Abstract
This paper proposes a novel seven-level switched-capacitor multilevel inverter featuring a shared front-end DC-link structure that achieves triple voltage gain with reduced component count. A distinctive feature of this design is its inherent capacitor voltage self-balancing capability, thereby eliminating the need for complex control algorithms typically associated with multilevel converters. Moreover, the topology demonstrates particularly significant advantages in three-phase implementations, where a single DC source, front-end switching devices, and capacitors can be shared across all phases—thus substantially reducing component count and system complexity compared to conventional designs. Additionally, this paper proposes an improved carrier-based modulation strategy for this topology requiring only a single triangular carrier, along with a systematic method for determining optimal capacitance values. Through detailed comparative assessment against state-of-the-art switched-capacitor seven-level inverters, the superior performance characteristics of the proposed topology are clearly demonstrated. Finally, simulation results under various operating conditions are presented and subsequently validated through experimental testing on a laboratory prototype, confirming the practical viability of the proposed solution.