Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (395)

Search Parameters:
Keywords = Dy2 complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4008 KB  
Article
SLD-YOLO11: A Topology-Reconstructed Lightweight Detector for Fine-Grained Maize–Weed Discrimination in Complex Field Environments
by Meichen Liu and Jing Gao
Agronomy 2026, 16(3), 328; https://doi.org/10.3390/agronomy16030328 - 28 Jan 2026
Abstract
Precise identification of weeds at the maize seedling stage is pivotal for implementing Site-Specific Weed Management and minimizing herbicide environmental pollution. However, the performance of existing lightweight detectors is severely bottlenecked by unstructured field environments, characterized by the “green-on-green” spectral similarity between crops [...] Read more.
Precise identification of weeds at the maize seedling stage is pivotal for implementing Site-Specific Weed Management and minimizing herbicide environmental pollution. However, the performance of existing lightweight detectors is severely bottlenecked by unstructured field environments, characterized by the “green-on-green” spectral similarity between crops and weeds, diminutive seedling targets, and complex mutual occlusion of leaves. To address these challenges, this study proposes SLD-YOLO11, a topology-reconstructed lightweight detection model tailored for complex field environments. First, to mitigate the feature loss of tiny targets, a Lossless Downsampling Topology based on Space-to-Depth Convolution (SPD-Conv) is constructed, transforming spatial information into depth channels to preserve fine-grained features. Second, a Decomposed Large Kernel Attention (D-LKA) mechanism is designed to mimic the wide receptive field of human vision. By modeling long-range spatial dependencies with decomposed large-kernel attention, it enhances discrimination under severe occlusion by leveraging global structural context. Third, the DySample operator is introduced to replace static interpolation, enabling content-aware feature flow reconstruction. Experimental results demonstrate that SLD-YOLO11 achieves an mAP@0.5 of 97.4% on a self-collected maize field dataset, significantly outperforming YOLOv8n, YOLOv10n, YOLOv11n, and mainstream lightweight variants. Notably, the model achieves Zero Inter-class Misclassification between maize and weeds, establishing high safety standards for weeding operations. To further bridge the gap between visual perception and precision operations, a Visual Weed-Crop Competition Index (VWCI) is innovatively proposed. By integrating detection bounding boxes with species-specific morphological correction coefficients, the VWCI quantifies field weed pressure with low cost and high throughput. Regression analysis reveals a high consistency (R2 = 0.70) between the automated VWCI and manual ground-truth coverage. This study not only provides a robust detector but also offers a reliable decision-making basis for real-time variable-rate spraying by intelligent weeding robots. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

20 pages, 3656 KB  
Article
Efficient Model for Detecting Steel Surface Defects Utilizing Dual-Branch Feature Enhancement and Downsampling
by Quan Lu, Minsheng Gong and Linfei Yin
Appl. Sci. 2026, 16(3), 1181; https://doi.org/10.3390/app16031181 - 23 Jan 2026
Viewed by 62
Abstract
Surface defect evaluation in steel production demands both high inference speed and accuracy for efficient production. However, existing methods face two critical challenges: (1) the diverse dimensions and irregular morphologies of surface defects reduce detection accuracy, and (2) computationally intensive feature extraction slows [...] Read more.
Surface defect evaluation in steel production demands both high inference speed and accuracy for efficient production. However, existing methods face two critical challenges: (1) the diverse dimensions and irregular morphologies of surface defects reduce detection accuracy, and (2) computationally intensive feature extraction slows inference. In response to these challenges, this study proposes an innovative network based on dual-branch feature enhancement and downsampling (DFED-Net). First, an atrous convolution and multi-scale dilated attention fusion module (AMFM) is developed, incorporating local–global feature representation. By emphasizing local details and global semantics, the module suppresses noise interference and enhances the capability of the model to separate small-object features from complex backgrounds. Additionally, a dual-branch downsampling module (DBDM) is developed to preserve the fine details related to scale that are typically lost during downsampling. The DBDM efficiently fuses semantic and detailed information, improving consistency across feature maps at different scales. A lightweight dynamic upsampling (DySample) is introduced to supplant traditional fixed methods with a learnable, adaptive approach, which retains critical feature information more flexibly while reducing redundant computation. Experimental evaluation shows a mean average precision (mAP) of 81.5% on the Northeastern University surface defect detection (NEU-DET) dataset, a 5.2% increase compared to the baseline, while maintaining a real-time inference speed of 120 FPS compared to the 118 FPS of the baseline. The proposed DFED-Net provides strong support for the development of automated visual inspection systems for detecting defects on steel surfaces. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

17 pages, 2190 KB  
Article
New Strategy Based on Click Reaction for Preparation of 3-Acyl-4-hydroxycoumarin-Modified Silica as a Perspective Material for the Separation of Rare Earth Elements
by Dzhamilya N. Konshina, Ekaterina S. Spesivaya, Ida A. Lupanova, Anton S. Mazur and Valery V. Konshin
Molecules 2026, 31(2), 369; https://doi.org/10.3390/molecules31020369 - 20 Jan 2026
Viewed by 138
Abstract
The separation of rare earth elements (REEs) with similar chemical properties remains a relevant challenge today, most often addressed using liquid–liquid and solid-phase extraction with various chelating agents. Excellent complexing agents for REEs are 1,3-diketones and their analogs. We have for the first [...] Read more.
The separation of rare earth elements (REEs) with similar chemical properties remains a relevant challenge today, most often addressed using liquid–liquid and solid-phase extraction with various chelating agents. Excellent complexing agents for REEs are 1,3-diketones and their analogs. We have for the first time proposed a method for preparing a material consisting of a covalently immobilized 3-acyl-4-hydroxycoumarin ligand on silica. For its synthesis, we employed a strategy based on the “click” reaction of 3-azidopropyl silica with a propargyl-containing coumarin–chalcone conjugate—this approach is the most tolerant and does not affect the coordinationally active fragment of the ligand. The material was characterized by thermal analysis, IR spectroscopy, and 13C NMR. The potential of the synthesized material for REE preconcentration was demonstrated at pH 5–5.5: high extraction efficiency for Gd(III), Dy(III), Er(III), Eu(III), Sm(III), and Yb(III) was observed, with fast adsorption kinetics (30 min) and extraction degrees of ~98%. Under unified conditions of static and dynamic extraction for Gd(III), Dy(III), Er(III), Eu(III), Sm(III), and Yb(III), affinity series toward the surface were obtained as a function of the distribution coefficient. It was shown that 10-fold molar excesses of Fe(III), Al(III), Cu(II), Ni(II), and Co(II) allow retention of more than 95% extraction for Dy(III) and Er(III). After adsorption of Dy(III) and Er(III), shifts in the carbonyl group absorption bands are visible in the IR spectra of the material, indicating a chelating mechanism of sorption. Additional studies are required for implementation in analytical and preparative REE separation schemes; however, preliminary data show that the material is a highly active adsorbent. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

23 pages, 40307 KB  
Article
EFPNet: An Efficient Feature Perception Network for Real-Time Detection of Small UAV Targets
by Jiahao Huang, Wei Jin, Huifeng Tao, Yunsong Feng, Yuanxin Shang, Siyu Wang and Aibing Liu
Remote Sens. 2026, 18(2), 340; https://doi.org/10.3390/rs18020340 - 20 Jan 2026
Viewed by 131
Abstract
In recent years, unmanned aerial vehicles (UAVs) have become increasingly prevalent across diverse application scenarios due to their high maneuverability, compact size, and cost-effectiveness. However, these advantages also introduce significant challenges for UAV detection in complex environments. This paper proposes an efficient feature [...] Read more.
In recent years, unmanned aerial vehicles (UAVs) have become increasingly prevalent across diverse application scenarios due to their high maneuverability, compact size, and cost-effectiveness. However, these advantages also introduce significant challenges for UAV detection in complex environments. This paper proposes an efficient feature perception network (EFPNet) for UAV detection, developed on the foundation of the RT-DETR framework. Specifically, a dual-branch HiLo-ConvMix attention (HCM-Attn) mechanism and a pyramid sparse feature transformer network (PSFT-Net) are introduced, along with the integration of a DySample dynamic upsampling module. The HCM-Attn module facilitates interaction between high- and low-frequency information, effectively suppressing background noise interference. The PSFT-Net is designed to leverage deep-level features to guide the encoding and fusion of shallow features, thereby enhancing the model’s capability to perceive UAV texture characteristics. Furthermore, the integrated DySample dynamic upsampling module ensures efficient reconstruction and restoration of feature representations. On the TIB and Drone-vs-Bird datasets, the proposed EFPNet achieves mAP50 scores of 94.1% and 98.1%, representing improvements of 3.2% and 1.9% over the baseline models, respectively. Our experimental results demonstrate the effectiveness of the proposed method for small UAV detection. Full article
Show Figures

Graphical abstract

30 pages, 6863 KB  
Article
Explainable Deep Learning and Edge Inference for Chilli Thrips Severity Classification in Strawberry Canopies
by Uchechukwu Ilodibe, Daeun Choi, Sriyanka Lahiri, Changying Li, Daniel Hofstetter and Yiannis Ampatzidis
Agriculture 2026, 16(2), 252; https://doi.org/10.3390/agriculture16020252 - 19 Jan 2026
Viewed by 168
Abstract
Traditional plant scouting is often a costly and labor-intensive task that requires experienced specialists to diagnose and manage plant stresses. Artificial intelligence (AI), particularly deep learning and computer vision, offers the potential to transform scouting by enabling rapid, non-intrusive detection and classification of [...] Read more.
Traditional plant scouting is often a costly and labor-intensive task that requires experienced specialists to diagnose and manage plant stresses. Artificial intelligence (AI), particularly deep learning and computer vision, offers the potential to transform scouting by enabling rapid, non-intrusive detection and classification of early stress symptoms from plant images. However, deep learning models are often opaque, relying on millions of parameters to extract complex nonlinear features that are not interpretable by growers. Recently, eXplainable AI (XAI) techniques have been used to identify key spatial regions that contribute to model predictions. This project explored the potential of convolutional neural networks (CNNs) for classifying the severity of chilli thrips damage in strawberry plants in Florida and employed XAI techniques to interpret model decisions and identify symptom-relevant canopy features. Four CNN architectures, YOLOv11, EfficientNetV2, Xception, and MobileNetV3, were trained and evaluated using 2353 square RGB canopy images of different sizes (256, 480, 640 and 1024 pixels) to classify symptoms as healthy, moderate, or severe. Trade-offs between image size, model parameter count, inference speed, and accuracy were examined in determining the best-performing model. The models achieved accuracies ranging from 77% to 85% with inference times of 5.7 to 262.3 ms, demonstrating strong potential for real-time pest severity estimation. Gradient-Weighted Class Activation Mapping (Grad-CAM) visualization revealed that model attention focused on biologically relevant regions such as fruits, stems, leaf edges, leaf surfaces, and dying leaves, areas commonly affected by chilli thrips. Subsequent analysis showed that model attention spread from localized regions in healthy plants to wide diffuse regions in severe plants. This alignment between model attention and expert scouting logic suggests that CNNs internalize symptom-specific visual cues and can reliably classify pest-induced plant stress. Full article
Show Figures

Graphical abstract

28 pages, 5548 KB  
Article
CVMFusion: ConvNeXtV2 and Visual Mamba Fusion for Remote Sensing Segmentation
by Zelin Wang, Li Qin, Cheng Xu, Dexi Liu, Zeyu Guo, Yu Hu and Tianyu Yang
Sensors 2026, 26(2), 640; https://doi.org/10.3390/s26020640 - 18 Jan 2026
Viewed by 140
Abstract
In recent years, extracting coastlines from high-resolution remote sensing imagery has proven difficult due to complex details and variable targets. Current methods struggle with the fact that CNNs cannot model long-range dependencies, while Transformers incur high computational costs. To address these issues, we [...] Read more.
In recent years, extracting coastlines from high-resolution remote sensing imagery has proven difficult due to complex details and variable targets. Current methods struggle with the fact that CNNs cannot model long-range dependencies, while Transformers incur high computational costs. To address these issues, we propose CVMFusion: a land–sea segmentation network based on a U-shaped encoder–decoder structure, whereby both the encoder and decoder are hierarchically organized. This architecture integrates the local feature extraction capabilities of CNNs with the global interaction efficiency of Mamba. The encoder uses parallel ConvNeXtV2 and VMamba branches to capture fine-grained details and long-range context, respectively. This network incorporates Dynamic Multi-Scale Attention (DyMSA) and Dynamic Weighted Cross-Attention (DyWCA) modules, which replace the traditional concatenation with an adaptive fusion mechanism to effectively fuse the features from the dual-branch encoder and utilize skip connections to complete the fusion between the encoder and decoder. Experiments on two public datasets demonstrate that CVMFusion attained MIoU accuracies of 98.05% and 96.28%, outperforming existing methods. It performs particularly well in segmenting small objects and intricate boundary regions. Full article
(This article belongs to the Special Issue Smart Remote Sensing Images Processing for Sensor-Based Applications)
Show Figures

Figure 1

28 pages, 3390 KB  
Article
SDC-YOLOv8: An Improved Algorithm for Road Defect Detection Through Attention-Enhanced Feature Learning and Adaptive Feature Reconstruction
by Hao Yang, Yulong Song, Yue Liang, Enhao Tang and Danyang Cao
Sensors 2026, 26(2), 609; https://doi.org/10.3390/s26020609 - 16 Jan 2026
Viewed by 263
Abstract
Road defect detection is essential for timely road damage repair and traffic safety assurance. However, existing object detection algorithms suffer from insufficient accuracy in detecting small road surface defects and are prone to missed detections and false alarms under complex lighting and background [...] Read more.
Road defect detection is essential for timely road damage repair and traffic safety assurance. However, existing object detection algorithms suffer from insufficient accuracy in detecting small road surface defects and are prone to missed detections and false alarms under complex lighting and background conditions. To address these challenges, this study proposes SDC-YOLOv8, an improved YOLOv8-based algorithm for road defect detection that employs attention-enhanced feature learning and adaptive feature reconstruction. The model incorporates three key innovations: (1) an SPPF-LSKA module that integrates Fast Spatial Pyramid Pooling with Large Separable Kernel Attention to enhance multi-scale feature representation and irregular defect modeling capabilities; (2) DySample dynamic upsampling that replaces conventional interpolation methods for adaptive feature reconstruction with reduced computational cost; and (3) a Coordinate Attention module strategically inserted to improve spatial localization accuracy under complex conditions. Comprehensive experiments on a public pothole dataset demonstrate that SDC-YOLOv8 achieves 78.0% mAP@0.5, 81.0% Precision, and 70.7% Recall while maintaining real-time performance at 85 FPS. Compared to the baseline YOLOv8n model, the proposed method improves mAP@0.5 by 2.0 percentage points, Precision by 3.3 percentage points, and Recall by 1.8 percentage points, yielding an F1 score of 75.5%. These results demonstrate that SDC-YOLOv8 effectively enhances small-target detection accuracy while preserving real-time processing capability, offering a practical and efficient solution for intelligent road defect detection applications. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

23 pages, 3847 KB  
Article
DRPU-YOLO11: A Multi-Scale Model for Detecting Rice Panicles in UAV Images with Complex Infield Background
by Dongchen Huang, Zhipeng Chen, Jiajun Zhuang, Ge Song, Huasheng Huang, Feilong Li, Guogang Huang and Changyu Liu
Agriculture 2026, 16(2), 234; https://doi.org/10.3390/agriculture16020234 - 16 Jan 2026
Viewed by 1596
Abstract
In the field of precision agriculture, accurately detecting rice panicles is crucial for monitoring rice growth and managing rice production. To address the challenges posed by complex field backgrounds, including variety differences, variations across growth stages, background interference, and occlusion due to dense [...] Read more.
In the field of precision agriculture, accurately detecting rice panicles is crucial for monitoring rice growth and managing rice production. To address the challenges posed by complex field backgrounds, including variety differences, variations across growth stages, background interference, and occlusion due to dense distribution, this study develops an improved YOLO11-based rice panicle detection model, termed DRPU-YOLO11. The model incorporates a task-oriented CSP-PGMA module in the backbone to enhance multi-scale feature extraction and provide richer representations for downstream detection. In the neck network, DySample and CGDown are adopted to strengthen global contextual feature aggregation and suppress background interference for small targets. Furthermore, fine-grained P2 level information is integrated with higher-level features through a cross-scale fusion module (CSP-ONMK) to improve detection robustness in dense and occluded scenes. In addition, the PowerTAL strategy adapts quality-aware label assignment to emphasize high-quality predictions during training. The experimental results based on a self-constructed dataset demonstrate that DRPU-YOLO11 significantly outperforms baseline models in rice panicle detection under complex field environments, achieving an accuracy of 82.5%. Compared with the baseline model YOLO11 and RT-DETR, the mAP50 increases by 2.4% and 5.0%, respectively. These results indicate that the proposed task-driven design provides a practical and high-precision solution for rice panicle detection, with potential applications in rice growth monitoring and yield estimation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

24 pages, 6383 KB  
Article
FF-Mamba-YOLO: An SSM-Based Benchmark for Forest Fire Detection in UAV Remote Sensing Images
by Binhua Guo, Dinghui Liu, Zhou Shen and Tiebin Wang
J. Imaging 2026, 12(1), 43; https://doi.org/10.3390/jimaging12010043 - 13 Jan 2026
Viewed by 243
Abstract
Timely and accurate detection of forest fires through unmanned aerial vehicle (UAV) remote sensing target detection technology is of paramount importance. However, multiscale targets and complex environmental interference in UAV remote sensing images pose significant challenges during detection tasks. To address these obstacles, [...] Read more.
Timely and accurate detection of forest fires through unmanned aerial vehicle (UAV) remote sensing target detection technology is of paramount importance. However, multiscale targets and complex environmental interference in UAV remote sensing images pose significant challenges during detection tasks. To address these obstacles, this paper presents FF-Mamba-YOLO, a novel framework based on the principles of Mamba and YOLO (You Only Look Once) that leverages innovative modules and architectures to overcome these limitations. Specifically, we introduce MFEBlock and MFFBlock based on state space models (SSMs) in the backbone and neck parts of the network, respectively, enabling the model to effectively capture global dependencies. Second, we construct CFEBlock, a module that performs feature enhancement before SSM processing, improving local feature processing capabilities. Furthermore, we propose MGBlock, which adopts a dynamic gating mechanism, enhancing the model’s adaptive processing capabilities and robustness. Finally, we enhance the structure of Path Aggregation Feature Pyramid Network (PAFPN) to improve feature fusion quality and introduce DySample to enhance image resolution without significantly increasing computational costs. Experimental results on our self-constructed forest fire image dataset demonstrate that the model achieves 67.4% mAP@50, 36.3% mAP@50:95, and 64.8% precision, outperforming previous state-of-the-art methods. These results highlight the potential of FF-Mamba-YOLO in forest fire monitoring. Full article
(This article belongs to the Section Computer Vision and Pattern Recognition)
Show Figures

Figure 1

8 pages, 1603 KB  
Case Report
From MAiD Referral to Targeted Therapy Success: A Case of BRAF-Mutated Anaplastic Thyroid Cancer
by Brett Stubbert, Paul Stewart, Eric Winquist, Matthew Cecchini and Claire Browne
Reports 2026, 9(1), 10; https://doi.org/10.3390/reports9010010 - 28 Dec 2025
Viewed by 323
Abstract
Background and Clinical Significance: Anaplastic thyroid cancer (ATC) is a rare and aggressive malignancy with a poor prognosis, where median survival typically ranges from 4 to 10 months. Advances in genetic profiling, particularly the identification of BRAF mutations, offer new opportunities for [...] Read more.
Background and Clinical Significance: Anaplastic thyroid cancer (ATC) is a rare and aggressive malignancy with a poor prognosis, where median survival typically ranges from 4 to 10 months. Advances in genetic profiling, particularly the identification of BRAF mutations, offer new opportunities for targeted therapy. Case Presentation: This case report details the journey of a woman in her late 50s diagnosed with symptomatic ATC. Initial immunohistochemistry (IHC) testing for BRAF mutations returned negative results, leaving the patient with limited treatment options and prompting her to pursue medical assistance in dying (MAiD). However, next-generation sequencing (NGS) confirmed a V600EBRAF mutation, and a basis for targeted therapy. The patient began treatment with dabrafenib-trametinib, followed by pembrolizumab as second-line therapy, ultimately extending her life by nearly seven months. Conclusions: This case underscores the importance of rapid and comprehensive diagnostic approaches, particularly the higher sensitivity of NGS over IHC for detecting BRAF mutations. The complexities of accessing newer therapies in Canada’s single-payer healthcare system are also emphasized. The utilization of newer rapid diagnostic technologies can have a direct impact on directing treatment for ATC and other aggressive malignancies. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

27 pages, 5048 KB  
Article
MCB-RT-DETR: A Real-Time Vessel Detection Method for UAV Maritime Operations
by Fang Liu, Yongpeng Wei, Aruhan Yan, Tiezhu Cao and Xinghai Xie
Drones 2026, 10(1), 13; https://doi.org/10.3390/drones10010013 - 27 Dec 2025
Viewed by 444
Abstract
Maritime UAV operations face challenges in real-time ship detection. Complex ocean backgrounds, drastic scale variations, and prevalent distant small targets create difficulties. We propose MCB-RT-DETR, a real-time detection transformer enhanced by multi-component boosting. This method builds upon the RT-DETR architecture. It significantly improves [...] Read more.
Maritime UAV operations face challenges in real-time ship detection. Complex ocean backgrounds, drastic scale variations, and prevalent distant small targets create difficulties. We propose MCB-RT-DETR, a real-time detection transformer enhanced by multi-component boosting. This method builds upon the RT-DETR architecture. It significantly improves detection under wave interference, lighting changes, and scale differences. Key innovations address these challenges. An Orthogonal Channel Attention (Ortho) mechanism preserves high-frequency edge details in the backbone network. Receptive Field Attention Convolution (RFAConv) enhances robustness against background clutter. A Small Object Detail Enhancement Pyramid (SOD-EPN) strengthens small-target representation. SOD-EPN combines SPDConv with multi-scale CSP-OmniKernel transformations. The neck network integrates ultra-lightweight DySample upsampling. This enables content-aware sampling for precise multi-scale localization. The method maintains high computational efficiency. Experiments on the SeaDronesSee dataset show significant improvements. MCB-RT-DETR achieves 82.9% mAP@0.5 and 49.7% mAP@0.5:0.95. These correspond to improvements of 4.5% and 3.4% relative to the baseline model. Inference speed maintains 50 FPS for real-time processing. The outstanding performance in cross-dataset tests further validates the algorithm’s strong generalization capability on DIOR remote sensing images and VisDrone2019 aerial scenes. The method provides a reliable visual perception solution for autonomous maritime UAV operations. Full article
Show Figures

Figure 1

32 pages, 5130 KB  
Article
MDB-YOLO: A Lightweight, Multi-Dimensional Bionic YOLO for Real-Time Detection of Incomplete Taro Peeling
by Liang Yu, Xingcan Feng, Yuze Zeng, Weili Guo, Xingda Yang, Xiaochen Zhang, Yong Tan, Changjiang Sun, Xiaoping Lu and Hengyi Sun
Electronics 2026, 15(1), 97; https://doi.org/10.3390/electronics15010097 - 24 Dec 2025
Viewed by 465
Abstract
The automation of quality control in agricultural food processing, particularly the detection of incomplete peeling in taro, constitutes a critical frontier for ensuring food safety and optimizing production efficiency in the Industry 4.0 era. However, this domain is fraught with significant technical challenges, [...] Read more.
The automation of quality control in agricultural food processing, particularly the detection of incomplete peeling in taro, constitutes a critical frontier for ensuring food safety and optimizing production efficiency in the Industry 4.0 era. However, this domain is fraught with significant technical challenges, primarily stemming from the inherent visual characteristics of residual peel: extremely minute scales relative to the vegetable body, highly irregular morphological variations, and the dense occlusion of objects on industrial conveyor belts. To address these persistent impediments, this study introduces a comprehensive solution comprising a specialized dataset and a novel detection architecture. We established the Taro Peel Industrial Dataset (TPID), a rigorously annotated collection of 18,341 high-density instances reflecting real-world production conditions. Building upon this foundation, we propose MDB-YOLO, a lightweight, multi-dimensional bionic detection model evolved from the YOLOv8s architecture. The MDB-YOLO framework integrates a synergistic set of innovations designed to resolve specific detection bottlenecks. To mitigate the conflict between background texture interference and tiny target detection, we integrated the C2f_EMA module with a Wise-IoU (WIoU) loss function, a combination that significantly enhances feature response to low-contrast residues while reducing the penalty on low-quality anchor boxes through a dynamic non-monotonic focusing mechanism. To effectively manage irregular peel shapes, a dynamic feature processing chain was constructed utilizing DySample for morphology-aware upsampling, BiFPN_Concat2 for weighted multi-scale fusion, and ODConv2d for geometric preservation. Furthermore, to address the issue of missed detections caused by dense occlusion in industrial stacking scenarios, Soft-NMS was implemented to replace traditional greedy suppression mechanisms. Experimental validation demonstrates the superiority of the proposed framework. MDB-YOLO achieves a mean Average Precision (mAP50-95) of 69.7% and a Recall of 88.0%, significantly outperforming the baseline YOLOv8s and advanced transformer-based models like RT-DETR-L. Crucially, the model maintains high operational efficiency, achieving an inference speed of 1.1 ms on an NVIDIA A100 and reaching 27 FPS on an NVIDIA Jetson Xavier NX using INT8 quantization. These findings confirm that MDB-YOLO provides a robust, high-precision, and cost-effective solution for real-time quality control in agricultural food processing, marking a significant advancement in the application of computer vision to complex biological targets. Full article
(This article belongs to the Special Issue Advancements in Edge and Cloud Computing for Industrial IoT)
Show Figures

Figure 1

24 pages, 8304 KB  
Article
STAIR-DETR: A Synergistic Transformer Integrating Statistical Attention and Multi-Scale Dynamics for UAV Small Object Detection
by Linna Hu, Penghao Xue, Bin Guo, Yiwen Chen, Weixian Zha and Jiya Tian
Sensors 2025, 25(24), 7681; https://doi.org/10.3390/s25247681 - 18 Dec 2025
Viewed by 504
Abstract
Detecting small objects in unmanned aerial vehicle (UAV) imagery remains a challenging task due to the limited target scale, cluttered backgrounds, severe occlusion, and motion blur commonly observed in dynamic aerial environments. This study presents STAIR-DETR, a real-time synergistic detection framework derived from [...] Read more.
Detecting small objects in unmanned aerial vehicle (UAV) imagery remains a challenging task due to the limited target scale, cluttered backgrounds, severe occlusion, and motion blur commonly observed in dynamic aerial environments. This study presents STAIR-DETR, a real-time synergistic detection framework derived from RT-DETR, featuring comprehensive enhancements in feature extraction, resolution transformation, and detection head design. A Statistical Feature Attention (SFA) module is incorporated into the neck to replace the original AIFI, enabling token-level statistical modeling that strengthens fine-grained feature representation while effectively suppressing background interference. The backbone is reinforced with a Diverse Semantic Enhancement Block (DSEB), which employs multi-branch pathways and dynamic convolution to enrich semantic expressiveness without sacrificing spatial precision. To mitigate information loss during scale transformation, an Adaptive Scale Transformation Operator (ASTO) is proposed by integrating Context-Guided Downsampling (CGD) and Dynamic Sampling (DySample), achieving context-aware compression and content-adaptive reconstruction across resolutions. In addition, a high-resolution P2 detection head is introduced to leverage shallow-layer features for accurate classification and localization of extremely small targets. Extensive experiments conducted on the VisDrone2019 dataset demonstrate that STAIR-DETR attains 41.7% mAP@50 and 23.4% mAP@50:95, outperforming contemporary state-of-the-art (SOTA) detectors while maintaining real-time inference efficiency. These results confirm the effectiveness and robustness of STAIR-DETR for precise small object detection in complex UAV-based imaging scenarios. Full article
(This article belongs to the Special Issue Dynamics and Control System Design for Robotics)
Show Figures

Figure 1

22 pages, 5334 KB  
Article
Two-Stage Multi-Label Detection Method for Railway Fasteners Based on Type-Guided Expert Model
by Defang Lv, Jianjun Meng, Gaoyang Meng, Yanni Shen, Liqing Yao and Gengqi Liu
Appl. Sci. 2025, 15(24), 13093; https://doi.org/10.3390/app152413093 - 12 Dec 2025
Cited by 1 | Viewed by 301
Abstract
Railway track fasteners, serving as critical connecting components, have a reliability that directly impacts railway operational safety. To address the performance bottlenecks of existing detection methods in handling complex scenarios with diverse fastener types and co-occurring multiple defects, this paper proposes a Type-Guided [...] Read more.
Railway track fasteners, serving as critical connecting components, have a reliability that directly impacts railway operational safety. To address the performance bottlenecks of existing detection methods in handling complex scenarios with diverse fastener types and co-occurring multiple defects, this paper proposes a Type-Guided Expert Model-based Fastener Detection and Diagnosis framework (TGEM-FDD) based on You Only Look Once (YOLO) v8. This framework follows a “type-identification-first, defect-diagnosis-second” paradigm, decoupling the complex task: the first stage employs an enhanced YOLOv8s with Deepstar, SPPF-attention, and DySample (YOLOv8s-DSD) detector integrating Deepstar Block, Spatial Pyramid Pooling Fast with Attention (SPPF-Attention), and Dynamic Sample (DySample) modules for precise fastener localization and type identification; the second stage dynamically invokes a specialized multi-label classification “expert model” based on the identified type to achieve accurate diagnosis of multiple defects. This study constructs a multi-label fastener image dataset containing 4800 samples to support model training and validation. Experimental results demonstrate that the proposed YOLOv8s-DSD model achieves a remarkable 98.5% mean average precision at an Intersection over Union threshold of 0.5 (mAP@0.5) in the first-stage task, outperforming the original YOLOv8s baseline and several mainstream detection models. In end-to-end system performance evaluation, the TGEM-FDD framework attains a comprehensive Task mean average precision (Task mAP) of 88.1% and a macro-average F1 score for defect diagnosis of 86.5%, significantly surpassing unified single-model detection and multi-task separate-head methods. This effectively validates the superiority of the proposed approach in tackling fastener type diversity and defect multi-label complexity, offering a viable solution for fine-grained component management in complex industrial scenarios. Full article
Show Figures

Figure 1

20 pages, 2793 KB  
Article
Spectral-Attention Cooperative Encoding with Dynamic Activation for Remote Sensing Change Detection
by Chuanzhen Rong, Yongxing Jia, Shenghui Zhou and Huali Wang
Electronics 2025, 14(24), 4821; https://doi.org/10.3390/electronics14244821 - 7 Dec 2025
Viewed by 326
Abstract
Change detection (CD) in high-resolution remote sensing imagery is vital for resource monitoring and disaster assessment but faces challenges such as spatiotemporal heterogeneity, spectral variability, and computational inefficiency. This paper proposes an efficient CD method that hybridizes Convolutional Neural Networks (CNNs) and Transformers. [...] Read more.
Change detection (CD) in high-resolution remote sensing imagery is vital for resource monitoring and disaster assessment but faces challenges such as spatiotemporal heterogeneity, spectral variability, and computational inefficiency. This paper proposes an efficient CD method that hybridizes Convolutional Neural Networks (CNNs) and Transformers. A CNN backbone first extracts multi-level features from bi-temporal images. A Semantic Token Generator then compresses these features into compact, low-dimensional semantic tokens, reducing computational load. The core of our model is a novel cooperative encoder integrating a Spectral layer and an Attention layer. The Spectral layer enhances sensitivity to high-frequency components like edges and textures in the Fourier domain, while the Attention layer captures long-range semantic dependencies via self-attention. Furthermore, we introduce a Dynamic Tanh (DyT) module to replace conventional normalization layers, using learnable parameters to adaptively adjust activation thresholds, thereby improving training stability and computational efficiency. Comprehensive evaluations on the LEVIR-CD, WHU-CD, and DSIFN-CD benchmarks demonstrate that our method maintains high accuracy while reducing complexity, offering a practical solution for real-time CD in resource-limited environments. Full article
Show Figures

Figure 1

Back to TopTop