From MAiD Referral to Targeted Therapy Success: A Case of BRAF-Mutated Anaplastic Thyroid Cancer
Abstract
1. Introduction and Clinical Significance
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ATC | Anaplastic thyroid cancer |
| CT | Computed tomography |
| FNA | Fine needle aspiration |
| IHC | Immunohistochemistry |
| MAiD | Medical assistance in dying |
| NGS | Next-generation sequencing |
| PD-L1 | Programmed death ligand 1 |
| PFS | Progression-free survival |
| TKI | Tyrosine kinase inhibitor |
References
- Priantti, J.N.; Rodrigues, N.M.V.; de Moraes, F.C.A.; da Costa, A.G.; Jezini, D.L.; Heckmann, M.I.O. Efficacy and Safety of BRAF/MEK Inhibitors in BRAFV600E-Mutated Anaplastic Thyroid Cancer: A Systematic Review and Meta-Analysis. Endocrine 2024, 86, 284–292. [Google Scholar] [CrossRef]
- Jannin, A.; Escande, A.; Al Ghuzlan, A.; Blanchard, P.; Hartl, D.; Chevalier, B.; Deschamps, F.; Lamartina, L.; Lacroix, L.; Dupuy, C.; et al. Anaplastic Thyroid Carcinoma: An Update. Cancers 2022, 14, 1061. [Google Scholar] [CrossRef]
- Lang, M.; Longerich, T.; Anamaterou, C. Targeted Therapy with Vemurafenib in BRAF(V600E)-Mutated Anaplastic Thyroid Cancer. Thyroid. Res. 2023, 16, 5. [Google Scholar] [CrossRef]
- Musonova, A.K.; Nazarov, V.D.; Sidorenko, D.V.; Musaelyan, A.A.; Alekseeva, E.A.; Kuzovenkova, D.A.; Kozorezova, E.S.; Vorobev, S.L.; Orlov, S.V.; Mazing, A.V.; et al. Molecular genetics features of anaplastic thyroid carcinoma. Russ. J. Oncol. 2022, 27, 59–70. [Google Scholar] [CrossRef]
- Ma, L.X.; Espin-Garcia, O.; Bedard, P.L.; Stockley, T.; Prince, R.; Mete, O.; Krzyzanowska, M.K. Clinical Application of Next-Generation Sequencing in Advanced Thyroid Cancers. Thyroid 2022, 32, 657–666. [Google Scholar] [CrossRef]
- Bible, K.C.; Kebebew, E.; Brierley, J.; Brito, J.P.; Cabanillas, M.E.; Clark, T.J.; Di Cristofano, A.; Foote, R.; Giordano, T.; Kasperbauer, J.; et al. 2021 American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer. Thyroid 2021, 31, 337–386. [Google Scholar] [CrossRef]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Schellens, J.H.M.; Soria, J.C.; Wen, P.Y.; Zielinski, C.; Cabanillas, M.E.; Urbanowitz, G.; et al. Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600–Mutant Anaplastic Thyroid Cancer. J. Clin. Oncol. 2018, 36, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, A.S.; Rahman, M.; Khan, S.A. Promising Therapeutic Targets for Recurrent/Metastatic Anaplastic Thyroid Cancer. Curr. Treat. Options Oncol. 2024, 25, 869–884. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, K.; Aggeler, B.; Palting, J.; McKelvie, P.; Ruszkiewicz, A.; Waring, P. Immunohistochemistry with the Anti-BRAF V600E (VE1) Antibody: Impact of Pre-Analytical Conditions and Concordance with DNA Sequencing in Colorectal and Papillary Thyroid Carcinoma. Pathology 2014, 46, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Paek, S.H.; Kim, B.S.; Kang, K.H.; Kim, H.S. False-Negative BRAF V600E Mutation Results on Fine-Needle Aspiration Cytology of Papillary Thyroid Carcinoma. World J. Surg. Oncol. 2017, 15, 202. [Google Scholar] [CrossRef] [PubMed]
- Singarayer, R.; Mete, O.; Perrier, L.; Thabane, L.; Asa, S.L.; Van Uum, S.; Ezzat, S.; Goldstein, D.P.; Sawka, A.M. A Systematic Review and Meta-Analysis of the Diagnostic Performance of BRAF V600E Immunohistochemistry in Thyroid Histopathology. Endocr. Pathol. 2019, 30, 201–218. [Google Scholar] [CrossRef]
- Behnagh, A.K.; Eghbali, M.; Abdolmaleki, F.; Ghadikolaei, O.A.; Asl, P.R.; Afsharpad, M.; Cheraghi, S.; Honardoost, M. An Overview on Prevalence and Detection Approaches of BRAF V600E Mutation in Anaplastic Thyroid Carcinoma: A Systematic Review and Meta-Analysis. Iran. J. Public Health 2024, 53, 1496–1507. [Google Scholar] [CrossRef]
- Rushton, S.; Burghel, G.; Wallace, A.; Nonaka, D. Immunohistochemical Detection of BRAF V600E Mutation Status in Anaplastic Thyroid Carcinoma. Histopathology 2016, 69, 524–526. [Google Scholar] [CrossRef]
- Nikiforova, M.N.; Wald, A.I.; Roy, S.; Durso, M.B.; Nikiforov, Y.E. Targeted Next-Generation Sequencing Panel (ThyroSeq) for Detection of Mutations in Thyroid Cancer. J. Clin. Endocrinol. Metab. 2013, 98, E1852–E1860. [Google Scholar] [CrossRef]
- Ihle, M.A.; Fassunke, J.; König, K.; Grünewald, I.; Schlaak, M.; Kreuzberg, N.; Tietze, L.; Schildhaus, H.-U.; Büttner, R.; Merkelbach-Bruse, S. Comparison of High Resolution Melting Analysis, Pyrosequencing, next Generation Sequencing and Immunohistochemistry to Conventional Sanger Sequencing for the Detection of p.V600E and Non-p.V600E BRAF Mutations. BMC Cancer 2014, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- Melchior, L.; Grauslund, M.; Bellosillo, B.; Montagut, C.; Torres, E.; Moragón, E.; Micalessi, I.; Frans, J.; Noten, V.; Bourgain, C.; et al. Multi-Center Evaluation of the Novel Fully-Automated PCR-Based IdyllaTM BRAF Mutation Test on Formalin-Fixed Paraffin-Embedded Tissue of Malignant Melanoma. Exp. Mol. Pathol. 2015, 99, 485–491. [Google Scholar] [CrossRef]
- Yeo, M.-K.; Jung, M.-K.; Lee, S.-Y.; Lee, Y.-M.; Hur, G.M.; Kim, J.-M. The Usefulness of a Novel Fully Automated PCR-Based Idylla Test for Detection of the BRAF V600E Mutation in Thyroid Tissue: Comparison with PNA-Clamping PCR, Real-Time PCR and Pyrosequencing. J. Clin. Pathol. 2017, 70, 260–265. [Google Scholar] [CrossRef]
- Janku, F.; Claes, B.; Huang, H.J.; Falchook, G.S.; Devogelaere, B.; Kockx, M.; Bempt, I.V.; Reijans, M.; Naing, A.; Fu, S.; et al. BRAF Mutation Testing with a Rapid, Fully Integrated Molecular Diagnostics System. Oncotarget 2015, 6, 26886–26894. [Google Scholar] [CrossRef] [PubMed]
- Vallée, A.; Denis-Musquer, M.; Herbreteau, G.; Théoleyre, S.; Bossard, C.; Denis, M.G. Prospective Evaluation of Two Screening Methods for Molecular Testing of Metastatic Melanoma: Diagnostic Performance of BRAF V600E Immunohistochemistry and of a NRAS-BRAF Fully Automated Real-Time PCR-Based Assay. PLoS ONE 2019, 14, e0221123. [Google Scholar] [CrossRef]
- Van Haele, M.; Vander Borght, S.; Ceulemans, A.; Wieërs, M.; Metsu, S.; Sagaert, X.; Weynand, B. Rapid Clinical Mutational Testing of KRAS, BRAF and EGFR: A Prospective Comparative Analysis of the Idylla Technique with High-Throughput next-Generation Sequencing. J. Clin. Pathol. 2020, 73, 35–41. [Google Scholar] [CrossRef]
- Bisschop, C.; ter Elst, A.; Bosman, L.J.; Platteel, I.; Jalving, M.; van den Berg, A.; Diepstra, A.; van Hemel, B.; Diercks, G.F.H.; Hospers, G.A.P.; et al. Rapid BRAF Mutation Tests in Patients with Advanced Melanoma: Comparison of Immunohistochemistry, Droplet Digital PCR, and the Idylla Mutation Platform. Melanoma Res. 2018, 28, 96. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Wang, J.R.; Wang, Y.; Iyer, P.; Cote, G.J.; Busaidy, N.L.; Dadu, R.; Zafereo, M.; Williams, M.D.; Ferrarotto, R.; et al. Clinical Utility of Circulating Cell-Free DNA Mutations in Anaplastic Thyroid Carcinoma. Thyroid 2021, 31, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- Zeyghami, W.; Hansen, M.-L.U.; Jakobsen, K.K.; Groenhøj, C.; Feldt-Rasmussen, U.; von Buchwald, C.; Hahn, C.H. Liquid Biopsies in Thyroid Cancers: A Systematic Review and Meta-Analysis. Endocr. Relat. Cancer 2023, 30, e230002. [Google Scholar] [CrossRef]
- MacPhail, C.; Snow, S. Not All Canadian Cancer Patients Are Equal-Disparities in Public Cancer Drug Funding across Canada. Curr. Oncol. 2022, 29, 2064–2072. [Google Scholar] [CrossRef] [PubMed]
- Lamb-Palmer, D.; Loschmann, C.; Henricks, P.; Shen, J.; Dowson, J.P.; Mohideen, S. Uncovering the Hidden Costs of Take-Home Cancer Drugs; PDCI Market Access; McKesson Canada: Toronto, ON, Canada, 2021. [Google Scholar]
- Canada’s Drug Agency Clinical Review Report for Dabrafenib Plus Trametinib (Non-Sponsored Review) (Draft): Low-Grade Glioma; Canada’s Drug Agency: Ottawa, ON, Canada, 2025; p. 31.
- Sehdev, S.R.; Rawson, N.S.B.; Aseyev, O.I.; Buick, C.J.; Butler, M.O.; Edwards, S.; Gill, S.; Gotfrit, J.M.; Hsia, C.C.; Juergens, R.A.; et al. Access to Oncology Medicines in Canada: Consensus Forum for Recommendations for Improvement. Curr. Oncol. 2024, 31, 1803–1816. [Google Scholar] [CrossRef]
- Hamidi, S.; Iyer, P.C.; Dadu, R.; Gule-Monroe, M.K.; Maniakas, A.; Zafereo, M.E.; Wang, J.R.; Busaidy, N.L.; Cabanillas, M.E. Checkpoint Inhibition in Addition to Dabrafenib/Trametinib for BRAFV600E-Mutated Anaplastic Thyroid Carcinoma. Thyroid 2024, 34, 336–346. [Google Scholar] [CrossRef]
- Hatashima, A.; Archambeau, B.; Armbruster, H.; Xu, M.; Shah, M.; Konda, B.; Lott Limbach, A.; Sukrithan, V. An Evaluation of Clinical Efficacy of Immune Checkpoint Inhibitors for Patients with Anaplastic Thyroid Carcinoma. Thyroid 2022, 32, 926–936. [Google Scholar] [CrossRef]
- Capdevila, J.; Wirth, L.J.; Ernst, T.; Ponce Aix, S.; Lin, C.-C.; Ramlau, R.; Butler, M.O.; Delord, J.-P.; Gelderblom, H.; Ascierto, P.A.; et al. PD-1 Blockade in Anaplastic Thyroid Carcinoma. J. Clin. Oncol. 2020, 38, 2620–2627. [Google Scholar] [CrossRef]
- Dierks, C.; Seufert, J.; Aumann, K.; Ruf, J.; Klein, C.; Kiefer, S.; Rassner, M.; Boerries, M.; Zielke, A.; la Rosee, P.; et al. Combination of Lenvatinib and Pembrolizumab Is an Effective Treatment Option for Anaplastic and Poorly Differentiated Thyroid Carcinoma. Thyroid 2021, 31, 1076–1085. [Google Scholar] [CrossRef]
- Dierks, C.; Ruf, J.; Seufert, J.; Kreissl, M.; Klein, C.; Spitzweg, C.; Kroiss, M.; Thomusch, O.; Lorenz, K.; Zielke, A.; et al. 1646MO Phase II ATLEP Trial: Final Results for Lenvatinib/Pembrolizumab in Metastasized Anaplastic and Poorly Differentiated Thyroid Carcinoma. Ann. Oncol. 2022, 33, S1295. [Google Scholar] [CrossRef]
- Filetti, S.; Durante, C.; Hartl, D.; Leboulleux, S.; Locati, L.D.; Newbold, K.; Papotti, M.G.; Berruti, A.; ESMO Guidelines Committee. Thyroid Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up†. Ann. Oncol. 2019, 30, 1856–1883. [Google Scholar] [CrossRef] [PubMed]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Stubbert, B.; Stewart, P.; Winquist, E.; Cecchini, M.; Browne, C. From MAiD Referral to Targeted Therapy Success: A Case of BRAF-Mutated Anaplastic Thyroid Cancer. Reports 2026, 9, 10. https://doi.org/10.3390/reports9010010
Stubbert B, Stewart P, Winquist E, Cecchini M, Browne C. From MAiD Referral to Targeted Therapy Success: A Case of BRAF-Mutated Anaplastic Thyroid Cancer. Reports. 2026; 9(1):10. https://doi.org/10.3390/reports9010010
Chicago/Turabian StyleStubbert, Brett, Paul Stewart, Eric Winquist, Matthew Cecchini, and Claire Browne. 2026. "From MAiD Referral to Targeted Therapy Success: A Case of BRAF-Mutated Anaplastic Thyroid Cancer" Reports 9, no. 1: 10. https://doi.org/10.3390/reports9010010
APA StyleStubbert, B., Stewart, P., Winquist, E., Cecchini, M., & Browne, C. (2026). From MAiD Referral to Targeted Therapy Success: A Case of BRAF-Mutated Anaplastic Thyroid Cancer. Reports, 9(1), 10. https://doi.org/10.3390/reports9010010

