A High-Efficiency Single-Phase AC-AC Solid-State Transformer Without Electrolytic Capacitors
Abstract
1. Introduction
2. Topology and Operating Principles
2.1. Topology
2.2. Operating Principles
3. ZVS Analysis and Control Scheme of the Proposed SST
3.1. ZVS Analysis
3.2. Control Scheme
4. Experimental Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- She, X.; Huang, A.Q.; Burgos, R. Review of Solid-State Transformer Technologies and Their Application in Power Distribution Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 186–198. [Google Scholar] [CrossRef]
- Huber, J.E.; Kolar, J.W. Volume/weight/cost comparison of a 1MVA 10 kV/400 V solid-state against a conventional low-frequency distribution transformer. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 4545–4552. [Google Scholar]
- Huber, J.E.; Kolar, J.W. Applicability of Solid-State Transformers in Today’s and Future Distribution Grids. IEEE Trans. Smart Grid 2019, 10, 317–326. [Google Scholar] [CrossRef]
- Coelho, S.; Dionizio, A.; Cunha, J.; Monteiro, V.; Afonso, J.L. Solid-state transformer: The catalyst for resilient and sustainable smart grids. Energy 2025, 327, 136321. [Google Scholar] [CrossRef]
- Hannan, M.A.; Ker, P.J.; Lipu, M.S.H.; Choi, Z.H.; Rahman, M.S.A.; Muttaqi, K.M.; Blaabjerg, F. State of the Art of Solid-State Transformers: Advanced Topologies, Implementation Issues, Recent Progress and Improvements. IEEE Access 2020, 8, 19113–19132. [Google Scholar] [CrossRef]
- Khan, S.; Rahman, K.; Tariq, M.; Hameed, S.; Alamri, B.; Babu, T.S. Solid-State Transformers: Fundamentals, Topologies, Applications, and Future Challenges. Sustainability 2022, 14, 319. [Google Scholar] [CrossRef]
- Mishra, D.K.; Ghadi, M.J.; Li, L.; Hossain, M.J.; Zhang, J.; Ray, P.K.; Mohanty, A. A review on solid-state transformer: A breakthrough technology for future smart distribution grids. Int. J. Electr. Power Energy Syst. 2021, 133, 107255. [Google Scholar] [CrossRef]
- Zhao, C.; Dujic, D.; Mester, A.; Steinke, J.K.; Weiss, M.; Lewdeni-Schmid, S.; Chaudhuri, T.; Stefanutti, P. Power electronic traction transformer-medium voltage prototype. IEEE Trans. Ind. Electron. 2014, 61, 3257–3268. [Google Scholar] [CrossRef]
- Szczesniak, P. Challenges and Design Requirements for Industrial Applications of AC/AC Power Converters without DC-Link. Energies 2019, 12, 1581. [Google Scholar] [CrossRef]
- Khan, W.; Dar, J.A.; Parihar, K.S.; Pathak, M.K. Analysis of a New Single-Stage AC/AC Converter for Solid-State Transformer. IEEE Trans. Ind. Appl. 2024, 60, 3359–3372. [Google Scholar] [CrossRef]
- Li, L.; Xu, G.; Sha, D.; Liu, Y.; Sun, Y.; Su, M. Review of Dual-Active-Bridge Converters with Topological Modifications. IEEE Trans. Power Electron. 2023, 38, 9046–9076. [Google Scholar] [CrossRef]
- Luo, Q.; Ma, K.; He, Q.; Zou, C.; Zhou, L. A Single-Stage High-Frequency Resonant AC/AC Converter. IEEE Trans. Power Electron. 2017, 32, 2155–2166. [Google Scholar] [CrossRef]
- Qin, H.; Kimball, J.W. Solid-State Transformer Architecture Using AC–AC Dual-Active-Bridge Converter. IEEE Trans. Ind. Electron. 2013, 60, 3720–3730. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chattopadhyay, S. A Dual-Active-Bridge-Based Fully ZVS HF-Isolated Inverter with Low Decoupling Capacitance. IEEE Trans. Power Electron. 2019, 35, 2615–2628. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, S.; Jiang, L.; Yu, T.; Su, M. Single-Stage Matrix-Type Power Electronic Transformer With Reduced Switches. IEEE J. Emerg. Sel. Top. Power Electron. 2024, 12, 1427–1436. [Google Scholar] [CrossRef]
- Pacheco, L.F.; Nascimento, K.C.M.; Barbi, I. Isolated AC/AC converter with LLC resonant converter high-frequency link and four-quadrant switches in the output stage. IEEE Access 2020, 8, 213104–213114. [Google Scholar] [CrossRef]
- Pittala, L.K.; Chub, A.; Sidorov, V.; Khan, S.; Ricco, M.; Mandrioli, R. Cycle-Skipping Technique Based on Sigma-Delta Modulation in Series Resonant DC Transformer. In Proceedings of the 2025 IEEE Seventh International Conference on DC Microgrids (ICDCM), Tallinn, Estonia, 23–26 June 2025; pp. 1–5. [Google Scholar]
- Blinov, A.; Chub, A.; Guler, N.; Bayhan, S.; Parsa, L.; Vinnikov, D. Modular MV Naturally Balanced Converter With High-Frequency Isolation and No DC-Link Capacitor for EV Fast Charging. IEEE Trans. Transp. Electrif. 2025, 11, 1141–1150. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Sun, Y.; Zheng, M.; Liang, X.; Zhang, G.; Tan, K.; Feng, J. Topology and Control Method of a Single-Cell Matrix-Type Solid-State Transformer. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 2302–2312. [Google Scholar] [CrossRef]
- Chambayil, A.; Chattopadhyay, S. A Single-stage Single-Phase Bidirectional AC-AC Converter for Solid State Transformer Application. In Proceedings of the 2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 14–17 December 2022; pp. 1–6. [Google Scholar]










| Parameters | Value |
|---|---|
| Input voltage, ui | 220 Vrms |
| Input frequency, fi | 50 Hz |
| Output voltage, uo | 220 Vrms |
| Output frequency, fo | 50 Hz |
| Turns ratio, n | 1 |
| Capacitors, C1 and C2 | 5.4 μF |
| Capacitors, C3 and C4 | 5.4 μF |
| Capacitor, Cr | 0.9 μF |
| Inductor, Li | 220 μH |
| Inductor, Lr | 6.4 μH |
| Inductor, Lm | 320 μH |
| Inductor, Lb | 470 μH |
| LLC frequency, fs | 65 kHz |
| Buck–boost frequency, fb | 20 kHz |
| Power rating | 1 kW |
| Item | Transformer, T | Inductor, Lb | Inductor, Li |
|---|---|---|---|
| Magnetic core | PQ5050 | NPS200060 | NPF157060 |
| Core material | Mn-Zn power ferrite PC95 | Iron–silicon–aluminum | Iron–silicon |
| Core effective volume | 37,200 mm3 | 15,929 mm3 | 10,549 mm3 |
| Winding material | Litz wire | Enameled copper wire | Enameled copper wire |
| Winding diameter | 0.1 × 220/2.08 mm | 1.6 mm | 1.4 mm |
| Manufacturer | LINHYAN (Wuxi, China) | POCO (Shenzhen, China) | POCO (Shenzhen, China) |
| Parameters | This Work | [15] | [13] | [20] |
|---|---|---|---|---|
| Switches | 14 | 14 | 16 | 12 |
| Input filter inductor | 220 μH | 800 μH | 900 μH | 500 μH |
| DC-link capacitor | Film capacitor (5.4 μF) | Film capacitor (1 μF) | Film capacitor (3 μF) | Electrolytic capacitor |
| Efficiency | 94.1% | 93.3% | 92.9% | 92.8% |
| MOSFETs | FCH072N60F, 600 V, 52 A, 72 mΩ | FCH072N60F, 600 V, 52 A, 72 mΩ | STD8NM60ND, 600 V, 7 A, 590 mΩ | C2M0040120D, 1200 V, 36 A, 80 mΩ |
| Transformer frequency | 65 kHz | 100 kHz | 10 kHz | 100 kHz |
| Power rating | 1 kW | 2 kW | 20 kW | 1 kW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Yan, X.; Hou, X. A High-Efficiency Single-Phase AC-AC Solid-State Transformer Without Electrolytic Capacitors. Energies 2025, 18, 6414. https://doi.org/10.3390/en18246414
Wang H, Yan X, Hou X. A High-Efficiency Single-Phase AC-AC Solid-State Transformer Without Electrolytic Capacitors. Energies. 2025; 18(24):6414. https://doi.org/10.3390/en18246414
Chicago/Turabian StyleWang, Hui, Xiang Yan, and Xiaochao Hou. 2025. "A High-Efficiency Single-Phase AC-AC Solid-State Transformer Without Electrolytic Capacitors" Energies 18, no. 24: 6414. https://doi.org/10.3390/en18246414
APA StyleWang, H., Yan, X., & Hou, X. (2025). A High-Efficiency Single-Phase AC-AC Solid-State Transformer Without Electrolytic Capacitors. Energies, 18(24), 6414. https://doi.org/10.3390/en18246414

