long-duration (LPLD) RF; high-power, short-duration (HPSD) RF; or second-/third-generation CB. Reconnection sites were mapped using multielectrode catheters. Redo PVI was performed using AI-guided RF. Segments showing PV reconnection were reisolated; if all PVs remained isolated and AF persisted, posterior wall isolation was performed. Results: Among 195 patients (LPLD: 63; HPSD: 30; CB: 102), complete PVI at redo was observed in 0% (LPLD), 23.3% (HPSD), and 10.1% (CB) (p < 0.01 for LPLD vs. HPSD). Reconnection patterns varied by technique; LPLD primarily affected the right carina, while HPSD and CB showed reconnections at the LSPV ridge. Organized atrial tachycardia was least frequent after CB (12.7%, p < 0.002). Conclusion: Initial ablation strategy significantly influences PV reconnection and post-PVI arrhythmia patterns, with implications for redo procedure planning. Full article
(This article belongs to the Special Issue Atrial Fibrillation: New Insights and Perspectives)
Show Figures

Figure 1

16 pages, 1247 KiB  
Article
Sexual Dimorphism of Synaptic Plasticity Changes in CA1 Hippocampal Networks in Hypergravity-Exposed Mice—New Insights for Cognition in Space
by Mathilde Wullen, Valentine Bouet, Thomas Freret and Jean-Marie Billard
Cells 2025, 14(15), 1186; https://doi.org/10.3390/cells14151186 - 31 Jul 2025
Viewed by 356
Abstract
Background: We recently reported sex-dependent impairment in cognitive functions in male and female mice exposed for 24 h, 48 h or 15 days to 2G hypergravity (HG). Methods: In the present study, we investigated brain functional correlates by analyzing synaptic activity and plasticity [...] Read more.
Background: We recently reported sex-dependent impairment in cognitive functions in male and female mice exposed for 24 h, 48 h or 15 days to 2G hypergravity (HG). Methods: In the present study, we investigated brain functional correlates by analyzing synaptic activity and plasticity in the CA1 area of the hippocampus in both genders of mice previously exposed to 2G for the same duration. This was assessed by electrophysiological extracellular recordings in ex vivo slice preparations. Results: Basal synaptic transmission and glutamate release were unchanged regardless of HG duration. However, plasticity was altered in a sex- and time-specific manner. In males, long-term potentiation (LTP) induced by strong high-frequency stimulation and NMDA receptor (NMDAr) activation was reduced by 26% after 24 h of exposure but recovered at later timepoints. This deficit was reversed by D-serine or glycine, suggesting decreased activation at the NMDAr co-agonist site. In females, LTP deficits (23%) were found only after 15 days following mild theta burst stimulation and were not reversed by D-serine. Long-term depression (LTD) was unaffected in both sexes. Conclusions: This study highlights, for the first time, sex-dependent divergence in the CA1 hippocampal plasticity timeline following 2G exposure. The synaptic changes depend on exposure duration and the stimulation protocol and could underlie the previously observed cognitive deficits. Full article
Show Figures

Graphical abstract

13 pages, 1879 KiB  
Article
Dynamic Graph Convolutional Network with Dilated Convolution for Epilepsy Seizure Detection
by Xiaoxiao Zhang, Chenyun Dai and Yao Guo
Bioengineering 2025, 12(8), 832; https://doi.org/10.3390/bioengineering12080832 - 31 Jul 2025
Viewed by 236
Abstract
The electroencephalogram (EEG), widely used for measuring the brain’s electrophysiological activity, has been extensively applied in the automatic detection of epileptic seizures. However, several challenges remain unaddressed in prior studies on automated seizure detection: (1) Methods based on CNN and LSTM assume that [...] Read more.
The electroencephalogram (EEG), widely used for measuring the brain’s electrophysiological activity, has been extensively applied in the automatic detection of epileptic seizures. However, several challenges remain unaddressed in prior studies on automated seizure detection: (1) Methods based on CNN and LSTM assume that EEG signals follow a Euclidean structure; (2) Algorithms leveraging graph convolutional networks rely on adjacency matrices constructed with fixed edge weights or predefined connection rules. To address these limitations, we propose a novel algorithm: Dynamic Graph Convolutional Network with Dilated Convolution (DGDCN). By leveraging a spatiotemporal attention mechanism, the proposed model dynamically constructs a task-specific adjacency matrix, which guides the graph convolutional network (GCN) in capturing localized spatial and temporal dependencies among adjacent nodes. Furthermore, a dilated convolutional module is incorporated to expand the receptive field, thereby enabling the model to capture long-range temporal dependencies more effectively. The proposed seizure detection system is evaluated on the TUSZ dataset, achieving AUC values of 88.7% and 90.4% on 12-s and 60-s segments, respectively, demonstrating competitive performance compared to current state-of-the-art methods. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

43 pages, 19225 KiB  
Review
Recent Progress in Flexible Wearable Sensors Utilizing Conductive Hydrogels for Sports Applications: Characteristics, Mechanisms, and Modification Strategies
by Jie Wu, Jingya Hong, Xing Gao, Yutong Wang, Wenyan Wang, Hongchao Zhang, Jaeyoung Park, Weiquan Shi and Wei Guo
Gels 2025, 11(8), 589; https://doi.org/10.3390/gels11080589 - 30 Jul 2025
Viewed by 204
Abstract
Conductive hydrogels demonstrate substantial potential for flexible wearable sensors in motion monitoring, owing to their unique physicochemical properties; however, current implementations still confront persistent challenges in long-term stability, sensitivity, response speed, and detection limits under complex dynamic conditions, which material innovations are urgently [...] Read more.
Conductive hydrogels demonstrate substantial potential for flexible wearable sensors in motion monitoring, owing to their unique physicochemical properties; however, current implementations still confront persistent challenges in long-term stability, sensitivity, response speed, and detection limits under complex dynamic conditions, which material innovations are urgently required to resolve. Consequently, this paper comprehensively reviews the recent advancements in conductive hydrogel-based flexible wearable sensors for sports applications. The paper examines the conductivity, self-adhesion, self-repair, and biocompatibility of conductive hydrogels, along with detailed analyses of their working principles in resistance, capacitance, piezoelectric, and battery-based sensing mechanisms. Additionally, the paper summarizes innovative strategies to enhance sensor performance through polymer blending, polyelectrolyte doping, inorganic salt doping, and nanomaterial integration. Furthermore, the paper highlights the latest applications of conductive hydrogel flexible wearable sensors in human motion monitoring, electrophysiological signal detection, and electrochemical biosignal monitoring. Finally, the paper provides an in-depth discussion of the advantages and limitations of existing technologies, offering valuable insights and new perspectives for future research directions. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (3rd Edition))
Show Figures

Figure 1

10 pages, 2048 KiB  
Article
Ultrasound-Guided PECS II Block Reduces Periprocedural Pain in Cardiac Device Implantation: A Prospective Controlled Study
by Mihaela Butiulca, Florin Stoica Buracinschi and Alexandra Lazar
Medicina 2025, 61(8), 1389; https://doi.org/10.3390/medicina61081389 - 30 Jul 2025
Viewed by 236
Abstract
Background and Objectives: Implantation of cardiac implantable electronic devices (CIEDs) is increasingly performed in elderly and comorbid patients, for whom minimizing perioperative complications—including pain and systemic drug use—is critical. Traditional local infiltration often provides insufficient analgesia. The ultrasound-guided PECS II block, an [...] Read more.
Background and Objectives: Implantation of cardiac implantable electronic devices (CIEDs) is increasingly performed in elderly and comorbid patients, for whom minimizing perioperative complications—including pain and systemic drug use—is critical. Traditional local infiltration often provides insufficient analgesia. The ultrasound-guided PECS II block, an interfascial regional technique, offers promising analgesic benefits in thoracic wall procedures but remains underutilized in cardiac electrophysiology. Materials and Methods: We conducted a prospective, controlled, non-randomized clinical study including 106 patients undergoing de novo CIED implantation. Patients were assigned to receive either a PECS II block (n = 53) or standard lidocaine-based local anesthesia (n = 53). Pain intensity was assessed using the numeric rating scale (NRS) intraoperatively and at 1, 6, and 12 h postoperatively. Secondary outcomes included the need for rescue analgesia, procedural duration, length of hospitalization, and patient satisfaction. Results: Patients in the PECS II group reported significantly lower NRS scores at all time points (mean intraoperative score: 2.1 ± 1.2 vs. 5.7 ± 1.6, p < 0.001; at 1 h: 2.5 ± 1.5 vs. 6.1 ± 1.7, p < 0.001). Rescue analgesia (metamizole sodium) was required in only four PECS II patients (7.5%) vs. 100% in the control group within 1 h. Hospital stay and procedural time were also modestly reduced in the PECS II group. Patient satisfaction scores were significantly higher in the intervention group. Conclusions: The ultrasound-guided PECS II block significantly reduces perioperative pain and the need for additional analgesia during CIED implantation, offering an effective, safe, and opioid-sparing alternative to conventional local infiltration. Its integration into clinical protocols for device implantation may enhance procedural comfort and recovery. Full article
(This article belongs to the Special Issue Regional and Local Anesthesia for Enhancing Recovery After Surgery)
Show Figures

Figure 1

13 pages, 1323 KiB  
Article
Genotypic and Phenotypic Characterization of Axonal Charcot–Marie–Tooth Disease in Childhood: Identification of One Novel and Four Known Mutations
by Rojan İpek, Büşra Eser Çavdartepe, Sevcan Tuğ Bozdoğan, Erman Altunışık, Akçahan Akalın, Mahmut Yaman, Alper Akın and Sefer Kumandaş
Genes 2025, 16(8), 917; https://doi.org/10.3390/genes16080917 - 30 Jul 2025
Viewed by 296
Abstract
Background: Charcot–Marie–Tooth disease (CMT) is a genetically and phenotypically heterogeneous hereditary neuropathy. Axonal CMT type 2 (CMT2) subtypes often exhibit overlapping clinical features, which makes molecular genetic analysis essential for accurate diagnosis and subtype differentiation. Methods: This retrospective study included five pediatric patients [...] Read more.
Background: Charcot–Marie–Tooth disease (CMT) is a genetically and phenotypically heterogeneous hereditary neuropathy. Axonal CMT type 2 (CMT2) subtypes often exhibit overlapping clinical features, which makes molecular genetic analysis essential for accurate diagnosis and subtype differentiation. Methods: This retrospective study included five pediatric patients who presented with gait disturbance, muscle weakness, and foot deformities and were subsequently diagnosed with axonal forms of CMT. Clinical data, electrophysiological studies, neuroimaging, and genetic analyses were evaluated. Whole exome sequencing (WES) was performed in three sporadic cases, while targeted CMT gene panel testing was used for two siblings. Variants were interpreted using ACMG guidelines, supported by public databases (ClinVar, HGMD, and VarSome), and confirmed by Sanger sequencing when available. Results: All had absent deep tendon reflexes and distal muscle weakness; three had intellectual disability. One patient was found to carry a novel homozygous frameshift variant (c.2568_2569del) in the IGHMBP2 gene, consistent with CMT2S. Other variants were identified in the NEFH (CMT2CC), DYNC1H1 (CMT2O), and MPV17 (CMT2EE) genes. Notably, a previously unreported co-occurrence of MPV17 mutation and congenital heart disease was observed in one case. Conclusions: This study expands the clinical and genetic spectrum of pediatric axonal CMT and highlights the role of early physical examination and molecular diagnostics in detecting rare variants. Identification of a novel IGHMBP2 variant and unique phenotypic associations provides new insights for future genotype–phenotype correlation studies. Full article
(This article belongs to the Special Issue Genetics of Neuromuscular and Metabolic Diseases)
Show Figures

Figure 1

Back to TopTop