Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,393)

Search Parameters:
Keywords = EVE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3549 KiB  
Article
Method for Target Detection in a High Noise Environment Through Frequency Analysis Using an Event-Based Vision Sensor
by Will Johnston, Shannon Young, David Howe, Rachel Oliver, Zachry Theis, Brian McReynolds and Michael Dexter
Signals 2025, 6(3), 39; https://doi.org/10.3390/signals6030039 - 5 Aug 2025
Abstract
Event-based vision sensors (EVSs), often referred to as neuromorphic cameras, operate by responding to changes in brightness on a pixel-by-pixel basis. In contrast, traditional framing cameras employ some fixed sampling interval where integrated intensity is read off the entire focal plane at once. [...] Read more.
Event-based vision sensors (EVSs), often referred to as neuromorphic cameras, operate by responding to changes in brightness on a pixel-by-pixel basis. In contrast, traditional framing cameras employ some fixed sampling interval where integrated intensity is read off the entire focal plane at once. Similar to traditional cameras, EVSs can suffer loss of sensitivity through scenes with high intensity and dynamic clutter, reducing the ability to see points of interest through traditional event processing means. This paper describes a method to reduce the negative impacts of these types of EVS clutter and enable more robust target detection through the use of individual pixel frequency analysis, background suppression, and statistical filtering. Additionally, issues found in normal frequency analysis such as phase differences between sources, aliasing, and spectral leakage are less relevant in this method. The statistical filtering simply determines what pixels have significant frequency content after the background suppression instead of focusing on the actual frequencies in the scene. Initial testing on simulated data demonstrates a proof of concept for this method, which reduces artificial scene noise and enables improved target detection. Full article
Show Figures

Figure 1

12 pages, 2338 KiB  
Article
Singlet Oxygen-Mediated Micropollutant Degradation Using an FePc-Modified CNT Filter via Peroxymonosulfate Activation
by Chenxin Xie, Yifan Ren and Yanbiao Liu
Catalysts 2025, 15(8), 747; https://doi.org/10.3390/catal15080747 (registering DOI) - 5 Aug 2025
Abstract
Herein, we rationally designed a molecular catalytic filter for effective micropollutants decontamination via peroxymonosulfate (PMS) activation. Specifically, iron phthalocanine (FePc) molecules with defined Fe–N4 coordination were immobilized onto carbon nanotubes (CNTs), forming a hybrid catalyst that integrated molecular precision with heterogeneous catalytic [...] Read more.
Herein, we rationally designed a molecular catalytic filter for effective micropollutants decontamination via peroxymonosulfate (PMS) activation. Specifically, iron phthalocanine (FePc) molecules with defined Fe–N4 coordination were immobilized onto carbon nanotubes (CNTs), forming a hybrid catalyst that integrated molecular precision with heterogeneous catalytic properties. The resulting CNT-FePc filter achieved a 98.4% removal efficiency for bisphenol A (10 ppm) in a single-pass operation system, significantly outperforming the CNT/PMS system without FePc (41.6%). Additionally, the CNT-FePc/PMS system demonstrated remarkable resistance to performance inhibition by common water matrix components. Unlike typical radical-dominated PMS activation processes, mechanistic investigations confirmed that the CNT-FePc/PMS system selectively promoted singlet oxygen (1O2) generation as the primary oxidative pathway. Density functional theory (DFT) calculations revealed that PMS exhibited stronger adsorption on FePc (−3.05 eV) compared to CNT (−2.86 eV), and that FePc effectively facilitated O–O bond elongation in PMS, thereby facilitating 1O2 generation. Additionally, seed germination assays indicated a significant reduction in the biotoxicity of the treated effluents. Overall, this work presents a catalyst design strategy that merges molecular-level coordination chemistry with practical flow-through configuration, enabling rapid, selective, and environmentally benign micropollutant removal. Full article
(This article belongs to the Collection Advanced Catalysts for Wastewater Remediation Technologies)
Show Figures

Graphical abstract

27 pages, 6602 KiB  
Article
Extracellular Vesicle-Mediated Delivery of AntimiR-Conjugated Bio-Gold Nanoparticles for In Vivo Tumor Targeting
by Parastoo Pourali, Eva Neuhöferová, Behrooz Yahyaei, Milan Svoboda, Adéla Buchnarová and Veronika Benson
Pharmaceutics 2025, 17(8), 1015; https://doi.org/10.3390/pharmaceutics17081015 - 5 Aug 2025
Abstract
Background/Objectives: Extracellular vesicles (EVs) are involved in cell-to-cell communication and delivery of signaling molecules and represent an interesting approach in targeted therapy. This project focused on EV-mediated facilitation and cell-specific delivery of effector antimiR molecules carried by biologically produced gold nanoparticles (AuNPs). Methods: [...] Read more.
Background/Objectives: Extracellular vesicles (EVs) are involved in cell-to-cell communication and delivery of signaling molecules and represent an interesting approach in targeted therapy. This project focused on EV-mediated facilitation and cell-specific delivery of effector antimiR molecules carried by biologically produced gold nanoparticles (AuNPs). Methods: First, we loaded EVs derived from cancer cells 4T1 with AuNPs-antimiR. The AuNPs were also decorated with or without transferrin (Tf) molecules. We examined parental cell-specific delivery of the AuNPs-Tf-antimiR within monocultures as well as co-cultures in vitro. Subsequently, we used autologous EVs containing AuNPs-Tf-antimiR to target tumor cells in a xenograft tumor model in vivo. Efficacy of the antimir transfer was assessed by qPCR and apoptosis assessment. Results: In vitro, EVs loaded with AuNPs-antimiR were internalized only by the parental cells and the AuNPs-antimiR transfer was successful and effective only in EVs that were decorated with Tf. We achieved effective delivery of the antimiR molecule into cancer cells in vivo, which was proved by specific silencing of the target oncogenic miRNA as well as induction of cancer cells apoptosis. Conclusions: EVs represent an interesting and potent way for targeted cargo delivery and personalized medicine. On the other hand, there are various safety and efficacy challenges that remain to be addressed. Full article
(This article belongs to the Special Issue Cell-Mediated Delivery Systems)
Show Figures

Figure 1

25 pages, 3822 KiB  
Article
Comparative Transcriptome and MicroRNA Profiles of Equine Mesenchymal Stem Cells, Fibroblasts, and Their Extracellular Vesicles
by Sebastian Sawicki, Monika Bugno-Poniewierska, Jakub Żurowski, Tomasz Szmatoła, Ewelina Semik-Gurgul, Michał Bochenek, Elżbieta Karnas and Artur Gurgul
Genes 2025, 16(8), 936; https://doi.org/10.3390/genes16080936 (registering DOI) - 5 Aug 2025
Abstract
Background: Mesenchymal stem cells (MSCs) are a promising tool in regenerative medicine due to their ability to secrete paracrine factors that modulate tissue repair. Extracellular vesicles (EVs) released by MSCs contain bioactive molecules (e.g., mRNAs, miRNAs, proteins) and play a key role in [...] Read more.
Background: Mesenchymal stem cells (MSCs) are a promising tool in regenerative medicine due to their ability to secrete paracrine factors that modulate tissue repair. Extracellular vesicles (EVs) released by MSCs contain bioactive molecules (e.g., mRNAs, miRNAs, proteins) and play a key role in intercellular communication. Methods: This study compared the transcriptomic profiles (mRNA and miRNA) of equine MSCs derived from adipose tissue (AT-MSCs), bone marrow (BM-MSCs), and ovarian fibroblasts (as a differentiated control). Additionally, miRNAs present in EVs secreted by these cells were characterized using next-generation sequencing. Results: All cell types met ISCT criteria for MSCs, including CD90 expression, lack of MHC II, trilineage differentiation, and adherence. EVs were isolated using ultracentrifugation and validated with nanoparticle tracking analysis and flow cytometry (CD63, CD81). Differential expression analysis revealed distinct mRNA and miRNA profiles across cell types and their secreted EVs, correlating with tissue origin. BM-MSCs showed unique regulation of genes linked to early development and osteogenesis. EVs contained diverse RNA species, including miRNA, mRNA, lncRNA, rRNA, and others. In total, 227 and 256 mature miRNAs were detected in BM-MSCs and AT-MSCs, respectively, including two novel miRNAs per MSC type. Fibroblasts expressed 209 mature miRNAs, including one novel miRNA also found in MSCs. Compared to fibroblasts, 60 and 92 differentially expressed miRNAs were identified in AT-MSCs and BM-MSCs, respectively. Conclusions: The results indicate that MSC tissue origin influences both transcriptomic profiles and EV miRNA content, which may help to interpret their therapeutic potential. Identifying key mRNAs and miRNAs could aid in future optimizing of MSC-based therapies in horses. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

51 pages, 4099 KiB  
Review
Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration
by Seyed Saeed Madani, Yasmin Shabeer, Michael Fowler, Satyam Panchal, Hicham Chaoui, Saad Mekhilef, Shi Xue Dou and Khay See
Batteries 2025, 11(8), 298; https://doi.org/10.3390/batteries11080298 - 5 Aug 2025
Abstract
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery [...] Read more.
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery Management Systems (BMS). This review paper explores how artificial intelligence (AI) and digital twin (DT) technologies can be integrated to enable the intelligent BMS of the future. It investigates how powerful data approaches such as deep learning, ensembles, and models that rely on physics improve the accuracy of predicting state of charge (SOC), state of health (SOH), and remaining useful life (RUL). Additionally, the paper reviews progress in AI features for cooling, fast charging, fault detection, and intelligible AI models. Working together, cloud and edge computing technology with DTs means better diagnostics, predictive support, and improved management for any use of EVs, stored energy, and recycling. The review underlines recent successes in AI-driven material research, renewable battery production, and plans for used systems, along with new problems in cybersecurity, combining data and mass rollout. We spotlight important research themes, existing problems, and future drawbacks following careful analysis of different up-to-date approaches and systems. Uniting physical modeling with AI-based analytics on cloud-edge-DT platforms supports the development of tough, intelligent, and ecologically responsible batteries that line up with future mobility and wider use of renewable energy. Full article
Show Figures

Figure 1

17 pages, 909 KiB  
Review
Potential of Natural Esters as Immersion Coolant in Electric Vehicles
by Raj Shah, Cindy Huang, Gobinda Karmakar, Sevim Z. Erhan, Majher I. Sarker and Brajendra K. Sharma
Energies 2025, 18(15), 4145; https://doi.org/10.3390/en18154145 - 5 Aug 2025
Abstract
As the popularity of electric vehicles (EVs) continues to increase, the need for effective and efficient driveline lubricants and dielectric coolants has become crucial. Commercially used mineral oils or synthetic ester-based coolants, despite performing satisfactorily, are not environmentally friendly. The fatty esters of [...] Read more.
As the popularity of electric vehicles (EVs) continues to increase, the need for effective and efficient driveline lubricants and dielectric coolants has become crucial. Commercially used mineral oils or synthetic ester-based coolants, despite performing satisfactorily, are not environmentally friendly. The fatty esters of vegetable oils, after overcoming their shortcomings (like poor oxidative stability, higher viscosity, and pour point) through chemical modification, have recently been used as potential dielectric coolants in transformers. The benefits of natural esters, including a higher flash point, breakdown voltage, dielectric character, thermal conductivity, and most importantly, readily biodegradable nature, have made them a suitable and sustainable substitute for traditional coolants in electric transformers. Based on their excellent performance in transformers, research on their application as dielectric immersion coolants in modern EVs has been emerging in recent years. This review primarily highlights the beneficial aspects of natural esters performing dual functions—cooling as well as lubricating, which is necessary for “wet” e-motors in EVs—through a comparative study with the commercially used mineral and synthetic coolants. The adoption of natural fatty esters of vegetable oils as an immersion cooling fluid is a significant sustainable step for the battery thermal management system (BTMS) of modern EVs considering environmental safety protocols. Continued research and development are necessary to overcome the ongoing challenges and optimize esters for widespread use in the rapidly expanding electric vehicle market. Full article
Show Figures

Figure 1

29 pages, 2636 KiB  
Review
Review on Tribological and Vibration Aspects in Mechanical Bearings of Electric Vehicles: Effect of Bearing Current, Shaft Voltage, and Electric Discharge Material Spalling Current
by Rohan Lokhande, Sitesh Kumar Mishra, Deepak Ronanki, Piyush Shakya, Vimal Edachery and Lijesh Koottaparambil
Lubricants 2025, 13(8), 349; https://doi.org/10.3390/lubricants13080349 - 5 Aug 2025
Abstract
Electric motors play a decisive role in electric vehicles by converting electrical energy into mechanical motion across various drivetrain components. However, failures in these motors can interrupt the motor function, with approximately 40% of these failures stemming from bearing issues. Key contributors to [...] Read more.
Electric motors play a decisive role in electric vehicles by converting electrical energy into mechanical motion across various drivetrain components. However, failures in these motors can interrupt the motor function, with approximately 40% of these failures stemming from bearing issues. Key contributors to bearing degradation include shaft voltage, bearing current, and electric discharge material spalling current, especially in motors powered by inverters or variable frequency drives. This review explores the tribological and vibrational aspects of bearing currents, analyzing their mechanisms and influence on electric motor performance. It addresses the challenges faced by electric vehicles, such as high-speed operation, elevated temperatures, electrical conductivity, and energy efficiency. This study investigates the origins of bearing currents, damage linked to shaft voltage and electric discharge material spalling current, and the effects of lubricant properties on bearing functionality. Moreover, it covers various methods for measuring shaft voltage and bearing current, as well as strategies to alleviate the adverse impacts of bearing currents. This comprehensive analysis aims to shed light on the detrimental effects of bearing currents on the performance and lifespan of electric motors in electric vehicles, emphasizing the importance of tribological considerations for reliable operation and durability. The aim of this study is to address the engineering problem of bearing failure in inverter-fed EV motors by integrating electrical, tribological, and lubrication perspectives. The novelty lies in proposing a conceptual link between lubricant breakdown and damage morphology to guide mitigation strategies. The study tasks include literature review, analysis of bearing current mechanisms and diagnostics, and identification of technological trends. The findings provide insights into lubricant properties and diagnostic approaches that can support industrial solutions. Full article
(This article belongs to the Special Issue Tribology of Electric Vehicles)
Show Figures

Figure 1

9 pages, 1056 KiB  
Article
Study of High-Altitude Coplanarity Phenomena in Super-High-Energy EAS Cores with a Thick Calorimeter
by Rauf Mukhamedshin, Turlan Sadykov, Vladimir Galkin, Alia Argynova, Aidana Almenova, Dauren Muratov, Khanshaiym Makhmet, Valery Zhukov, Vladimir Ryabov, Vyacheslav Piscal, Yernar Tautayev and Zhakypbek Sadykov
Particles 2025, 8(3), 74; https://doi.org/10.3390/particles8030074 (registering DOI) - 4 Aug 2025
Abstract
A number of phenomena were observed in experiments on the study of cosmic rays at mountain altitudes and in the stratosphere at ultra-high energies; in particular, the coplanarity of the most energetic particles and local subcascades in the so-called families of γ-rays and [...] Read more.
A number of phenomena were observed in experiments on the study of cosmic rays at mountain altitudes and in the stratosphere at ultra-high energies; in particular, the coplanarity of the most energetic particles and local subcascades in the so-called families of γ-rays and hadrons in the cores of extensive air showers at E0 ≳ 2·1015 eV (√s ≳ 2 TeV). These effects are not described by theoretical models. To explain this phenomenon, it may be necessary to introduce a new process of generating the most energetic particles in the interactions of hadrons with the nuclei of atmospheric atoms. A new experimental array of cosmic ray detectors, including the ADRON-55 ionization calorimeter, has been created to study processes in EAS cores at ultra-high energies. The possibility of using it to study the coplanarity effect is being considered. Full article
(This article belongs to the Section Experimental Physics and Instrumentation)
Show Figures

Figure 1

17 pages, 2479 KiB  
Article
Spectroscopic, Thermally Induced, and Theoretical Features of Neonicotinoids’ Competition for Adsorption Sites on Y Zeolite
by Bojana Nedić Vasiljević, Maja Milojević-Rakić, Maja Ranković, Anka Jevremović, Ljubiša Ignjatović, Nemanja Gavrilov, Snežana Uskoković-Marković, Aleksandra Janošević Ležaić, Hong Wang and Danica Bajuk-Bogdanović
Molecules 2025, 30(15), 3267; https://doi.org/10.3390/molecules30153267 - 4 Aug 2025
Abstract
The competitive retention of pollutants in water tables determines their environmental fate and guides routes for their removal. To distinguish the fine differences in competitive binding at zeolite adsorption centers, a group of neonicotinoid pesticides is compared, relying on theoretical (energy of adsorption, [...] Read more.
The competitive retention of pollutants in water tables determines their environmental fate and guides routes for their removal. To distinguish the fine differences in competitive binding at zeolite adsorption centers, a group of neonicotinoid pesticides is compared, relying on theoretical (energy of adsorption, orientation, charge distribution) and experimental (spectroscopic and thermogravimetric) analyses for quick, inexpensive, and reliable screening. The MOPAC/QuantumEspresso platform was used for theoretical calculation, indicating close adsorption energy values for acetamiprid and imidacloprid (−2.2 eV), with thiamethoxam having a lower binding energy of −1.7 eV. FTIR analysis confirmed hydrogen bonding, among different dipole-dipole interactions, as the dominant adsorption mechanism. Due to their comparable binding energies, when the mixture of all three pesticides is examined, comparative adsorption capacities are evident at low concentrations, owing to the excellent adsorption performance of the FAU zeotype. At higher concentrations, competition for adsorption centers occurs, with the expected thiamethoxam binding being diminished due to the lower bonding energy. The catalytic impact of zeolite on the thermal degradation of pesticides is evidenced through TG analysis, confirming the adsorption capacities found by UV/VIS and HPLC/UV measurements. Detailed analysis of spectroscopic results in conjunction with theoretical calculation, thermal profiles, and UV detection offers a comprehensive understanding of neonicotinoids’ adsorption and can help with the design of future adsorbents. Full article
(This article belongs to the Special Issue Design, Synthesis, and Application of Zeolite Materials)
Show Figures

Graphical abstract

36 pages, 7197 KiB  
Review
Microfluidic Platforms for Ex Vivo and In Vivo Gene Therapy
by Sungjun Kwak, Hyojeong Lee, Dongjun Yu, Tae-Joon Jeon, Sun Min Kim and Hyunil Ryu
Biosensors 2025, 15(8), 504; https://doi.org/10.3390/bios15080504 - 4 Aug 2025
Abstract
Recent studies have demonstrated the clinical potential of nucleic acid therapeutics (NATs). However, their efficient and scalable delivery remains a major challenge for both ex vivo and in vivo gene therapy. Microfluidic platforms have emerged as a powerful tool for overcoming these limitations [...] Read more.
Recent studies have demonstrated the clinical potential of nucleic acid therapeutics (NATs). However, their efficient and scalable delivery remains a major challenge for both ex vivo and in vivo gene therapy. Microfluidic platforms have emerged as a powerful tool for overcoming these limitations by enabling precise intracellular delivery and consistent therapeutic carrier fabrication. This review examines microfluidic strategies for gene delivery at the cellular level. These strategies include mechanoporation, electroporation, and sonoporation. We also discuss the synthesis of lipid nanoparticles, polymeric particles, and extracellular vesicles for systemic administration. Unlike conventional approaches, which treat ex vivo and in vivo delivery as separate processes, this review focuses on integrated microfluidic systems that unify these functions. For example, genetic materials can be delivered to cells that secrete therapeutic extracellular vesicles (EVs), or engineered cells can be encapsulated within hydrogels for implantation. These strategies exemplify the convergence of gene delivery and carrier engineering. They create a single workflow that bridges cell-level manipulation and tissue-level targeting. By synthesizing recent technological advances, this review establishes integrated microfluidic platforms as being fundamental to the development of next-generation NAT systems that are scalable, programmable, and clinically translatable. Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications (3rd Edition))
Show Figures

Figure 1

15 pages, 1303 KiB  
Article
Extracellular Vesicle Release from Immune Cells in Cutaneous Leishmaniasis: Modulation by Leishmania (V.) braziliensis and Reversal by Antimonial Therapy
by Vanessa Fernandes de Abreu Costa, Thaize Quiroga Chometon, Katherine Kelda Gomes de Castro, Melissa Silva Gonçalves Ponte, Maria Inês Fernandes Pimentel, Marcelo Rosandiski Lyra, Rienk Nieuwland and Alvaro Luiz Bertho
Pathogens 2025, 14(8), 771; https://doi.org/10.3390/pathogens14080771 (registering DOI) - 4 Aug 2025
Abstract
Human cutaneous leishmaniasis (CL) caused by Leishmania (Viannia) braziliensis is a complex parasitic disease marked by dynamic host–parasite interactions and immunomodulation. Extracellular vesicles (EV) derived from immune cells have emerged as key mediators of intercellular communication and potential biomarkers in infectious diseases. In [...] Read more.
Human cutaneous leishmaniasis (CL) caused by Leishmania (Viannia) braziliensis is a complex parasitic disease marked by dynamic host–parasite interactions and immunomodulation. Extracellular vesicles (EV) derived from immune cells have emerged as key mediators of intercellular communication and potential biomarkers in infectious diseases. In this study, we combined a modified lymphocyte proliferation assay with nano-flow cytometry to quantify and phenotype EV released by CD4+, CD8+, and CD14+ cells in PBMC cultures from CL patients at different clinical stages: before treatment (PBT), during treatment (PDT), and post-treatment (PET) with antimonial. Healthy individuals (HI) were included as physiological controls. Upon stimulation with L. (V.) braziliensis antigens, we observed a distinct modulation of EV subsets. In the PBT group, CD4+ and CD14+ EV were significantly reduced, while CD8+ EV remained elevated. During PDT and PET, EV concentrations were restored across all subsets. These findings suggest that L. (V.) braziliensis selectively modulates the release of immune cell–derived EV, possibly as an immune evasion mechanism. The restoration of EV release following antimonial therapy highlights their potential as sensitive biomarkers for disease activity and treatment monitoring. This study offers novel insights into the immunoregulatory roles of EV in CL and underscores their relevance in host–parasite interactions. Full article
(This article belongs to the Special Issue Leishmania & Leishmaniasis)
Show Figures

Figure 1

23 pages, 7234 KiB  
Article
Cold Exposure Exacerbates Cardiac Dysfunction in a Model of Heart Failure with Preserved Ejection Fraction in Male and Female C57Bl/6J Mice
by Sara-Ève Thibodeau, Marie-Lune Legros, Emylie-Ann Labbé, Élisabeth Walsh-Wilkinson, Audrey Morin-Grandmont, Sarra Beji, Marie Arsenault, Alexandre Caron and Jacques Couet
Biomedicines 2025, 13(8), 1900; https://doi.org/10.3390/biomedicines13081900 - 4 Aug 2025
Abstract
Background: Standard room temperature housing (~22 °C) represents a stress for laboratory mice, resulting in an increased metabolic rate, calorie consumption, heart rate, and catecholamine levels compared to thermoneutral conditions (29–32 °C). Using a recently established two-hit model of heart failure with [...] Read more.
Background: Standard room temperature housing (~22 °C) represents a stress for laboratory mice, resulting in an increased metabolic rate, calorie consumption, heart rate, and catecholamine levels compared to thermoneutral conditions (29–32 °C). Using a recently established two-hit model of heart failure with preserved ejection fraction (HFpEF) (Angiotensin II + High-fat diet for 28 days; MHS), we investigated how housing temperature modulates cardiac remodelling and function in male and female C57Bl/6J mice. Methods: Using the MHS mouse model, we investigated cardiac remodelling and function in 8-week-old C57BL/6J mice of both sexes housed at 10 °C, 22 °C, and 30 °C for four weeks. Control mice were analyzed in parallel. Before the MHS, the animals were allowed to acclimate for a week before the MHS started. Results: Mice housed at 10 °C consumed more food and had increased fat mass compared to those at 22 °C or 30 °C. This was accompanied by increased heart weight, stroke volume, heart rate, and cardiac output. Mice housed at 22 °C and 30 °C were similar for these cardiac parameters. Following MHS, mice at 10 °C and 22 °C developed marked cardiac hypertrophy, whereas thermoneutral housing attenuated this response and reduced left atrial enlargement. Cold-exposed females showed more diastolic dysfunction after MHS (increased E’ wave, E/E’, and isovolumetric relaxation time) than those at 22 °C or 30 °C. Ejection fraction and cardiac output declined significantly at 10 °C after MHS but were preserved at 22 °C and 30 °C in females. Conclusions: Cold housing exacerbates cardiac dysfunction in mice subjected to HFpEF-inducing stress, with pronounced effects in females. In contrast, thermoneutrality limits the cardiac hypertrophic response. Full article
Show Figures

Figure 1

50 pages, 1100 KiB  
Article
The Impact of Renewable Generation Variability on Volatility and Negative Electricity Prices: Implications for the Grid Integration of EVs
by Marek Pavlík, Martin Vojtek and Kamil Ševc
World Electr. Veh. J. 2025, 16(8), 438; https://doi.org/10.3390/wevj16080438 - 4 Aug 2025
Abstract
The introduction of Renewable Energy Sources (RESs) into the electricity grid is changing the price dynamics of the electricity market and creating room for flexibility on the consumption side. This paper investigates different aspects of the interaction between the RES share, electricity spot [...] Read more.
The introduction of Renewable Energy Sources (RESs) into the electricity grid is changing the price dynamics of the electricity market and creating room for flexibility on the consumption side. This paper investigates different aspects of the interaction between the RES share, electricity spot prices, and electric vehicle (EV) charging strategies. Based on empirical data from Germany, France, and the Czech Republic for the period 2015–2025, four research hypotheses are tested using correlation and regression analysis, cost simulations, and classification algorithms. The results confirm a negative correlation between the RES share and electricity prices, as well as the effectiveness of smart charging in reducing costs. At the same time, it is shown that the occurrence of negative prices is significantly affected by a high RES share. The correlation analysis further suggests that higher production from RESs increases the potential for price optimisation through smart charging. The findings have implications for policymaking aimed at flexible consumption and efficient RES integration. Full article
Show Figures

Graphical abstract

43 pages, 2191 KiB  
Review
Photochemical Haze Formation on Titan and Uranus: A Comparative Review
by David Dubois
Int. J. Mol. Sci. 2025, 26(15), 7531; https://doi.org/10.3390/ijms26157531 (registering DOI) - 4 Aug 2025
Abstract
The formation and evolution of haze layers in planetary atmospheres play a critical role in shaping their chemical composition, radiative balance, and optical properties. In the outer solar system, the atmospheres of Titan and the giant planets exhibit a wide range of compositional [...] Read more.
The formation and evolution of haze layers in planetary atmospheres play a critical role in shaping their chemical composition, radiative balance, and optical properties. In the outer solar system, the atmospheres of Titan and the giant planets exhibit a wide range of compositional and seasonal variability, creating environments favorable for the production of complex organic molecules under low-temperature conditions. Among them, Uranus—the smallest of the ice giants—has, since Voyager 2, emerged as a compelling target for future exploration due to unanswered questions regarding the composition and structure of its atmosphere, as well as its ring system and diverse icy moon population (which includes four possible ocean worlds). Titan, as the only moon to harbor a dense atmosphere, presents some of the most complex and unique organics found in the solar system. Central to the production of these organics are chemical processes driven by low-energy photons and electrons (<50 eV), which initiate reaction pathways leading to the formation of organic species and gas phase precursors to high-molecular-weight compounds, including aerosols. These aerosols, in turn, remain susceptible to further processing by low-energy UV radiation as they are transported from the upper atmosphere to the lower stratosphere and troposphere where condensation occurs. In this review, I aim to summarize the current understanding of low-energy (<50 eV) photon- and electron-induced chemistry, drawing on decades of insights from studies of Titan, with the objective of evaluating the relevance and extent of these processes on Uranus in anticipation of future observational and in situ exploration. Full article
(This article belongs to the Special Issue Chemistry Triggered by Low-Energy Particles)
Show Figures

Figure 1

50 pages, 9033 KiB  
Article
Heat Pipe Integrated Cooling System of 4680 Lithium–Ion Battery for Electric Vehicles
by Yong-Jun Lee, Tae-Gue Park, Chan-Ho Park, Su-Jong Kim, Ji-Su Lee and Seok-Ho Rhi
Energies 2025, 18(15), 4132; https://doi.org/10.3390/en18154132 - 4 Aug 2025
Abstract
This study investigates a novel heat pipe integrated cooling system designed for thermal management of Tesla’s 4680 cylindrical lithium–ion batteries in electric vehicles (EVs). Through a comprehensive approach combining experimental analysis, 1-D AMESim simulations, and 3-D Computational Fluid Dynamics (CFD) modeling, the thermal [...] Read more.
This study investigates a novel heat pipe integrated cooling system designed for thermal management of Tesla’s 4680 cylindrical lithium–ion batteries in electric vehicles (EVs). Through a comprehensive approach combining experimental analysis, 1-D AMESim simulations, and 3-D Computational Fluid Dynamics (CFD) modeling, the thermal performance of various wick structures and working fluid filling ratios was evaluated. The experimental setup utilized a triangular prism chamber housing three surrogate heater blocks to replicate the heat generation of 4680 cells under 1C, 2C, and 3C discharge rates. Results demonstrated that a blended fabric wick with a crown-shaped design (Wick 5) at a 30–40% filling ratio achieved the lowest maximum temperature (Tmax of 47.0°C), minimal surface temperature deviation (ΔTsurface of 2.8°C), and optimal thermal resistance (Rth of 0.27°C/W) under 85 W heat input. CFD simulations validated experimental findings, confirming stable evaporation–condensation circulation at a 40% filling ratio, while identifying thermal limits at high heat loads (155 W). The proposed hybrid battery thermal management system (BTMS) offers significant potential for enhancing the performance and safety of high-energy density EV batteries. This research provides a foundation for optimizing thermal management in next-generation electric vehicles. Full article
(This article belongs to the Special Issue Optimized Energy Management Technology for Electric Vehicle)
Show Figures

Graphical abstract

Back to TopTop