Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (614)

Search Parameters:
Keywords = Cu-Fe alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2764 KiB  
Article
AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces
by Xiaoxia Zou, Wangjie Zhou, Xinxin Li, Yuzeng Gao, Jingyi Yu, Linglu Zeng, Guangteng Yang, Li Liu, Wei Ren and Yan Sun
Materials 2025, 18(15), 3688; https://doi.org/10.3390/ma18153688 - 6 Aug 2025
Abstract
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric [...] Read more.
The interface between high-performance thermoelectric materials and electrodes critically governs the conversion efficiency and long-term reliability of thermoelectric generators under high-temperature operation. Here, we propose AlxCoCrFeNi high-entropy alloys (HEA) as barrier layers to bond Cu-W electrodes with p-type skutterudite (p-SKD) thermoelectric materials. The HEA/p-SKD interface exhibited excellent chemical bonding with a stable and controllable reaction layer, forming a dense, defect-free (Fe,Ni,Co,Cr)Sb phase (thickness of ~2.5 μm) at the skutterudites side. The interfacial resistivity achieved a low value of 0.26 μΩ·cm2 and remained at 7.15 μΩ·cm2 after aging at 773 K for 16 days. Moreover, the interface demonstrated remarkable mechanical stability, with an initial shear strength of 88 MPa. After long-term aging for 16 days at 773 K, the shear strength retained 74 MPa (only 16% degradation), ranking among the highest reported for thermoelectric materials/metal joints. Remarkably, the joint maintained a shear strength of 29 MPa even after 100 continuous thermal cycles (623–773 K), highlighting its outstanding thermo-mechanical stability. These results validate the AlxCoCrFeNi high-entropy alloys as an ideal interfacial material for thermoelectric generators, enabling simultaneous optimization of electrical and mechanical performance in harsh environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 6311 KiB  
Article
Unraveling the Excellent High-Temperature Oxidation Behavior of FeNiCuAl-Based Alloy
by Guangxin Wu, Gaosheng Li, Lijun Wei, Hao Chen, Yujie Wang, Yunze Qiao, Yu Hua, Chenyang Shi, Yingde Huang and Wenjie Yang
Materials 2025, 18(15), 3679; https://doi.org/10.3390/ma18153679 - 5 Aug 2025
Abstract
This study synthesized FeNiCuAlX high-entropy alloys (HEAs) (where X = Cr, Co, Mn) using arc melting and investigated their high-temperature oxidation behavior in air at 900 °C. The oxidation kinetics of all alloys followed a parabolic rate, with the oxidation rate constants (kp) [...] Read more.
This study synthesized FeNiCuAlX high-entropy alloys (HEAs) (where X = Cr, Co, Mn) using arc melting and investigated their high-temperature oxidation behavior in air at 900 °C. The oxidation kinetics of all alloys followed a parabolic rate, with the oxidation rate constants (kp) of FeNiCuAlCr, FeNiCuAlCo, and FeNiCuAlMn being approximately two to three orders of magnitude lower than that of the FeNiCu alloy. Specifically, FeNiCuAlCr exhibited the lowest kp value of 1.72 × 10−6 mg2·cm4/s, which is significantly lower than those of FeNiCuAlCo (3.29 × 10−6 mg2·cm4/s) and FeNiCuAlMn (1.71 × 10−5 mg2·cm4/s). This suggests that the addition of chromium promotes the formation of a dense Al2O3/Cr2O3 oxide layer, significantly enhancing the oxidation resistance. Furthermore, corrosion resistance was assessed through potentiodynamic polarization and electrochemical impedance spectroscopy in a 3.5% NaCl solution. FeNiCuAlCr demonstrated exceptional resistance to localized corrosion, as indicated by its low corrosion current density (45.7 μA/cm2) and high pitting potential (−0.21 V), highlighting its superior corrosion performance. Full article
(This article belongs to the Special Issue Characterization, Properties, and Applications of New Metallic Alloys)
Show Figures

Figure 1

20 pages, 4411 KiB  
Article
The Influence of the Defect Rate of Graphene on Its Reinforcing Capability Within High-Entropy Alloys
by Xianhe Zhang, Hongyun Wang, Chunpei Zhang, Cun Zhang and Xuyao Zhang
Nanomaterials 2025, 15(15), 1177; https://doi.org/10.3390/nano15151177 - 30 Jul 2025
Viewed by 168
Abstract
Graphene, a remarkable two-dimensional material, enhances the mechanical properties of high-entropy alloys as a reinforcing phase. This study investigated the influence of vacancy defects in graphene on the strengthening effect of FeNiCrCoCu high-entropy alloy through molecular dynamics simulations. The findings reveal that vacancy [...] Read more.
Graphene, a remarkable two-dimensional material, enhances the mechanical properties of high-entropy alloys as a reinforcing phase. This study investigated the influence of vacancy defects in graphene on the strengthening effect of FeNiCrCoCu high-entropy alloy through molecular dynamics simulations. The findings reveal that vacancy defects diminish graphene’s strength, resulting in its premature failure. In tensile tests, graphene with defects lowers the yield stress of the composite, yet it retains the ability to impede dislocations. Conversely, graphene exhibits a more pronounced strengthening effect during compression. Specifically, when the deletion of C atoms is less than 1%, the impact is negligible; between 1% and 6%, the strengthening effect diminishes; and when it surpasses 6%, the strengthening effect virtually ceases to exist. This research offers a theoretical foundation for optimizing graphene-reinforced composites. Full article
Show Figures

Graphical abstract

17 pages, 9827 KiB  
Article
High-Temperature Mechanical and Wear Behavior of Hypoeutectic Al–Si–(Cu)–Mg Alloys with Hardening Mechanisms Dictated by Varying Cu:Mg Ratios
by Jaehui Bang, Yeontae Kim and Eunkyung Lee
Appl. Sci. 2025, 15(14), 8047; https://doi.org/10.3390/app15148047 - 19 Jul 2025
Viewed by 324
Abstract
Enhancing damage tolerance and wear resistance in Al–Si-based alloys under thermomechanical stress remains a key challenge in lightweight structural applications. This study investigates the microstructural and tribomechanical behavior of hypoeutectic Al–Si–(Cu)–Mg alloys with varying Cu:Mg ratios (3:1 vs. 1:3) under a T6 heat [...] Read more.
Enhancing damage tolerance and wear resistance in Al–Si-based alloys under thermomechanical stress remains a key challenge in lightweight structural applications. This study investigates the microstructural and tribomechanical behavior of hypoeutectic Al–Si–(Cu)–Mg alloys with varying Cu:Mg ratios (3:1 vs. 1:3) under a T6 heat treatment. Alloys A and B, with identical Si contents but differing Cu and Mg levels, were subjected to multiscale microstructural characterization and mechanical and wear testing at 25 °C, 150 °C, and 250 °C. Alloy A (Cu-rich) exhibited refined α-Al(FeMn)Si phases and homogeneously dissolved Cu in the Al matrix, promoting lattice contraction and dislocation pinning. In contrast, Alloy B (Mg-rich) retained coarse Mg2Si and residual β-AlFeSi phases, which induced local stress concentrations and thermal instability. Under tribological testing, Alloy A showed slightly higher friction coefficients (0.38–0.43) but up to 26.4% lower wear rates across all temperatures. At 250 °C, Alloy B exhibited a 25.2% increase in the wear rate, accompanied by surface degradation such as delamination and spalling due to β-AlFeSi fragmentation and matrix softening. These results confirm that the Cu:Mg ratio critically influences the dominant hardening mechanism—the solid solution vs. precipitation—and determines the high-temperature performance. Alloy A maintained up to 14.1% higher tensile strength and 22.3% higher hardness, exhibiting greater shear resistance and interfacial stability. This work provides a compositionally guided framework for designing thermally durable Al–Si-based alloys with improved wear resistance under elevated temperature conditions. Full article
(This article belongs to the Special Issue Characterization and Mechanical Properties of Alloys)
Show Figures

Figure 1

21 pages, 6239 KiB  
Article
Synthesis of Fe–Cu Alloys via Ball Milling for Electrode Fabrication Used in Electrochemical Nitrate Removal from Wastewater
by Hannanatullgharah Hayeedah, Aparporn Sakulkalavek, Bhanupol Klongratog, Nuttakrit Somdock, Pisan Srirach, Pichet Limsuwan and Kittisakchai Naemchanthara
Processes 2025, 13(7), 2232; https://doi.org/10.3390/pr13072232 - 12 Jul 2025
Viewed by 304
Abstract
Fe and Cu powders were mixed at a 50:50 ratio. Then, Fe-Cu alloys were prepared using the ball milling technique with different milling times of 6, 12, 18, 24, 30, 36, and 42 h. The crystalline structure was analyzed using X-ray diffraction (XRD), [...] Read more.
Fe and Cu powders were mixed at a 50:50 ratio. Then, Fe-Cu alloys were prepared using the ball milling technique with different milling times of 6, 12, 18, 24, 30, 36, and 42 h. The crystalline structure was analyzed using X-ray diffraction (XRD), and it was found that the optimum milling time was 30 h. The homogeneity of the Fe and Cu elements in the Fe–Cu alloys was analyzed using the scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDX) mapping technique. Additionally, the crystal orientation of the Fe–Cu alloys was investigated using transmission electron microscopy (TEM). To fabricate the cathode for nitrate removal via electrolysis, an Fe–Cu alloy milled for 30 h was deposited onto a copper substrate using mechanical milling, then annealed at 800 °C. A pulsed DC electrolysis method was developed to test the nitrate removal efficiency of the Fe–Cu-coated cathode. The anode used was an Al sheet. The synthesized wastewater was prepared from KNO3. Nitrate removal experiments from the synthesized wastewater were performed for durations of 0–4 h. The results show that the nitrate removal efficiency at 4 h was 96.90% compared to 74.40% with the Cu cathode. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

14 pages, 3062 KiB  
Article
Nanosized Anisotropic Sm–Fe–N Particles with Metastable TbCu7-Type Structures Prepared by an Induction Thermal Plasma Process
by Yusuke Hirayama, Jian Wang, Masaya Shigeta, Shunsuke Tsurumi, Makoto Sugimoto, Zheng Liu, Kenta Takagi and Kimihiro Ozaki
Nanomaterials 2025, 15(13), 1045; https://doi.org/10.3390/nano15131045 - 5 Jul 2025
Viewed by 378
Abstract
TbCu7-type Sm-based compounds can be produced in bulk and potentially surpass Nd2Fe14B as permanent magnets. However, as the processes to prepare anisotropic magnetic particles are limited, the full potential of TbCu7-type Sm-based compounds cannot be [...] Read more.
TbCu7-type Sm-based compounds can be produced in bulk and potentially surpass Nd2Fe14B as permanent magnets. However, as the processes to prepare anisotropic magnetic particles are limited, the full potential of TbCu7-type Sm-based compounds cannot be exploited. In this study, metastable TbCu7-type phases of anisotropic Sm–Fe–N ultrafine particles were prepared using the low-oxygen induction thermal plasma (LO-ITP) process. X-ray diffraction analysis revealed that the obtained TbCu7-type Sm–Fe alloy nanoparticles exhibited a c/a value of 0.8419, with an Fe/Sm atomic ratio of ~8.5. After nitrogenation, the obtained Sm–Fe–N nanoparticles were aligned under an external magnetic field, indicating that each alloy particle exhibited anisotropic magnetic properties. A substantially high degree of alignment of 91 ± 2% was achieved, quantitatively estimated via pole figure measurements. Numerical analysis following Sm–Fe nanoparticle formation showed that, compared with Fe condensation, Sm condensation persisted even at low temperatures, because of a significant difference in vapor pressure between Sm and Fe. Though this led to a relatively large compositional distribution of Sm within particles with a Sm concentration of 9–12 at%, the preparation of single-phase TbCu7-type Sm–Fe–N particles could be facilitated by optimizing several parameters during the LO-ITP process. Full article
(This article belongs to the Special Issue New Insights into Plasma-Induced Synthesis of Nanomaterials)
Show Figures

Graphical abstract

24 pages, 5858 KiB  
Article
A YOLO11-Based Method for Segmenting Secondary Phases in Cu-Fe Alloy Microstructures
by Qingxiu Jing, Ruiyang Wu, Zhicong Zhang, Yong Li, Qiqi Chang, Weihui Liu and Xiaodong Huang
Information 2025, 16(7), 570; https://doi.org/10.3390/info16070570 - 3 Jul 2025
Cited by 1 | Viewed by 230
Abstract
With the development of industrialization, the demand for high-performance metal materials has increased, and copper and its alloys have been widely used. The microstructure of these materials significantly affects their performance. To address the issues of subjectivity, low efficiency, and limited quantitative capability [...] Read more.
With the development of industrialization, the demand for high-performance metal materials has increased, and copper and its alloys have been widely used. The microstructure of these materials significantly affects their performance. To address the issues of subjectivity, low efficiency, and limited quantitative capability in traditional metallographic analysis methods, this paper proposes a deep learning-based approach for segmenting the second phase in Cu-Fe alloys. The method is built upon the YOLO11 framework and incorporates a series of structural enhancements tailored to the characteristics of the secondary-phase microstructure, aiming to improve the model’s detection accuracy and segmentation performance. Specifically, the EIEM module enhances the C3K2 structure to improve edge perception; the CSPSA module is optimized into C2CGA to strengthen multi-scale feature representation; and the RepGFPN and DySample techniques are integrated to construct the GDFPN neck network. Experimental results on the Cu-Fe alloy metallographic image dataset demonstrate that YOLO11 outperforms mainstream semantic segmentation models such as U-Net and DeepLabV3+ in terms of mAP (85.5%), inference speed (208 FPS), and model complexity (10.2 GFLOPs). The improved YOLO11 model achieves an mAP of 89.0%, a precision of 84.6%, and a recall of 81.0% on this dataset, showing significant performance improvements while effectively balancing inference speed and model complexity. Additionally, a quantitative analysis software system for secondary phase uniformity based on this model provides strong technical support for automated metallographic image analysis and demonstrates broad application prospects in materials science research and industrial quality control. Full article
(This article belongs to the Topic Intelligent Image Processing Technology)
Show Figures

Graphical abstract

15 pages, 3759 KiB  
Article
Glass-Forming Ability and Crystallization Behavior of Mo-Added Fe82−xSi4B12Nb1MoxCu1 (x = 0–2) Nanocrystalline Alloy
by Hyun Ah Im, Subong An, Ki-bong Kim, Sangsun Yang, Jung woo Lee and Jae Won Jeong
Metals 2025, 15(7), 744; https://doi.org/10.3390/met15070744 - 1 Jul 2025
Viewed by 424
Abstract
This study investigates the effects of molybdenum (Mo) additions on the crystallization behavior and soft magnetic properties and of Fe82-xSi4B12Nb1MoxCu1 (x = 0–2) nanocrystalline alloys. Molybdenum enhances glass-forming ability (GFA) and magnetic [...] Read more.
This study investigates the effects of molybdenum (Mo) additions on the crystallization behavior and soft magnetic properties and of Fe82-xSi4B12Nb1MoxCu1 (x = 0–2) nanocrystalline alloys. Molybdenum enhances glass-forming ability (GFA) and magnetic properties by increasing negative mixing enthalpy (Hmix), mixing entropy (Smix), and atomic size mismatch (δ), which stabilize the amorphous phase. X-ray diffraction (XRD) analysis shows that Mo addition improves amorphous phase stability, further enhancing GFA. The simultaneous addition of Mo and Nb increases mixing entropy, promotes nucleation rates, and creates favorable conditions for optimizing nanocrystallization. Upon annealing, this optimized microstructure demonstrated low coercivity and high permeability. Notably, the Fe80Si4B12Nb1Mo2Cu1 ribbon, annealed at 470 °C for 10 min, exhibited exceptional soft magnetic properties, with a coercivity of 4.54 A/m, a maximum relative permeability of 48,410, and a saturation magnetization of 175.24 emu/g. High-resolution transmission electron microscopy (TEM) revealed an average crystal size of 18.16 nm. These findings suggest that Fe82-xSi4B12Nb1MoxCu1 (x = 0–2) nanocrystalline alloys are suitable for advanced electromagnetic applications pursuing miniaturization and high efficiency. Full article
Show Figures

Figure 1

22 pages, 11408 KiB  
Article
The Influence of Beryllium Incorporation into an Al-5wt.%Cu-1wt.%Si Alloy on the Solidification Cooling Rate, Microstructural Length Scale, and Corrosion Resistance
by Joyce Ranay Santos, Milena Poletto Araújo, Talita Vida, Fabio Faria Conde, Noé Cheung, Amauri Garcia and Crystopher Brito
Metals 2025, 15(7), 736; https://doi.org/10.3390/met15070736 - 30 Jun 2025
Viewed by 328
Abstract
The addition of beryllium (Be) to Al–Cu alloys enhances their mechanical properties and corrosion resistance. This study aims to investigate the effects of solidification cooling rates and the addition of Be on the microstructural refinement and corrosion behavior of an Al–5wt.%Cu–1wt.%Si–0.5wt.%Be alloy. Radial [...] Read more.
The addition of beryllium (Be) to Al–Cu alloys enhances their mechanical properties and corrosion resistance. This study aims to investigate the effects of solidification cooling rates and the addition of Be on the microstructural refinement and corrosion behavior of an Al–5wt.%Cu–1wt.%Si–0.5wt.%Be alloy. Radial solidification under unsteady-state conditions was performed using a stepped brass mold, producing four distinct cooling rates. An experimental growth law, λ2 = 26T˙1/3, was established, confirming the influence of Be and the cooling rate on dendritic size reduction. The final microstructure was characterized by an α-Al dendritic matrix with eutectic compounds (α-Al + θ-Al2Cu + Si + Fe-rich phase) confined to the interdendritic regions. No Be-containing intermetallic phases were detected, and beryllium remained homogeneously distributed within the eutectic. Notably, Be addition promoted a morphological transformation of the Fe-rich phases from angular or acicular forms into a Chinese-script-like structure, which is associated with reduced local stress concentrations. Tensile tests revealed an ultimate tensile strength of 248.8 ± 11.2 MPa and elongation of approximately 6.4 ± 0.5%, indicating a favorable balance between strength and ductility. Corrosion resistance assessment by EIS and polarization tests in a 0.06 M NaCl solution showed a corrosion rate of 28.9 µm·year−1 and an Epit of −645 mV for the Be-containing alloy, which are lower than those measured for the reference Al–Cu and Al–Cu–Si alloys. Full article
Show Figures

Figure 1

25 pages, 5297 KiB  
Article
Composition Design and Property Prediction for AlCoCrCuFeNi High-Entropy Alloy Based on Machine Learning
by Cuixia Liu, Meng Meng and Xian Luo
Metals 2025, 15(7), 733; https://doi.org/10.3390/met15070733 - 30 Jun 2025
Viewed by 281
Abstract
Based on the innovative mode driven by “data + artificial intelligence”, in this study, three methods, namely Gaussian noise (GAUSS Noise), the Generative Adversarial Network (GAN), and the optimized Generative Adversarial Network (GANPro), are adopted to expand and enhance the collected dataset of [...] Read more.
Based on the innovative mode driven by “data + artificial intelligence”, in this study, three methods, namely Gaussian noise (GAUSS Noise), the Generative Adversarial Network (GAN), and the optimized Generative Adversarial Network (GANPro), are adopted to expand and enhance the collected dataset of element contents and the hardness of the AlCoCrCuFeNi high-entropy alloy. Bayesian optimization with grid search is used to determine the optimal combination of hyperparameters, and two interpretability methods, SHAP and permutation importance, are employed to further explore the relationship between the element features of high-entropy alloys and hardness. The results show that the optimal data augmentation method is Gaussian noise enhancement; its accuracy reaches 97.4% under the addition of medium noise (σ = 0.003), and an optimal performance prediction model based on the existing dataset is finally constructed. Through the interpretability method, it is found that the contributions of Al and Ni are the most prominent. When the Al content exceeds 0.18 mol, it has a positive promoting effect on hardness, while Ni and Cu exhibit a critical effect of promotion–inhibition near 0.175 mol and 0.14 mol, respectively, revealing the nonlinear regulation law of element contents. This study solves the problem of revealing the mutual relationship between the element contents and hardness of high-entropy alloys in the case of a lack of alloy data and provides theoretical guidance for further improving the performance of high-entropy alloys. Full article
Show Figures

Figure 1

12 pages, 3473 KiB  
Article
Microstructure and Mechanical Properties of Laser-Clad Inconel 718 Coatings on Continuous Casting Mold Copper Plate
by Yu Liu, Haiquan Jin, Guohui Li, Ruoyu Xu, Nan Ma, Hui Liang, Jian Lin, Wenqing Xiang and Zhanhui Zhang
Lubricants 2025, 13(7), 289; https://doi.org/10.3390/lubricants13070289 - 28 Jun 2025
Viewed by 400
Abstract
Mold copper plates (Cr–Zr–Cu alloy) frequently fail due to severe wear under high-temperature conditions during continuous casting. To solve this problem, Inconel 718 coatings were prepared on the plate surface via laser cladding to enhance its high-temperature wear resistance. The results demonstrate that [...] Read more.
Mold copper plates (Cr–Zr–Cu alloy) frequently fail due to severe wear under high-temperature conditions during continuous casting. To solve this problem, Inconel 718 coatings were prepared on the plate surface via laser cladding to enhance its high-temperature wear resistance. The results demonstrate that the coatings exhibit a defect-free structure with metallurgical bonding to the substrate. The coating primarily consists of a γ-(Fe, Ni, Cr) solid solution and carbides (M23C6 and M6C). Notably, elongated columnar Laves phases and coarse Cr–Mo compounds were distributed along grain boundaries, significantly enhancing the coating’s microhardness and high-temperature stability. The coating exhibited an average microhardness of 491.7 HV0.5, which is approximately 6.8 times higher than that of the copper plate. At 400 °C, the wear rate of the coating was 4.7 × 10−4 mm3·N−1·min−1, significantly lower than the substrate’s wear rate of 8.86 × 10−4 mm3·N−1·min−1, which represents only 53% of the substrate’s wear rate. The dominant wear mechanisms were adhesive wear, abrasive wear, and oxidative wear. The Inconel 718 coating demonstrates superior hardness and excellent high-temperature wear resistance, effectively improving both the surface properties and service life of mold copper plates. Full article
Show Figures

Figure 1

18 pages, 4806 KiB  
Article
Laser Powder Bed Fusion Additive Manufacturing of a CoCrFeNiCu High-Entropy Alloy: Processability, Microstructural Insights, and (In Situ) Mechanical Behavior
by Vito Burgio and Ghazal Moeini
Materials 2025, 18(13), 3071; https://doi.org/10.3390/ma18133071 - 27 Jun 2025
Viewed by 413
Abstract
High-entropy alloys are known for their promising mechanical properties, wear and corrosion resistance, which are maintained across a wide range of temperatures. In this study, a CoCrFeNiCu-based high-entropy alloy, distinguished from conventional CoCrFeNi systems by the addition of Cu, which is known to [...] Read more.
High-entropy alloys are known for their promising mechanical properties, wear and corrosion resistance, which are maintained across a wide range of temperatures. In this study, a CoCrFeNiCu-based high-entropy alloy, distinguished from conventional CoCrFeNi systems by the addition of Cu, which is known to enhance toughness and wear resistance, was investigated to better understand the effects of compositional modification on processability and performance. The influence of key process parameters, specifically laser power and scan speed, on the processability of CoCrFeNiCu-based high-entropy alloys produced by laser powder bed fusion additive manufacturing was investigated, with a focus of low laser power, which is critical for minimizing defects and improving the resulting microstructure and mechanical performance. The printed sample density gradually increases with higher volumetric energy density, achieving densities exceeding 99.0%. However, at higher energy densities, the samples exhibit susceptibility to hot cracking, an issue that cannot be mitigated by adjusting the process parameters. Mechanical properties under optimized parameters were further evaluated using Charpy impact and (in situ) tensile tests. These evaluations were supplemented by in situ tensile experiments conducted within a scanning electron microscope to gain insights into the behavior of defects, such as hot cracks, during tensile testing. Despite the sensitivity to hot cracking, the samples exhibited a respectable ultimate tensile strength of 662 MPa, comparable to fine-grained steels like S500MC (070XLK). These findings underscore the potential of CoCrFeNiCu-based high-entropy alloys for advanced applications. However, they also highlight the necessity for developing strategies to ensure stable and reliable processing methods that can mitigate the susceptibility to hot cracking. Full article
Show Figures

Figure 1

15 pages, 1831 KiB  
Article
Eskebornite CuFeSe2: Solid-State Synthesis and Thermoelectric Properties
by Se-Hyeon Choi and Il-Ho Kim
Inorganics 2025, 13(7), 216; https://doi.org/10.3390/inorganics13070216 - 27 Jun 2025
Viewed by 336
Abstract
Eskebornite (CuFeSe2), a member of the I–III–VI2 ternary semiconductor family, was explored in this study as a potential thermoelectric material, offering new insights into its synthesis, structural characteristics, and transport behavior. Structurally analogous to chalcopyrite (CuFeS2)—an extensively studied [...] Read more.
Eskebornite (CuFeSe2), a member of the I–III–VI2 ternary semiconductor family, was explored in this study as a potential thermoelectric material, offering new insights into its synthesis, structural characteristics, and transport behavior. Structurally analogous to chalcopyrite (CuFeS2)—an extensively studied antiferromagnetic semiconductor—eskebornite remains relatively underexplored, particularly regarding its solid-state synthesis and thermoelectric performance. To address this gap, pure eskebornite was synthesized via mechanical alloying followed by hot pressing, a method that enables the fine control of its phase composition and microstructural features. The synthesized undoped CuFeSe2 exhibited p-type nondegenerate semiconducting behavior, with electrical conductivity increasing monotonically over the temperature range of 323–623 K, indicative of thermally activated carrier transport. Simultaneously, a decreasing trend in thermal conductivity with temperature was observed, likely resulting from intensified phonon scattering, which serves to suppress heat transport and enhance the thermoelectric efficiency by maintaining a thermal gradient across the material. A peak in the Seebeck coefficient occurred between 473 and 523 K, suggesting the onset of intrinsic carrier excitation and a transition in dominant carrier transport mechanisms. The material exhibited a maximum power factor of 1.55 μWm−1K−2, while the dimensionless thermoelectric figure of merit (ZT) reached a peak value of 0.37 × 10−3 at 523 K. Although the ZT remains low, these results underscore the potential of eskebornite as a thermoelectric candidate, with substantial room for optimization through chemical doping, microstructural engineering, or nanostructuring approaches to enhance the carrier mobility and reduce the lattice thermal conductivity. Full article
(This article belongs to the Special Issue Advances in Thermoelectric Materials, 2nd Edition)
Show Figures

Figure 1

12 pages, 3510 KiB  
Article
Anomalous Precipitation of the γ-Fe Phase in Fe-Based Nanocrystalline Alloys and Its Impact on Soft Magnetic Properties
by You Wu, Lingxiang Shi, Ranbin Wang, Jili Jia, Wenhui Guo, Yunshuai Su, Hengtong Bu, Siqi Xiang, Weihong Yang, Mingli Fu, Yang Shao and Kefu Yao
Materials 2025, 18(12), 2867; https://doi.org/10.3390/ma18122867 - 17 Jun 2025
Viewed by 424
Abstract
High-Cu-content (Cu-content > 1.3 at.%) nanocrystalline alloys exhibit wide heat-treatment windows and favorable soft magnetic properties due to the presence of pre-existing α-Fe nanocrystals. By fabricating ribbons with varying thicknesses to tailor cooling rates, distinct structural characteristics were achieved in Fe82B [...] Read more.
High-Cu-content (Cu-content > 1.3 at.%) nanocrystalline alloys exhibit wide heat-treatment windows and favorable soft magnetic properties due to the presence of pre-existing α-Fe nanocrystals. By fabricating ribbons with varying thicknesses to tailor cooling rates, distinct structural characteristics were achieved in Fe82B16.5Cu1.5 alloy ribbons. Notably, the face-centered cubic (fcc) γ-Fe phase was identified in Fe-based nanocrystalline alloys. The precipitation of the fcc γ-Fe phase originates from a phase-selection mechanism under specific cooling conditions, while its retention in the as-quenched ribbon with a thickness of 27 μm is attributed to kinetic suppression during rapid cooling and the nanoscale stabilization effect. The formation of the fcc γ-Fe phase significantly reduced the saturation flux density (Bs) and increased coercivity (Hc), concurrently destabilizing the residual amorphous matrix. By suppressing the precipitation of the γ-Fe and Fe3B phases through precise control of ribbon thickness and annealing parameters, the alloy ribbon with a thickness of 16 μm achieved an optimal combination of Bs (1.82 T) and Hc (8.3 A/m). These findings on anomalous fcc γ-Fe phase precipitation provide novel insights into metastable phase engineering and offer structural design guidelines for alloys containing pre-existing α-Fe nanocrystals. Full article
Show Figures

Figure 1

14 pages, 4060 KiB  
Article
A Novel Method to Predict Phase Fraction Based on the Solidification Time on the Cooling Curve
by Junfeng Xu, Yindong Fang, Tian Yang and Changlin Yang
Metals 2025, 15(6), 652; https://doi.org/10.3390/met15060652 - 11 Jun 2025
Viewed by 805
Abstract
The phase fraction plays a critical role in determining the solidification characteristics of metallic alloys. In this study, we propose a novel method (fs = (ttl)/(tstl)) for estimating the phase [...] Read more.
The phase fraction plays a critical role in determining the solidification characteristics of metallic alloys. In this study, we propose a novel method (fs = (ttl)/(tstl)) for estimating the phase fraction based on the solidification time in cooling curves. This method was validated through an experimental analysis of Al-18 wt%Cu and Fe42Ni42B16 alloys, where the phase fractions derived from cooling curves were compared with quantitative microstructure evaluations using computer-aided image analysis and the box-counting method. Then, a comparison between the analysis using the present novel method and Newtonian thermal analysis demonstrates good agreement between the results. The present method is easier to operate, since it does not need derivative and integral operations as in Newtonian thermal analysis. In addition, based on the characteristics of the cooling curve, we also found two other relationships—V/Rc = DTc and RΔt = constant, where V is the solidification rate, Rc is the recalescence rate, D is the diameter of the focal area of the pyrometer, ΔTc is the recalescence height, R is the cooling rate, and Δt is the solidification plateau time. These findings establish an operational framework for quantifying phase fractions and solidification rates in rapid solidification. Full article
(This article belongs to the Special Issue Research on Eutectic Alloys)
Show Figures

Figure 1

Back to TopTop