Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (797)

Search Parameters:
Keywords = DC-link voltage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7990 KB  
Article
Multi-Objective Adaptive Unified Control Method for Photovoltaic Boost Converters Under Complex Operating Conditions
by Kai Wang, Mingrun Lei, Jiawei Ji, Xiaolong Hao and Haiyan Zhang
Energies 2026, 19(3), 665; https://doi.org/10.3390/en19030665 - 27 Jan 2026
Abstract
Photovoltaic (PV) systems are vital to contemporary renewable energy generation systems. However, complex operating conditions, such as variable loads, grid uncertainty, and unstable sunlight, pose a serious threat to the stability of the power system integrated with PV generation. To maintain stable operation [...] Read more.
Photovoltaic (PV) systems are vital to contemporary renewable energy generation systems. However, complex operating conditions, such as variable loads, grid uncertainty, and unstable sunlight, pose a serious threat to the stability of the power system integrated with PV generation. To maintain stable operation under such conditions, PV systems must dynamically regulate their power output through a boost converter, thereby preventing excessive DC bus voltage and power levels. This article first summarizes practical control requirements for PV systems under complex operating conditions and subsequently proposes a multi-objective control method for boost converters in PV applications to enhance system adaptability. The proposed strategy enables seamless transitions between operating modes, including DC-link voltage control, current control, power control, and maximum power point tracking (MPPT). The dynamic behavior of the control method during mode switching is theoretically analyzed. Simulation results verify the correctness of the analysis and demonstrate the effectiveness of the proposed method under challenging PV operating conditions. Full article
(This article belongs to the Special Issue Power Electronics-Based Modern DC/AC Hybrid Power Systems)
Show Figures

Figure 1

19 pages, 2415 KB  
Article
Thermal–Electrical Fusion for Real-Time Condition Monitoring of IGBT Modules in Transportation Systems
by Man Cui, Yun Liu, Zhen Hu and Tao Shi
Micromachines 2026, 17(2), 154; https://doi.org/10.3390/mi17020154 - 25 Jan 2026
Viewed by 153
Abstract
The operational reliability of Insulated Gate Bipolar Transistor (IGBT) modules in demanding transportation applications, such as traction systems, is critically challenged by solder layer and bond wire failures under cyclic thermal stress. To address this, this paper proposes a novel health monitoring framework [...] Read more.
The operational reliability of Insulated Gate Bipolar Transistor (IGBT) modules in demanding transportation applications, such as traction systems, is critically challenged by solder layer and bond wire failures under cyclic thermal stress. To address this, this paper proposes a novel health monitoring framework that innovatively synergizes micro-scale spatial thermal analysis with microsecond electrical dynamics inversion. The method requires only non-invasive temperature measurements on the module baseplate and utilizes standard electrical signals (load current, duty cycle, switching frequency, DC-link voltage) readily available from the converter’s controller, enabling simultaneous diagnosis without dedicated voltage or high-bandwidth current sensors. First, a non-invasive assessment of solder layer fatigue is achieved by correlating the normalized thermal gradient (TP) on the baseplate with the underlying thermal impedance (ZJC). Second, for bond wire aging, a cost-effective inversion algorithm estimates the on-state voltage (Vce,on) by calculating the total power loss from temperature, isolating the conduction loss (Pcond) with the aid of a Foster-model-based junction temperature (TJ) estimate, and finally computing Vce,on at a unique current inflection point (IC,inf) to nullify TJ dependency. Third, the health states from both failure modes are fused for comprehensive condition evaluation. Experimental validation confirms the method’s accuracy in tracking both degradation modes. This work provides a practical and economical solution for online IGBT condition monitoring, enhancing the predictive maintenance and operational safety of transportation electrification systems. Full article
(This article belongs to the Special Issue Insulated Gate Bipolar Transistor (IGBT) Modules, 2nd Edition)
Show Figures

Figure 1

27 pages, 5100 KB  
Article
Hybrid Forecast-Enabled Adaptive Crowbar Coordination for LVRT Enhancement in DFIG Wind Turbines
by Xianlong Su, Hankil Kim, Changsu Kim, Mingxue Zhang and Hoekyung Jung
Entropy 2026, 28(2), 138; https://doi.org/10.3390/e28020138 - 25 Jan 2026
Viewed by 116
Abstract
This study proposes a hybrid forecast-enabled adaptive crowbar coordination strategy to enhance low-voltage ride-through (LVRT) performance of doubly fed induction generator (DFIG) wind turbines. A unified electro-mechanical model in the αβ/dq frames with dual closed-loop control for rotor- and grid-side converters is built [...] Read more.
This study proposes a hybrid forecast-enabled adaptive crowbar coordination strategy to enhance low-voltage ride-through (LVRT) performance of doubly fed induction generator (DFIG) wind turbines. A unified electro-mechanical model in the αβ/dq frames with dual closed-loop control for rotor- and grid-side converters is built in MATLAB/Simulink (R2018b), and LVRT constraints on current safety and DC-link energy are explicitly formulated, yielding an engineering crowbar-resistance range of 0.4–0.8 p.u. On the forecasting side, a CEEMDAN-based decomposition–modeling–reconstruction pipeline is adopted: high- and mid-frequency components are predicted by a dual-stream Informer–LSTM, while low-frequency components are modeled by XGBoost. Using six months of wind-farm data, the hybrid forecaster achieves best or tied-best MSE, RMSE, MAE, and R2 compared with five representative baselines. Forecasted power, ramp rate, and residual-based uncertainty are mapped to overcurrent and DC-link overvoltage risk indices, which adapt crowbar triggering, holding, and release in coordination with converter control. In a 9 MW three-phase deep-sag scenario, the strategy confines DC-link voltage within ±3% of nominal, shortens re-synchronization from ≈0.35 s to ≈0.15 s, reduces rotor-current peaks by ≈5.1%, and raises the reactive-support peak to 1.7 Mvar, thereby improving LVRT safety margins and grid-friendliness without hardware modification. Full article
(This article belongs to the Section Multidisciplinary Applications)
16 pages, 2368 KB  
Article
PSCAD-Based Analysis of Short-Circuit Faults and Protection Characteristics in a Real BESS–PV Microgrid
by Byeong-Gug Kim, Chae-Joo Moon, Sung-Hyun Choi, Yong-Sung Choi and Kyung-Min Lee
Energies 2026, 19(3), 598; https://doi.org/10.3390/en19030598 - 23 Jan 2026
Viewed by 153
Abstract
This paper presents a PSCAD-based analysis of short-circuit faults and protection characteristics in a real distribution-level microgrid that integrates a 1 MWh battery energy storage system (BESS) with a 500 kW power conversion system (PCS) and a 500 kW photovoltaic (PV) plant connected [...] Read more.
This paper presents a PSCAD-based analysis of short-circuit faults and protection characteristics in a real distribution-level microgrid that integrates a 1 MWh battery energy storage system (BESS) with a 500 kW power conversion system (PCS) and a 500 kW photovoltaic (PV) plant connected to a 22.9 kV feeder. While previous studies often rely on simplified inverter models, this paper addresses the critical gap by integrating actual manufacturer-defined control parameters and cable impedances. This allows for a precise analysis of sub-millisecond transient behaviors, which is essential for developing robust protection schemes in inverter-dominated microgrids. The PSCAD model is first verified under grid-connected steady-state operation by examining PV output, BESS power, and grid voltage at the point of common coupling. Based on the validated model, DC pole-to-pole faults at the PV and ESS DC links and a three-phase short-circuit fault at the low-voltage bus are simulated to characterize the fault current behavior of the grid, BESS and PV converters. The DC fault studies confirm that current peaks are dominated by DC-link capacitor discharge and are strongly limited by converter controls, while the AC three-phase fault is mainly supplied by the upstream grid. As an initial application of the model, an instantaneous current change rate (ICCR) algorithm is implemented as a dedicated DC-side protection function. For a pole-to-pole fault, the ICCR index exceeds the 100 A/ms threshold and issues a trip command within 0.342 ms, demonstrating the feasibility of sub-millisecond DC fault detection in converter-dominated systems. Beyond this example, the validated PSCAD model and associated data set provide a practical platform for future research on advanced DC/AC protection techniques and protection coordination schemes in real BESS–PV microgrids. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

19 pages, 59527 KB  
Article
Hierarchical Control System for a Multi-Port, Bidirectional MMC-Based EV Charging Station: A Model-in-the-Loop Validation
by Tomas Ravet, Cristobal Rodriguez, Matias Diaz, Daniel Velasquez, Roberto Cárdenas and Pat Wheeler
Processes 2026, 14(2), 384; https://doi.org/10.3390/pr14020384 - 22 Jan 2026
Viewed by 73
Abstract
The increasing demand for high-power electric vehicle charging systems with Vehicle-to-Grid (V2G) capability highlights the need for modular, scalable power converters. This paper proposes a hierarchical control strategy for a high-power, multi-port electric vehicle charging station. The system, based on a Series-Parallel Modular [...] Read more.
The increasing demand for high-power electric vehicle charging systems with Vehicle-to-Grid (V2G) capability highlights the need for modular, scalable power converters. This paper proposes a hierarchical control strategy for a high-power, multi-port electric vehicle charging station. The system, based on a Series-Parallel Modular Multilevel Converter (SP-MMC) with isolated modules, is managed by a coordinated control strategy that integrates proportional-integral-resonant regulators, nearest-level control with voltage sorting, and single-phase-shifted modulation. The proposed system enables simultaneous, independent regulation of multiple bidirectional, isolated direct current ports while maintaining grid-side power quality and internal variables of the SP-MMC. The proposed control is validated using real-time Model-In-the-Loop (MIL) simulations that include sequential port activation, bidirectional power flow, and charging operation. MIL results demonstrate stable operation with controlled DC-link voltage ripple, accurate per-port current tracking, and near-unity grid power factor under multi-port operation. Full article
Show Figures

Figure 1

19 pages, 1516 KB  
Article
Energy-Dynamics Sensing for Health-Responsive Virtual Synchronous Generator in Battery Energy Storage Systems
by Yingying Chen, Xinghu Liu and Yongfeng Fu
Batteries 2026, 12(1), 36; https://doi.org/10.3390/batteries12010036 - 21 Jan 2026
Viewed by 99
Abstract
Battery energy storage systems (BESSs) are increasingly required to provide grid-support services under weak-grid conditions, where the stability of virtual synchronous generator (VSG) control largely depends on the health status and dynamic characteristics of the battery unit. However, existing VSG strategies typically assume [...] Read more.
Battery energy storage systems (BESSs) are increasingly required to provide grid-support services under weak-grid conditions, where the stability of virtual synchronous generator (VSG) control largely depends on the health status and dynamic characteristics of the battery unit. However, existing VSG strategies typically assume fixed parameters and neglect the intrinsic coupling between battery aging, DC-link energy variations, and converter dynamic performance, resulting in reduced damping, degraded transient regulation, and accelerated lifetime degradation. This paper proposes a health-responsive VSG control strategy enabled by real-time energy-dynamics sensing. By reconstructing the DC-link energy state from voltage and current measurements, an intrinsic indicator of battery health and instantaneous power capability is established. This energy-dynamics indicator is then embedded into the VSG inertia and damping loops, allowing the control parameters to adapt to battery health evolution and operating conditions. The proposed method achieves coordinated enhancement of transient stability, weak-grid robustness, and lifetime management. Simulation studies on a multi-unit BESS demonstrate that the proposed strategy effectively suppresses low-frequency oscillations, accelerates transient convergence, and maintains stability across different aging stages. Full article
Show Figures

Figure 1

18 pages, 3548 KB  
Article
A Novel Sliding-Mode Control Strategy Based on Exponential Reaching Law for Three-Phase AC/DC Converter
by Sheng Zhou, Xianyang Cui and Tao Jin
Electronics 2026, 15(2), 406; https://doi.org/10.3390/electronics15020406 - 16 Jan 2026
Viewed by 128
Abstract
The control design of three-phase AC/DC converters is particularly challenging, as their dynamic behavior is governed by complex nonlinear interactions and strong coupling among system variables, conventional Proportional–Integral (PI) controllers often suffer from sluggish transient responses and limited immunity to interference. To address [...] Read more.
The control design of three-phase AC/DC converters is particularly challenging, as their dynamic behavior is governed by complex nonlinear interactions and strong coupling among system variables, conventional Proportional–Integral (PI) controllers often suffer from sluggish transient responses and limited immunity to interference. To address these issues, Sliding-Mode Control (SMC) is widely adopted for its robustness against parameter uncertainties and rapid dynamic performance. However, the chattering phenomenon inherent in traditional SMC near the sliding surface remains a critical challenge. To improve the dynamic performance of sliding-mode control, this work introduces a redesigned exponential reaching law into the control framework. The proposed strategy is implemented in a voltage–current cascaded (double closed-loop) structure, where the improved reaching law is embedded in the outer DC-link voltage loop and the inner loop regulates the grid currents in the synchronous dq frame. By modifying the reaching dynamics, the proposed approach effectively weakens chattering phenomena while enabling faster convergence of the system states. Comprehensive validation was conducted using Matlab/Simulink simulations and experimental prototypes. The results demonstrate that, compared to PI control and traditional exponential reaching law-based SMC, the proposed strategy significantly mitigates chattering while delivering superior static stability and faster dynamic response. Full article
(This article belongs to the Special Issue Power Electronics Controllers for Power System)
Show Figures

Figure 1

23 pages, 3803 KB  
Article
Enhanced Frequency Dynamic Support for PMSG Wind Turbines via Hybrid Inertia Control
by Jian Qian, Yina Song, Gengda Li, Ziyao Zhang, Yi Wang and Haifeng Yang
Electronics 2026, 15(2), 373; https://doi.org/10.3390/electronics15020373 - 14 Jan 2026
Viewed by 146
Abstract
High penetration of wind farms into the power grid lowers system inertia and compromises stability. This paper proposes a grid-forming control strategy for Permanent Magnet Synchronous Generator (PMSG) wind turbines based on DC-link voltage matching and virtual inertia. First, a relationship between grid [...] Read more.
High penetration of wind farms into the power grid lowers system inertia and compromises stability. This paper proposes a grid-forming control strategy for Permanent Magnet Synchronous Generator (PMSG) wind turbines based on DC-link voltage matching and virtual inertia. First, a relationship between grid frequency and DC-link voltage is established, replacing the need for a phase-locked loop. Then, DC voltage dynamics are utilized to trigger a real-time switching of the power tracking curve, releasing the rotor’s kinetic energy for inertia response. This is further coordinated with a de-loading control that maintains active power reserves through over-speeding or pitch control. Finally, the MATLAB/Simulink simulation results and RT-LAB hardware-in-the-loop experiments demonstrate the capability of the proposed control strategy to provide rapid active power support during grid disturbances. Full article
(This article belongs to the Special Issue Stability Analysis and Optimal Operation in Power Electronic Systems)
Show Figures

Figure 1

36 pages, 6311 KB  
Article
Implementation of a QDBC with Hysteresis Current Control for PV-Powered Permanent-Magnet-Assisted Synchronous Reluctance Motors
by Walid Emar, Hani Attar, Ala Jaber, Hasan Kanaker, Fawzi Gharagheer and Musbah Aqel
Energies 2026, 19(1), 215; https://doi.org/10.3390/en19010215 - 31 Dec 2025
Viewed by 165
Abstract
In this paper, a permanent-magnet-assisted synchronous reluctance motor (SYNRM) coupled with a newly built QDBC and a voltage-fed inverter (VFI) for a standalone PV water pumping system is suggested. Because power supply oscillations can result in short-term disruptions that affect drive performance in [...] Read more.
In this paper, a permanent-magnet-assisted synchronous reluctance motor (SYNRM) coupled with a newly built QDBC and a voltage-fed inverter (VFI) for a standalone PV water pumping system is suggested. Because power supply oscillations can result in short-term disruptions that affect drive performance in industrial applications involving these motors, a robust smooth control system is required to guarantee high efficiency and uninterrupted operation. According to the suggested architecture, a newly built quadratic boost regulator with a very high voltage gain, called a quadruple-diode boost converter (QDBC), is used to first elevate PV voltage to high levels. Additionally, to optimize the power output of the solar PV module, the perturbation and observation highest power point tracking approach (P&O) is implemented. To provide smooth synchronous motor starting, field-oriented control (FOC) of a voltage-fed inverter (VFI) is combined with hysteresis current control of the QDBC. The optimization algorithms discussed in this paper aim to enhance the efficiency of the SYNRM, particularly in operating a synchronous motor powered by variable energy sources such as solar PV. These algorithms function within a cybernetic system designed for water pumping, incorporating feedback loops and computational intelligence for improved performance. Afterward, the three-phase permanent-magnet synchronous motor that drives the mechanical load is fed by the resulting voltage via a voltage source inverter. Furthermore, a thorough hysteresis current control method implementation of the QDBC was suggested in order to attain optimal efficiency in both devices, which is crucial when off-grids are present. Even when the DC-link voltage dropped by up to 10% of the rated voltage, the suggested method was shown to maintain the required reference torque and rated speed. To verify the efficacy of the suggested method, a simulation setup according to the MATLAB 2022b/Simulink environment was employed. To gather and analyze the data, multiple scenarios with varying operating conditions and irradiance levels were taken into consideration. Finally, a working prototype was constructed in order to validate the mathematical analysis and simulation findings of the suggested framework, which includes a 1 kW motor, current sensor, voltage sensor, QDBC, and VCS inverter. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

30 pages, 1549 KB  
Article
An Overview of DC-DC Power Converters for Electric Propulsion
by Minghai Dong, Hui Li, Shan Yin, Bin Tian, Sulan Yang and Yuhua Chen
Aerospace 2026, 13(1), 36; https://doi.org/10.3390/aerospace13010036 - 29 Dec 2025
Viewed by 506
Abstract
Electric propulsion (EP) has become a pivotal technology in modern space exploration, enabling prolonged mission durations, increased payload capacity, and precise deep-space navigation through its superior thrust efficiency and low propellant consumption. However, the performance of EP systems is fundamentally limited by the [...] Read more.
Electric propulsion (EP) has become a pivotal technology in modern space exploration, enabling prolonged mission durations, increased payload capacity, and precise deep-space navigation through its superior thrust efficiency and low propellant consumption. However, the performance of EP systems is fundamentally limited by the power processing unit (PPU), with the DC-DC power converter serving as the core of the PPU. Existing research on DC-DC converters often focuses on generic topologies, failing to address the divergent power demands of distinct EP types and the harsh space-specific constraints. This review aims to fill this gap by systematically analyzing DC-DC power converters tailored for EP systems. First, the core requirements of converters across major EP categories are classified. Then, converter topologies are compared by evaluating the suitability for EP operational and space constraints. Moreover, high step-up conversion techniques are explored that bridge the gap between low-voltage spacecraft buses and thruster power needs. Furthermore, this review highlights emerging technologies driving EP converter advancement, such as wide-bandgap semiconductors for improved power density and efficiency, planar magnetics for miniaturization, and direct-drive architecture for simplified Hall-effect thruster integration. It also identifies unresolved challenges, including balancing power density with thermal robustness, mitigating radiation-induced degradation, and suppressing electromagnetic interference (EMI). Finally, it outlines future research directions, such as optimizing WBG-compatible converter topologies, developing advanced thermal management solutions, and standardizing EP-specific design guidelines. This work provides a practical reference for PPU engineers, linking converter design to EP unique demands and space constraints while guiding innovations to advance EP technology for next-generation space missions, from low-Earth orbit satellites to interplanetary exploration. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

18 pages, 3330 KB  
Article
A Seven-Level Single-DC-Source Inverter with Triple Voltage Gain and Reduced Component Count
by Ziyang Wang, Decun Niu, Jingyang Fang, Minghao Chen, Lei Zhang, Wei Zhang, Dong Wang and Qianli Ma
Appl. Sci. 2026, 16(1), 215; https://doi.org/10.3390/app16010215 - 24 Dec 2025
Viewed by 377
Abstract
This paper proposes a novel seven-level switched-capacitor multilevel inverter featuring a shared front-end DC-link structure that achieves triple voltage gain with reduced component count. A distinctive feature of this design is its inherent capacitor voltage self-balancing capability, thereby eliminating the need for complex [...] Read more.
This paper proposes a novel seven-level switched-capacitor multilevel inverter featuring a shared front-end DC-link structure that achieves triple voltage gain with reduced component count. A distinctive feature of this design is its inherent capacitor voltage self-balancing capability, thereby eliminating the need for complex control algorithms typically associated with multilevel converters. Moreover, the topology demonstrates particularly significant advantages in three-phase implementations, where a single DC source, front-end switching devices, and capacitors can be shared across all phases—thus substantially reducing component count and system complexity compared to conventional designs. Additionally, this paper proposes an improved carrier-based modulation strategy for this topology requiring only a single triangular carrier, along with a systematic method for determining optimal capacitance values. Through detailed comparative assessment against state-of-the-art switched-capacitor seven-level inverters, the superior performance characteristics of the proposed topology are clearly demonstrated. Finally, simulation results under various operating conditions are presented and subsequently validated through experimental testing on a laboratory prototype, confirming the practical viability of the proposed solution. Full article
(This article belongs to the Special Issue Recent Developments in Electric Vehicles, Second Edition)
Show Figures

Figure 1

31 pages, 4638 KB  
Article
Improvement in DFIG-Based Wind Energy Conversion System LVRT Capability in Compliance with Algerian Grid Code
by Brahim Djidel, Lakhdar Mokrani, Abdellah Kouzou, Mohamed Machmoum, Jose Rodriguez and Mohamed Abdelrahem
Machines 2026, 14(1), 22; https://doi.org/10.3390/machines14010022 - 23 Dec 2025
Viewed by 295
Abstract
During voltage dips, wind turbines must remain connected to the electrical grid and contribute to voltage stabilization. This study analyzes the impact of voltage dips arising from grid faults on Doubly Fed Induction Generator (DFIG) based Wind Energy Conversion Systems (WECSs). This paper [...] Read more.
During voltage dips, wind turbines must remain connected to the electrical grid and contribute to voltage stabilization. This study analyzes the impact of voltage dips arising from grid faults on Doubly Fed Induction Generator (DFIG) based Wind Energy Conversion Systems (WECSs). This paper presents a review of the technical regulations for integrating the Algerian electricity grid with the Low Voltage Ride Through (LVRT) system, along with specific requirements for renewable power generation installations. Additionally, the modeling and control strategy of DFIG based WECS has been outlined. Voltage dips can induce excessive currents that threaten the DFIG rotor and may cause harmful peak oscillations in the DC-link voltage, and can lead to turbine speed increase due to the sudden imbalance between the mechanical input torque and the reduced electromagnetic torque. To counter this, a modified vector control and crowbar protection mechanism were integrated. Its role is to mitigate these risks, thereby ensuring the system remains stable and operational through grid faults. The proposed system successfully meets the stringent Algerian LVRT requirements, with voltage dipping to zero for 0.3 s and recovering gradually. Simulations confirm that rotor and stator currents remain within safe limits (peak rotor current at 0.93 pu, and peak stator current at 1.36 pu). The DC-link voltage, despite a transient rise due to the continued power conversion from the rotor-side converter during the grid fault, was effectively stabilized and maintained within safe operating margins (with less than 14% overshoot). This stability was achieved as the crowbar ensured power balance by managing active and reactive power. Notably, the turbine rotor speed demonstrated stability, peaking at 1.28 pu within mechanical limits. Full article
Show Figures

Figure 1

17 pages, 10360 KB  
Article
Optimization of Crowbar Resistance for Enhanced LVRT Capability in Wind Turbine Doubly Fed Induction Generator
by Mahmoud M. Elkholy and M. Abdelateef Mostafa
Appl. Syst. Innov. 2025, 8(6), 191; https://doi.org/10.3390/asi8060191 - 16 Dec 2025
Viewed by 492
Abstract
Recently, the installed generation capacity of wind energy has expanded significantly, and the doubly fed induction generator (DFIG) has gained a prominent position amongst wind generators owing to its superior performance. It is extremely vital to enhance the low-voltage ride-through (LVRT) capability for [...] Read more.
Recently, the installed generation capacity of wind energy has expanded significantly, and the doubly fed induction generator (DFIG) has gained a prominent position amongst wind generators owing to its superior performance. It is extremely vital to enhance the low-voltage ride-through (LVRT) capability for the wind turbine DFIG system because the DFIG is very sensitive to faults in the electrical grid. The major concept of LVRT is to keep the DFIG connected to the electrical grid in the case of an occurrence of grid voltage sags. The currents of rotor and DC-bus voltage rise during voltage dips, resulting in damage to the power electronic converters and the windings of the rotor. There are many protection approaches that deal with LVRT capability for the wind turbine DFIG system. A popular approach for DFIG protection is the crowbar technique. The resistance of the crowbar must be precisely chosen owing to its impact on both the currents of the rotor and DC-bus voltage, while also ensuring that the rotor speed does not exceed its maximum limit. Therefore, this paper aims to obtain the optimal values of crowbar resistance to minimize the crowbar energy losses and ensure stable DFIG operation during grid voltage dips. A recent optimization technique, the Starfish Optimization (SFO) algorithm, was used for cropping the optimal crowbar resistance for improving LVRT capability. To validate the accuracy of the results, the SFO results were compared to the well-known optimization algorithm, particle swarm optimizer (PSO). The performance of the wind turbine DFIG system was investigated by using Matlab/Simulink at a rated wind speed of 13 m/s. The results demonstrated that the increases in DC-link voltage and rotor speed were reduced by 42.5% and 45.8%, respectively. Full article
Show Figures

Figure 1

17 pages, 3780 KB  
Article
A Weighted Control Strategy Based on Current Imbalance Degree for Vienna Rectifiers Under Unbalanced Grid
by Haigang Wang, Zongwei Liu and Muqin Tian
Machines 2025, 13(12), 1139; https://doi.org/10.3390/machines13121139 - 12 Dec 2025
Viewed by 304
Abstract
Under unbalanced grid conditions, the three-phase Vienna rectifier exhibits significant voltage fluctuations in dc-link and asymmetric input currents. Traditional control methods cannot simultaneously suppress the voltage ripples in dc-link and balance the input currents. Therefore, a weighted control strategy based on the degree [...] Read more.
Under unbalanced grid conditions, the three-phase Vienna rectifier exhibits significant voltage fluctuations in dc-link and asymmetric input currents. Traditional control methods cannot simultaneously suppress the voltage ripples in dc-link and balance the input currents. Therefore, a weighted control strategy based on the degree of current imbalance is proposed in this paper. The strategy is implemented within a dual closed-loop architecture, featuring a finite-set model predictive control (FS-MPC) method in the current loop and a sliding mode control (SMC) method in the voltage loop. In the current loop, the two control objectives of voltage in dc-link and input current are weighted, and the weighting factor is dynamically adjusted based on the degree of current imbalance. This strategy can simultaneously achieve control for input current symmetry and dc-link voltage balance under unbalanced grid conditions. Finally, a 2 kW Vienna rectifier experimental platform was independently constructed. Simulation and experimental results indicate that under unbalanced grid conditions, the proposed control strategy achieves approximately 10% lower total harmonic distortion (THD) and maintains DC-link voltage fluctuation within 5 V, compared to traditional control methods. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

12 pages, 13726 KB  
Article
A High-Efficiency Single-Phase AC-AC Solid-State Transformer Without Electrolytic Capacitors
by Hui Wang, Xiang Yan and Xiaochao Hou
Energies 2025, 18(24), 6414; https://doi.org/10.3390/en18246414 - 8 Dec 2025
Viewed by 533
Abstract
This paper proposes a single-phase AC-AC solid-state transformer (SST) that eliminates bulky energy storage components. The proposed matrix-type structure comprises a line-frequency (LF) rectifier, a half-bridge (HB) LLC resonant converter, a buck–boost converter, and an LF inverter. The HB LLC resonant converter not [...] Read more.
This paper proposes a single-phase AC-AC solid-state transformer (SST) that eliminates bulky energy storage components. The proposed matrix-type structure comprises a line-frequency (LF) rectifier, a half-bridge (HB) LLC resonant converter, a buck–boost converter, and an LF inverter. The HB LLC resonant converter not only achieves high efficiency at unity voltage gain but also provides high-frequency (HF) isolation as a DC transformer (DCX). Meanwhile, the buck–boost converter ensures precise voltage regulation. The replacement of traditional DC-link electrolytic capacitors with small film capacitors effectively suppresses the second-harmonic power ripple, leading to a significant improvement in both power density and operational reliability. Experimental results from a 1 kW prototype demonstrate high-quality sinusoidal input and output, a wide range of zero-voltage switching (ZVS) operations, and stable output voltage control. Full article
Show Figures

Figure 1

Back to TopTop