Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (226)

Search Parameters:
Keywords = DES regeneration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10264 KB  
Article
Public–Private Partnerships in Urban Regeneration: Comparative Insights and Lessons from Brazil, Italy, and the UK
by Paula Vale de Paula, Rui Cunha Marques and Jorge Manuel Gonçalves
Land 2026, 15(1), 180; https://doi.org/10.3390/land15010180 - 19 Jan 2026
Abstract
Urban regeneration practices have gained prominence in urban planning in different contexts. Among the different areas subject to urban regeneration, waterfronts stand out as privileged areas of the city and are, therefore, very attractive for new uses. Public–Private Partnership (PPP) agreements are often [...] Read more.
Urban regeneration practices have gained prominence in urban planning in different contexts. Among the different areas subject to urban regeneration, waterfronts stand out as privileged areas of the city and are, therefore, very attractive for new uses. Public–Private Partnership (PPP) agreements are often used to implement these projects. However, PPP agreements in regeneration projects are complex and, in many cases, produce controversial results, either in relation to the partnership itself or to the project resulting from that partnership. In this sense, it is important to provide recommendations for the development of these processes and the resulting projects. Based on this, the present study conducts a comparative analysis between the Brazilian, Italian, and UK contexts regarding PPP arrangements in urban regeneration projects and a comparative analysis between three specific case studies: Porto Maravilha in Rio de Janeiro, Porta a Mare in Livorno, and Harbourside in Bristol. Based on the analyses carried out, the study provides recommendations for improving these practices and the resulting projects. In this sense, it is expected that the study contributes to the state of the art on the subject. Full article
Show Figures

Figure 1

20 pages, 903 KB  
Systematic Review
Dedifferentiation of Mature Adipocytes and Their Future Potential for Regenerative Medicine Applications
by Deniz Simal Bayulgen, Sheila Veronese and Andrea Sbarbati
Biomedicines 2026, 14(1), 95; https://doi.org/10.3390/biomedicines14010095 - 2 Jan 2026
Viewed by 407
Abstract
Background/Objectives: Mature adipocytes were previously regarded as terminally differentiated cells that are restricted to lipid storage. Recent studies have shown that they can dedifferentiate into fibroblast-like progenitor cells, termed dedifferentiated fat (DFAT) cells. These cells exhibit stem cell-like properties and multilineage potential, [...] Read more.
Background/Objectives: Mature adipocytes were previously regarded as terminally differentiated cells that are restricted to lipid storage. Recent studies have shown that they can dedifferentiate into fibroblast-like progenitor cells, termed dedifferentiated fat (DFAT) cells. These cells exhibit stem cell-like properties and multilineage potential, highlighting their promising role in regenerative medicine and disease pathology. This systematic review aims to explore and consolidate the evidence regarding mechanisms, culture methods, pathophysiological roles, and therapeutic potential of adipocyte dedifferentiation. Methods: A systematic review was conducted in PubMed using the terms “dedifferentiation”, “de-differentiation”, “transdifferentiation”, and related variants in combination with “adipocyte”. Studies were screened and selected according to the PRISMA 2020 guidelines. Non-English articles, non-full texts, and non-review papers were excluded. After duplicate removal and eligibility assessment, 53 studies were included. Further, these were classified into categories according to their abstracts. Results: The evidence from the included articles indicates that mature adipocytes can dedifferentiate both in vitro, via ceiling culture, and in vivo, yielding DFAT cells with proliferative and multilineage differentiation capacity. Dedifferentiation involves lipid droplet secretion (liposecretion) and is characterized by downregulation of adipogenic genes such as PPARG and C/EBPα, alongside upregulation of proliferation, stemness, and lineage-associated markers. Functionally, DFAT cells contribute positively to tissue regeneration and wound repair, but they can drive adverse outcomes such as fibrosis, insulin resistance, and tumor progression through signaling pathways, including Wnt/β-catenin and TGF-β. Conclusions: Mature adipocyte dedifferentiation marks a dynamic reprogramming mechanism with dual roles—beneficial in regenerative medicine and wound healing, yet detrimental in cancer and metabolic disease. Further research is required to identify in vivo regulators, establish definitive markers, and translate adipocyte plasticity into regenerative medicine applications. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

18 pages, 1450 KB  
Article
In Vitro Induction of Autotetraploids in the Subtropical Fruit Tree Cherimoya (Annona cherimola Mill.)
by Carlos Lopez Encina and José Javier Regalado
Horticulturae 2026, 12(1), 25; https://doi.org/10.3390/horticulturae12010025 - 26 Dec 2025
Viewed by 441
Abstract
Polyploidization is a powerful tool in plant breeding that can induce desirable morphological and physiological modifications. This study aimed to establish an efficient in vitro protocol for inducing autotetraploid plants in cherimoya (Annona cherimola Mill. cv. Fino de Jete) using colchicine. Hypocotyl [...] Read more.
Polyploidization is a powerful tool in plant breeding that can induce desirable morphological and physiological modifications. This study aimed to establish an efficient in vitro protocol for inducing autotetraploid plants in cherimoya (Annona cherimola Mill. cv. Fino de Jete) using colchicine. Hypocotyl explants from seedlings germinated in vitro were treated with different colchicine concentrations (0.01–0.2%) for 24 and 48 h, and the effects on shoot regeneration and ploidy level were evaluated by flow cytometry and chromosome counting. Regeneration and survival rates decreased with increasing colchicine concentration and exposure time. The most effective treatment for autotetraploid induction was 0.1% colchicine for 24 h, yielding a 10.5% polyploidization rate with 5.8% autotetraploids. Tetraploid shoots were successfully rooted (80%) and acclimatized (100%) under greenhouse conditions. Autotetraploid plants exhibited significantly larger and more rounded leaves, higher chlorophyll contents and an increased Chl a/Chl b ratio compared with diploids, indicating enhanced photosynthetic efficiency. The induction of stable autotetraploid lines in A. cherimola provides a reliable approach for generating novel genotypes with improved physiological traits and potential tolerance to abiotic stress. These results offer valuable material for future breeding programs aimed at developing new cherimoya rootstocks and cultivars with enhanced vigor and adaptability. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Graphical abstract

21 pages, 4054 KB  
Article
Application of Recombinant [NiFe]-Hydrogenase for Sustainable Coenzyme Regeneration
by Renata Vičević, Zrinka Karačić, Maja Milunić, Anita Šalić, Ana Jurinjak Tušek and Bruno Zelić
Catalysts 2026, 16(1), 10; https://doi.org/10.3390/catal16010010 - 23 Dec 2025
Viewed by 527
Abstract
Hydrogenases are key enzymes in microbial energy metabolism, catalyzing the reversible conversion between molecular hydrogen and protons. Among them, [NiFe]-hydrogenases are particularly attractive for biocatalytic applications due to the oxygen tolerance of several members of this class and their ability to couple hydrogen [...] Read more.
Hydrogenases are key enzymes in microbial energy metabolism, catalyzing the reversible conversion between molecular hydrogen and protons. Among them, [NiFe]-hydrogenases are particularly attractive for biocatalytic applications due to the oxygen tolerance of several members of this class and their ability to couple hydrogen oxidation with redox cofactor regeneration. In this study, a recombinant soluble [NiFe]-hydrogenase from Cupriavidus necator H16 was successfully expressed in Escherichia coli BL21 (DE3), purified, and characterised with a focus on its applicability for NAD+ regeneration. Unlike previous studies that primarily used native C. necator extracts or complex maturation systems, this work provides the first quantitative demonstration that an aerobically purified recombinant soluble [NiFe]-hydrogenase expressed in E. coli can function effectively as an NAD+ regeneration catalyst and operate within multi-enzymatic cascade reactions under application-relevant conditions. The crude recombinant enzyme displayed a volumetric activity of 0.273 ± 0.024 U/mL and a specific activity of 0.018 ± 0.002 U/mgcells in the hydrogen oxidation assay, while purification yielded a specific activity of 0.114 ± 0.001 U/mg with an overall recovery of 79.2%. The enzyme exhibited an optimal temperature of 35 °C and a pH optimum of 7.00. Thermal stability analysis revealed rapid deactivation at 40 °C (kd = 0.4186 ± 0.0788 h−1, t1/2 ≈ 1.7 h) and substantially slower deactivation at 4 °C (kd = 0.1141 ± 0.0139 h−1, t1/2 ≈ 6.1 h). Batch NADH oxidation experiments confirmed efficient cofactor turnover and high specificity towards NADH over NADPH. Finally, integration of the hydrogenase into a one-pot two-enzyme glucose oxidation system demonstrated its capacity for in situ NAD+ regeneration, although the reaction stopped after approximately 5 min due to acidification from gluconic acid formation, highlighting pH control as a key requirement for future process optimization. Full article
Show Figures

Graphical abstract

32 pages, 22096 KB  
Article
Reconversion of Universal Expos’ Ex-Sites, an Urban Project for Seville
by Attila Simo, Anamaria Andreea Anghel, Flaviu Mihai Frigura-Iliasa and Elvis Alexandru Dogaru
Urban Sci. 2025, 9(12), 534; https://doi.org/10.3390/urbansci9120534 - 12 Dec 2025
Viewed by 998
Abstract
The capacity of exhibitions to transform a city extends over a long period. The expo area is converted into a unique scenario for architecture, diversity, technology, mobility, and culture during the event itself. After the exhibition is over, work continues with the architectural [...] Read more.
The capacity of exhibitions to transform a city extends over a long period. The expo area is converted into a unique scenario for architecture, diversity, technology, mobility, and culture during the event itself. After the exhibition is over, work continues with the architectural transformations necessary to reconfigure the place into one that responds to the needs of the city and its inhabitants. The collateral actions of urban development through exhibitions involve the regeneration of different areas of the city, such as emblematic areas, and the reconfiguration of its operational systems such as transport, telecommunications, various networks, etc. Universal Expositions have historically served as catalysts for large-scale urban transformation, leaving behind complex spatial, architectural, and infrastructural legacies. However, the long-term integration of former expo sites into the contemporary city remains uneven and insufficiently documented, particularly in the case of Seville, which hosted both the 1929 Ibero-American Exposition and the 1992 Universal Exposition. This research employs a mixed qualitative methodology combining archival investigation, cartographic and photographic analysis, field observation, and research by design. Based on these findings, the paper presents an original architectural and landscape intervention for the degraded area of Isla de la Cartuja, proposing a multifunctional center and botanical garden, a recreational complex that reactivates an abandoned section of the former American Garden. This study contributes to worldwide discussions on mega-event legacies by offering a structured post-expo evaluation framework, identifying lessons for future regeneration processes, and demonstrating how research by design can support the sustainable transformation of such a former event landscape. Full article
Show Figures

Figure 1

18 pages, 2060 KB  
Article
A Context-Aware Representation-Learning-Based Model for Detecting Human-Written and AI-Generated Cryptocurrency Tweets Across Large Language Models
by Muhammad Asad Arshed, Ştefan Cristian Gherghina, Iqra Khalil, Hasnain Muavia, Anum Saleem and Hajran Saleem
Math. Comput. Appl. 2025, 30(6), 130; https://doi.org/10.3390/mca30060130 - 29 Nov 2025
Viewed by 799
Abstract
The extensive use of large language models (LLMs), particularly in the finance sector, raises concerns about the authenticity and reliability of generated text. Developing a robust method for distinguishing between human-written and AI-generated financial content is therefore essential. This study addressed this challenge [...] Read more.
The extensive use of large language models (LLMs), particularly in the finance sector, raises concerns about the authenticity and reliability of generated text. Developing a robust method for distinguishing between human-written and AI-generated financial content is therefore essential. This study addressed this challenge by constructing a dataset based on financial tweets, where original financial tweet texts were regenerated using six LLMs, resulting in seven distinct classes: human-authored text, LLaMA3.2, Phi3.5, Gemma2, Qwen2.5, Mistral, and LLaVA. A context-aware representation-learning-based model, namely DeBERTa, was extensively fine-tuned for this task. Its performance was compared to that of other transformer variants (DistilBERT, BERT Base Uncased, ELECTRA, and ALBERT Base V1) as well as traditional machine learning models (logistic regression, naive Bayes, random forest, decision trees, XGBoost, AdaBoost, and voting (AdaBoost, GradientBoosting, XGBoost)) using Word2Vec embeddings. The proposed DeBERTa-based model achieved an impressive test accuracy, precision, recall, and F1-score, all reaching 94%. In contrast, competing transformer models achieved test accuracies ranging from 0.78 to 0.80, while traditional machine learning models yielded a significantly lower performance (0.39–0.80). These results highlight the effectiveness of context-aware representation learning in distinguishing between human-written and AI-generated financial text, with significant implications for text authentication, authorship verification, and financial information security. Full article
Show Figures

Figure 1

15 pages, 2284 KB  
Article
DPA4 Suppresses Adventitious Root Formation via Transcriptional Regulation of CUC2 and ULT1, Decreasing Auxin Biosynthesis in Arabidopsis Leaf Explants
by Yucai Zheng, Qian Xing, Xuemei Liu and Ralf Müller-Xing
Int. J. Mol. Sci. 2025, 26(23), 11336; https://doi.org/10.3390/ijms262311336 - 24 Nov 2025
Viewed by 349
Abstract
Plants have the capacity to form adventitious roots (ARs) from detached aerial organs, a process known as de novo root regeneration (DNRR). In Arabidopsis, wounding signals rapidly induce in leaf explants the expression of genes encoding enzymes of auxin biosynthesis, resulting in elevated [...] Read more.
Plants have the capacity to form adventitious roots (ARs) from detached aerial organs, a process known as de novo root regeneration (DNRR). In Arabidopsis, wounding signals rapidly induce in leaf explants the expression of genes encoding enzymes of auxin biosynthesis, resulting in elevated auxin levels and facilitating AR formation. Here, we report that DEVELOPMENT-RELATED POLYCOMB TARGET IN THE APEX 4 (DPA4/NGAL3), a well-known regulator in seed size and leaf margin development, and a repressor of CUP-SHAPED COTYLEDON 2 (CUC2), inhibits AR formation in detached leaves. Leaf explants of dpa4-2 and cuc2-1D mutants displayed both elevated CUC2 mRNA levels and increased rooting rates. We observed reduced expression of ULTRAPETALA1 (ULT1), a negative regulator of DNRR, while the auxin biosynthesis genes ASA1, YUC4, and YUC9 were upregulated in both mutants. Through pharmacological inhibition of YUCCA-mediated auxin biogenesis, we obtained evidence that the enhanced AR formation in both mutants is at least partially a result of increased auxin production. Genetic analysis of dpa4-2 cuc2-1D double mutants indicates that similar mechanisms promote DNRR in both mutants. In summary, our study suggests that DPA4 suppresses AR formation likely by repression of CUC2 and activation of ULT1, which, in turn, suppresses endogenous auxin biogenesis and DNRR. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

22 pages, 3478 KB  
Perspective
A Perspective on Urban Agriculture at the Scale of the Urban Park: Landscape Architectural Strategies for Degrowth Transitions
by Mohammad Reza Khalilnezhad, Francesca Ugolini and Alessio Russo
Urban Sci. 2025, 9(11), 487; https://doi.org/10.3390/urbansci9110487 - 18 Nov 2025
Viewed by 681
Abstract
Urban agriculture is increasingly recognized not only for its role in enhancing ecological resilience, food security, and social inclusion, but also for its potential to challenge dominant urban development paradigms. Agroparks, as a spatial typology, have traditionally been associated with multifunctionality, productivity, and [...] Read more.
Urban agriculture is increasingly recognized not only for its role in enhancing ecological resilience, food security, and social inclusion, but also for its potential to challenge dominant urban development paradigms. Agroparks, as a spatial typology, have traditionally been associated with multifunctionality, productivity, and land preservation. This Perspective argues that agroparks can also serve as instruments for degrowth-oriented urban transitions, particularly in the context of climate emergency and the need to reconfigure urban land use beyond growth imperatives. Through landscape architectural analysis, the Bernex Agropark (now Parc des Molliers) in Geneva is examined as a spatial prototype that transforms underutilized land into a coherent system of crop zones, civic amenities, and ecological infrastructure. The project demonstrates how landscape architecture can contribute to the regeneration of urban edges while promoting ecological productivity, cooperative stewardship, and spatial limits to urban expansion. We introduce the concept of “Agroparks and Degrowth Urbanism”, framing Bernex as both a post-growth design strategy and a governance experiment. The Perspective concludes with recommendations for integrating agroparks into urban planning: connecting them to green infrastructure networks, prioritizing ecological over economic outputs, enabling commons-based management, and supporting climate adaptation through spatial design and food system relocalization. Full article
Show Figures

Figure 1

20 pages, 3217 KB  
Article
Avocado–Soybean Unsaponifiables Enhance Tendon Healing via Anti-Inflammatory and Antioxidant Mechanisms in a Rat Achilles Injury Model
by Mustafa Dinç, Ömer Cevdet Soydemir, Hünkar Çağdaş Bayrak, Recep Karasu, Bilal Aykaç and Mehmet Emre Topcu
Medicina 2025, 61(11), 2035; https://doi.org/10.3390/medicina61112035 - 14 Nov 2025
Viewed by 1213
Abstract
Background and Objectives: Tendon healing is a multifactorial process influenced by inflammation and oxidative stress. Avocado–soybean unsaponifiables (ASU), recognized for their anti-inflammatory and antioxidant properties in osteoarthritis, have not yet been evaluated in tendon repair. This study aimed to investigate the effects of [...] Read more.
Background and Objectives: Tendon healing is a multifactorial process influenced by inflammation and oxidative stress. Avocado–soybean unsaponifiables (ASU), recognized for their anti-inflammatory and antioxidant properties in osteoarthritis, have not yet been evaluated in tendon repair. This study aimed to investigate the effects of systemic ASU administration on histological, biomechanical, and biochemical parameters of tendon healing in a rat Achilles tendon injury model. Materials and Methods: Twenty male Wistar rats underwent bilateral Achilles tendon transection and repair. The ASU group received intraperitoneal ASU (300 mg/kg/day) for four weeks; controls received saline. Right tendons were analyzed histologically using a semiquantitative scoring system adapted from Curtis–DeLee, Bonar, and Modified Soslowsky criteria. Left tendons were tested biomechanically for maximum force, displacement, stress, stiffness, and energy parameters. Serum interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) were measured by ELISA. Results: ASU markedly improved histological healing with better collagen alignment, reduced inflammation, and normalized tenocyte morphology (p < 0.001). Biomechanical strength increased, with higher maximum force (p = 0.002), displacement (p = 0.004), stress (p = 0.001), and total energy to failure (p = 0.001). Serum IL-1β, IL-6, and TNF-α levels were lower (p < 0.001), while TAS increased and TOS/OSI decreased (p < 0.001). Conclusions: Systemic ASU administration enhances tendon healing by improving tissue organization, increasing mechanical strength, and modulating systemic inflammation and oxidative stress. These findings suggest that ASU may serve as a safe, clinically relevant adjunct therapy to promote tendon regeneration. Full article
Show Figures

Figure 1

23 pages, 3176 KB  
Article
In Silico Analysis of Serum Albumin Binding by Bone-Regenerative Hyaluronan-Based Molecules
by Pauline Kramp, Aydin Özmaldar, Gloria Ruiz-Gómez and M. Teresa Pisabarro
Pharmaceutics 2025, 17(11), 1445; https://doi.org/10.3390/pharmaceutics17111445 - 8 Nov 2025
Viewed by 699
Abstract
Background: The binding of glycosaminoglycans (GAG) to Wnt signaling components plays a key regulatory role in bone formation and regeneration. We previously reported de novo designed chemically modified hyaluronan derivatives, named REGAG (Rationally Engineered GAG), which demonstrated bone-regenerative properties in a mouse [...] Read more.
Background: The binding of glycosaminoglycans (GAG) to Wnt signaling components plays a key regulatory role in bone formation and regeneration. We previously reported de novo designed chemically modified hyaluronan derivatives, named REGAG (Rationally Engineered GAG), which demonstrated bone-regenerative properties in a mouse calvaria defect model. To gain initial insights into the pharmacological profile of two REGAG currently under preclinical investigation in mice, we performed a comprehensive in silico investigation of their binding to human and murine serum albumin (HSA and MSA), as it might influence their ADME properties. Furthermore, we evaluated whether REGAG binding might impact the recognition of well-characterized HSA-binding drugs. Methods: State-of-the-art in silico ADMET tools, docking and molecular dynamics simulations were used to predict and characterize the interaction of REGAG with HSA and MSA, and to investigate the molecular mechanisms involved at the atomic level. Results: The investigated REGAG molecules show a consistent binding preference for the FA1 site in both proteins, and an additional preference for the FA7 site in HSA. Their recognition might induce protein conformational changes and alter the functional state. Furthermore, REGAG’s conformational adaptability is predicted to influence their binding to the FA5/6 and FA8/9 sites of HSA, and to the FA3/4 and FA7 sites of MSA. Conclusions: Our investigations predict the binding of two hyaluronan derivatives to HSA and MSA. The mechanistic insights gained into the molecular recognition of these two REGAG molecules offer valuable information for their potential clinical application and serve as a rational basis for future molecular design aimed at improving pharmacokinetic properties. Full article
(This article belongs to the Special Issue Hyaluronic Acid-Based Drug Delivery Systems)
Show Figures

Graphical abstract

20 pages, 2492 KB  
Article
Polyethylene and Polypropylene Pyrolysis Using Fe3+-Modified Kaolin Catalyst for Enhanced Gas and Pyrolysis Oil Production
by Sergey Nechipurenko, Binara Dossumova, Sergey Efremov, Nazar Zabara, Aigerim Kaiaidarova, Olga Ibragimova, Anara Omarova, Fedor Pogorov and Diyar Tokmurzin
Polymers 2025, 17(21), 2963; https://doi.org/10.3390/polym17212963 - 6 Nov 2025
Viewed by 1459
Abstract
Calcined and acid-leached kaolin impregnated with Fe(NO3)3·9H2O (6.6 wt. % Fe2O3) was developed as an inexpensive bifunctional catalyst for the slow fixed-bed pyrolysis of polypropylene (PP) and low-density polyethylene (LDPE). Experiments were run [...] Read more.
Calcined and acid-leached kaolin impregnated with Fe(NO3)3·9H2O (6.6 wt. % Fe2O3) was developed as an inexpensive bifunctional catalyst for the slow fixed-bed pyrolysis of polypropylene (PP) and low-density polyethylene (LDPE). Experiments were run with catalyst-to-plastic mass ratios of 1:4, 1:2, and 1:1 in a quartz tube reactor heated from 25 to 800 °C. For PP, increasing the Fe/kaolin loading progressively raised non-condensable gas from 26 wt. % to 44 wt. % and drove liquid aromatics from 27.9% to 72.3%, while combined paraffins olefins fell to 2.5% and wax exhibited a 46 → 24 → 36 wt. % trend. In contrast, LDPE at a 1:4 ratio already yielded 56 wt. % oil and only 22 wt. % wax; further catalyst addition mainly enhanced CH4/CO-rich pyrolysis gas (PyGas) and char without substantially boosting aromatics. Gas analysis confirmed that Fe2O3 reduction and kaolin de-hydroxylation generated in situ H2O, CO, and H2. Given the catalyst’s low cost, regenerability, and ability to valorize the two most abundant waste polyolefins within the same reactor, the process offers a scalable route to flexible fuel and gas production from mixed plastic streams. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

12 pages, 3854 KB  
Article
Photothermolysis with 1550 nm Fractional Laser Promotes Regeneration of Gingival Mucosa
by Elena Morozova, Alexey Fayzullin, Polad Osmanov, Anna Timakova, Peter Timashev and Svetlana Tarasenko
Bioengineering 2025, 12(11), 1180; https://doi.org/10.3390/bioengineering12111180 - 29 Oct 2025
Viewed by 894
Abstract
Fractional laser photothermolysis, long established in dermatology, enables controlled microthermal injury that stimulates repair without scarring, but its potential in oral tissue regeneration has not been systematically explored. In this study, we conducted the first controlled experimental evaluation of a 1550 nm erbium [...] Read more.
Fractional laser photothermolysis, long established in dermatology, enables controlled microthermal injury that stimulates repair without scarring, but its potential in oral tissue regeneration has not been systematically explored. In this study, we conducted the first controlled experimental evaluation of a 1550 nm erbium fiber laser for oral mucosa regeneration. Thirty-two rabbits underwent fractional photothermolysis at energy levels of 70, 100 and 130 kJ, with gingival biopsies collected at 1, 14, 28 and 42 days for histological and immunohistochemical assessment of epithelial repair, stromal remodeling, inflammation and angiogenesis. All energy modes produced microcoagulation columns followed by progressive epithelial thickening, fibroblast proliferation and neoangiogenesis. The 70 kJ mode occasionally led to residual fibrosis, whereas higher energies (100–130 kJ) promoted effective connective tissue remodeling and de novo tissue formation without scarring. Complete epithelial recovery occurred within two weeks, indicating a safe and optimal interval for repeated exposure. Overall, the results demonstrate that 1550 nm fractional photothermolysis is a safe and effective method to induce regenerative responses in oral tissues, establishing a foundation for its translational application in periodontal and peri-implant regeneration. Full article
(This article belongs to the Special Issue Application of Laser Therapy in Oral Diseases: Second Edition)
Show Figures

Graphical abstract

15 pages, 1648 KB  
Article
A Highly Efficient Protocol for Multiple In Vitro Somatic Shoot Organogenesis from the Hypocotyl- and Cotyledon-Derived Callus Tissues of Russian Cabbage Genotypes
by Marat R. Khaliluev, Nataliya V. Varlamova and Roman A. Komakhin
Horticulturae 2025, 11(10), 1246; https://doi.org/10.3390/horticulturae11101246 - 15 Oct 2025
Viewed by 772
Abstract
Generation of state-of-the-art highly productive cabbage genotypes (Brassica oleracea convar. capitata (L.) Alef.) with improved agronomic traits is attainable using modern biotechnological approaches. However, capitata cabbage is relatively recalcitrant to de novo shoot organogenesis from callus tissue, especially with loss of somatic [...] Read more.
Generation of state-of-the-art highly productive cabbage genotypes (Brassica oleracea convar. capitata (L.) Alef.) with improved agronomic traits is attainable using modern biotechnological approaches. However, capitata cabbage is relatively recalcitrant to de novo shoot organogenesis from callus tissue, especially with loss of somatic cell totipotency during genetic transformation. An effective and rapid protocol for in vitro indirect shoot organogenesis from hypocotyl and cotyledon explants derived from 6-day-old aseptic donor seedlings of Russian cabbage genotypes (the DH line as well as cvs. Podarok and Parus) has been developed. In order to obtain standardized donor explants, aseptic cabbage seeds were germinated under dim light conditions (30–40 µmol m−2 s−1) with a 16 h light/8 h dark photoperiod. Multiple indirect shoot organogenesis (1.47–4.93 shoots per explant) from both cotyledonary leaves and hypocotyl segments with a frequency of 55.2–89.1% was achieved through 45 days of culture on the 0.7% agar-solidified (w/v) Murashige and Skoog (MS) basal medium containing 2 mg/L 6-benzylaminopurine (6-BAP), 0.02 mg/L 1-naphthalene acetic acid (NAA), and 5 mg/L AgNO3. The regenerants were successfully rooted on an MS basal medium (69.2%) without plant growth regulators (PGRs), as well as supplemented with 0.5 mg/L NAA (86.8%). Subsequently, in vitro rooted cabbage plantlets were adapted to soil conditions with an efficiency of 85%. This rapid protocol, allowing for the performance of a full cycle from in vitro seed germination to growing adapted plantlets under ex vitro conditions over 95 days, can be successfully applied to induce an indirect shoot formation in various cabbage genotypes, and it is recommended to produce transgenic plants with improved quality traits and productivity. Full article
(This article belongs to the Special Issue The Role of Plant Growth Regulators in Horticulture)
Show Figures

Figure 1

18 pages, 7772 KB  
Article
High Red–Blue Light Ratio Promotes Accelerated In Vitro Flowering and Seed-Set Development in Amaranthus hypochondriacus Under a Long-Day Photoperiod
by Alex R. Bermudez-Valle, Norma A. Martínez-Gallardo, Eliana Valencia-Lozano and John P. Délano-Frier
Plants 2025, 14(20), 3134; https://doi.org/10.3390/plants14203134 - 11 Oct 2025
Viewed by 704
Abstract
Grain amaranths are recalcitrant to conventional in vitro plant regeneration by organogenesis de novo or through somatic embryogenesis. Consequently, floral organogenesis by these methods, representing the culminating developmental point in angiosperms, is rarely achieved. In the present study, the manipulation of in vitro [...] Read more.
Grain amaranths are recalcitrant to conventional in vitro plant regeneration by organogenesis de novo or through somatic embryogenesis. Consequently, floral organogenesis by these methods, representing the culminating developmental point in angiosperms, is rarely achieved. In the present study, the manipulation of in vitro flowering was explored as part of a strategy designed to overcome grain amaranth’s regeneration recalcitrance. It led to an efficient and reproducible in vitro protocol in which half-longitudinally dissected zygotic embryos generated fully developed Amaranthus hypochondriacus (Ah) plants. The use of high-irradiance illumination with LED lamps with a 3:1 red–blue irradiance ratio was a critical factor, leading to a 70% rate of early flowering events under flowering-inhibiting long-day photoperiod conditions. Contrariwise, no flowering was induced under LED white lights. All in vitro flowering Ah plants yielded viable seeds. To understand the basic molecular mechanisms of the phenomenon observed, gene expression patterns and principal component analysis of key flowering-related genes were analyzed after cultivation in vitro for 4, 8, and 12 weeks under both lighting regimes. These coded for photoreceptors, photomorphogenetic regulators, embryogenic modulators, and flowering activators/repressors. The results highlighted the upregulation of key flowering-regulatory genes, including CONSTANS, FLOWERING LOCUS T, and LEAFY, together with the downregulation of the floral repressor TERMINAL FLOWER1. Ribosome biogenesis- and seed-development-related genes were also differentially expressed, supporting a key role in this process for protein synthesis and embryogenesis. A model is proposed to explain how this light-regulated molecular framework enables in vitro flowering and seed production in Ah plants kept under long-day photoperiods. Full article
Show Figures

Figure 1

17 pages, 2875 KB  
Article
The Aesthetics of Algorithmic Disinformation: Dewey, Critical Theory, and the Crisis of Public Experience
by Gil Baptista Ferreira
Journal. Media 2025, 6(4), 168; https://doi.org/10.3390/journalmedia6040168 - 3 Oct 2025
Viewed by 1961
Abstract
The rise of social media platforms has fundamentally reshaped the global information ecosystem, fostering the spread of disinformation. Beyond the circulation of false content, this article frames disinformation as an aesthetic crisis of public communication: an algorithmic reorganization of sensory experience that privileges [...] Read more.
The rise of social media platforms has fundamentally reshaped the global information ecosystem, fostering the spread of disinformation. Beyond the circulation of false content, this article frames disinformation as an aesthetic crisis of public communication: an algorithmic reorganization of sensory experience that privileges performative virality over shared intelligibility, fragmenting public discourse and undermining democratic deliberation. Drawing on John Dewey’s philosophy of aesthetic experience and critical theory (Adorno, Benjamin, Fuchs, Han), we argue that journalism, understood as a form of public art rather than mere fact-transmission, can counteract this crisis by cultivating critical attention, narrative depth, and democratic engagement. We introduce the concept of aesthetic literacy as an extension of media literacy, equipping citizens to discern between seductive but superficial forms and genuinely transformative experiences. Empirical examples from Portugal (Expresso, Público, Mensagem de Lisboa) illustrate how multimodal journalism—through paced narratives, interactivity, and community dialogue—can reconstruct Deweyan “integrated experience” and resist algorithmic disinformation. We propose three axes of intervention: (1) public education oriented to aesthetic sensibility; (2) journalistic practices prioritizing ambiguity and depth; and (3) algorithmic transparency. Defending journalism as a public art of experience is thus crucial for democratic regeneration in the era of sensory capitalism, offering a framework to address the structural inequalities embedded in global information flows. Full article
(This article belongs to the Special Issue Social Media in Disinformation Studies)
Show Figures

Figure 1

Back to TopTop