AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lange, R.G.; Carroll, W.P. Review of recent advances of radioisotope power systems. Energy Convers. Manag. 2008, 49, 393–401. [Google Scholar] [CrossRef]
- Wang, J.; Yin, Y.; Che, C.; Cui, M. Research Progress of Thermoelectric Materials—A Review. Energies 2025, 18, 2122. [Google Scholar] [CrossRef]
- Yin, L.; Yang, F.; Bao, X.; Xue, W.; Du, Z.; Wang, X.; Cheng, J.; Ji, H.; Sui, J.; Liu, X.; et al. Low-temperature sintering of Ag nanoparticles for high-performance thermoelectric module design. Nat. Energy 2023, 8, 665–674. [Google Scholar] [CrossRef]
- Chen, N.; Zhu, H.; Li, G.; Fan, Z.; Zhang, X.; Yang, J.; Lu, T.; Liu, Q.; Wu, X.; Yao, Y.; et al. Improved figure of merit(z) at low temperatures for superior thermoelectric cooling in Mg3(Bi,Sb)2. Nat. Commun. 2023, 14, 4932. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, X.; Zhao, L.-D. Strategies for manipulating thermoelectric properties of layered oxides. Matter 2023, 6, 3274–3295. [Google Scholar] [CrossRef]
- Moshwan, R.; Zhang, M.; Li, M.; Liu, S.; Li, N.; Cao, T.; Liu, W.; Shi, X.; Chen, Z. Compromising Configurational Entropy Leading to Exceptional Thermoelectric Properties in SnTe-Based Materials. Adv. Funct. Mater. 2024, 35, 2418291. [Google Scholar] [CrossRef]
- Ren, W.; Geng, H.; Zhang, Z.; Zhang, L. Filling-Fraction Fluctuation Leading to Glasslike Ultralow Thermal Conductivity in Caged Skutterudites. Phys. Rev. Lett. 2017, 118, 245901. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Xing, Y.; Liao, J.; Xia, X.; Wang, C.; Zhu, C.; Xu, F.; Chen, Z.-G.; Chen, L.; Huang, J.; et al. Thermal-inert and ohmic-contact interface for high performance half-Heusler based thermoelectric generator. Nat. Commun. 2022, 13, 7738. [Google Scholar] [CrossRef] [PubMed]
- Bu, Z.; Zhang, X.; Shan, B.; Tang, J.; Liu, H.; Chen, Z.; Lin, S.; Li, W.; Pei, Y. Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys. Sci. Adv. 2021, 7, 2738. [Google Scholar] [CrossRef]
- Yin, L.; Chen, C.; Zhang, F.; Li, X.; Bai, F.; Zhang, Z.; Wang, X.; Mao, J.; Cao, F.; Chen, X.; et al. Reliable N-type Mg3.2Sb1.5Bi0.49Te0.01/304 stainless steel junction for thermoelectric applications. Acta Mater. 2020, 198, 25–34. [Google Scholar] [CrossRef]
- Xing, T.; Song, Q.; Qiu, P.; Zhang, Q.; Gu, M.; Xia, X.; Liao, J.; Shi, X.; Chen, L. High efficiency GeTe-based materials and modules for thermoelectric power generation. Energy Environ. Sci. 2021, 14, 995–1003. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Q.; Hu, Z.; Jiang, M.; Huang, A.; Ai, X.; Wan, S.; Reith, H.; Wang, L.; Nielsch, K.; et al. Mg3(Bi,Sb)2-based thermoelectric modules for efficient and reliable waste-heat utilization up to 750 K. Energy Environ. Sci. 2022, 15, 3265–3274. [Google Scholar] [CrossRef]
- Chu, J.; Huang, J.; Liu, R.; Liao, J.; Xia, X.; Zhang, Q.; Wang, C.; Gu, M.; Bai, S.; Shi, X.; et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices. Nat. Commun. 2020, 11, 2723. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Ming, C.; Song, Q.; Wang, C.; Liao, J.; Wang, L.; Zhu, C.; Xu, F.; Sun, Y.-Y.; Bai, S.; et al. Lead-free and scalable GeTe-based thermoelectric module with an efficiency of 12%. Sci. Adv. 2023, 9, 7919. [Google Scholar] [CrossRef] [PubMed]
- Zuo, W.; Chen, H.; Yu, Z.; Fu, Y.; Ai, X.; Cheng, Y.; Jiang, M.; Wan, S.; Fu, Z.; Liu, R.; et al. Atomic-scale interface strengthening unlocks efficient and durable Mg-based thermoelectric devices. Nat. Mater. 2025, 24, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Guo, F.; Feng, Y.; Li, C.; Zou, Y.; Cheng, J.; Dong, X.; Wu, H.; Zhang, Q.; Liu, W.; et al. Performance boost for bismuth telluride thermoelectric generator via barrier layer based on low Young’s modulus and particle sliding. Nat. Commun. 2023, 14, 8085. [Google Scholar] [CrossRef]
- Qiu, P.; Mao, T.; Huang, Z.; Xia, X.; Liao, J.; Agne, M.T.; Gu, M.; Zhang, Q.; Ren, D.; Bai, S.; et al. High-Efficiency and Stable Thermoelectric Module Based on Liquid-Like Materials. Joule 2019, 3, 1538–1548. [Google Scholar] [CrossRef]
- Shi, W.; Qin, D.; Sun, Y.; Wu, H.; Tong, H.; Xie, L.; Liu, Z.; Zhang, Q.; Cai, W.; Guo, F.; et al. Batch Fabrication and Interface Stabilization Accelerate Application of Skutterudite Thermoelectric Module for Power Generation. Adv. Energy Mater. 2024, 14, 2303698. [Google Scholar] [CrossRef]
- Li, A.; Wang, L.; Li, J.; Wu, X.; Mori, T. Self-optimized contact in air-robust thermoelectric junction towards long-lasting heat harvesting. Nat. Commun. 2025, 16, 1502. [Google Scholar] [CrossRef]
- Holgate, T.C.; Bennett, R.; Hammel, T.; Caillat, T.; Keyser, S.; Sievers, B. Increasing the Efficiency of the Multi-mission Radioisotope Thermoelectric Generator. J. Electron. Mater. 2014, 44, 1814–1821. [Google Scholar] [CrossRef]
- Shen, Z.-G.; Tian, L.-L.; Liu, X. Automotive exhaust thermoelectric generators: Current status, challengesand future prospects. Energy Convers. Manag. 2019, 195, 1138–1173. [Google Scholar] [CrossRef]
- Gu, M.; Xia, X.; Huang, X.; Bai, S.; Li, X.; Chen, L. Study on the interfacial stability of p-type Ti/CeyFexCo4-xSb12 thermoelectric joints at high temperature. J. Alloys Compd. 2016, 671, 238–244. [Google Scholar] [CrossRef]
- Chu, J.; Gu, M.; Liu, R.; Bai, S.; Shi, X.; Chen, L. Interfacial behaviors of p-type CeyFexCo4–xSb12/Nb thermoelectric joints. Funct. Mater. Lett. 2020, 13, 2051020. [Google Scholar] [CrossRef]
- Gu, M.; Xia, X.; Li, X.; Huang, X.; Chen, L. Microstructural evolution of the interfacial layer in the Ti-Al/Yb0.6Co4Sb12 thermoelectric joints at high temperature. J. Alloys Compd. 2014, 610, 665–670. [Google Scholar] [CrossRef]
- Li, J.; Zhao, S.; Chen, J.; Bai, G.; Hu, L.; Liu, F.; Ao, W.; Li, Y.; Xie, H.; Zhang, C. Enhanced Interfacial Reliability and Mechanical Strength of CoSb3—Based Thermoelectric Joints with Rationally Designed Diffusion Barrier Materials of Ti-Based Alloys. ACS Appl. Mater. Interfaces 2020, 12, 44858–44865. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, V.; Battabyal, M.; Murty, B.; Gopalan, R. Interfacial thermoelectric and mechanical properties of indigenously prepared Ni–Cr–Cu/Co4Sb12 skutterudite thermoelectric joints. Ceram. Int. 2022, 48, 29175–29182. [Google Scholar] [CrossRef]
- Fan, X.; Gu, M.; Shi, X.; Chen, L.; Bai, S.; Nunna, R. Fabrication and reliability evaluation of Yb0.3Co4Sb12/Mo-Ti/Mo-Cu/Ni thermoelectric joints. Ceram. Int. 2015, 41, 7590–7595. [Google Scholar] [CrossRef]
- Liu, C.; Li, S.; Zheng, Y.; Xu, M.; Su, H.; Miao, X.; Liu, Y.; Zhou, Z.; Qi, J.; Yang, B.; et al. Advances in high entropy oxides: Synthesis, structure, properties and beyond. Prog. Mater. Sci. 2025, 148, 101385. [Google Scholar] [CrossRef]
- Cantor, B. Multicomponent high-entropy Cantor alloys. Prog. Mater. Sci. 2021, 120, 100754. [Google Scholar] [CrossRef]
- Schweidler, S.; Botros, M.; Strauss, F.; Wang, Q.; Ma, Y.; Velasco, L.; Marques, G.C.; Sarkar, A.; Kübel, C.; Hahn, H.; et al. High-entropy materials for energy and electronic applications. Nat. Rev. Mater. 2024, 9, 266–281. [Google Scholar] [CrossRef]
- Ren, W.; Geng, H.; Zhang, L.; Liu, X.; He, T.; Feng, J. Simultaneous blocking of minority carrier and high energy phonon in p-type skutterudites. Nano Energy 2018, 46, 249–256. [Google Scholar] [CrossRef]
- Ren, W.; Sun, Y.; Zhang, J.; Xia, Y.; Geng, H.; Zhang, L. Doping distribution in Skutterudites with ultra-high filling fractions for achieving ultra-low thermal conductivity. Acta Mater. 2021, 209, 116791. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, X.; Ma, T.; Wen, L.; Hu, L.; Hu, M. Effect of Al on characterization and properties of AlxCoCrFeNi high entropy alloy prepared via electro-deoxidization of the metal oxides and vacuum hot pressing sintering process. J. Alloys Compd. 2021, 864, 158717. [Google Scholar] [CrossRef]
- Wang, W.-R.; Wang, W.-L.; Yeh, J.-W. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J. Alloys Compd. 2014, 589, 143–152. [Google Scholar] [CrossRef]
- Joseph, J.; Stanford, N.; Hodgson, P.; Fabijanic, D.M. Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys. J. Alloys Compd. 2017, 728, 885–895. [Google Scholar] [CrossRef]
- Al Hasan, A.; Wang, J.; Shin, S.; Gilbert, D.A.; Liaw, P.K.; Tang, N.; Liyanage, W.N.C.; Santodonato, L.; DeBeer-Schmitt, L.; Butch, N.P. Effects of aluminum content on thermoelectric performance of AlxCoCrFeNi high-entropy alloys. J. Alloys Compd. 2021, 883, 160811. [Google Scholar] [CrossRef]
- Shafeie, S.; Guo, S.; Hu, Q.; Fahlquist, H.; Erhart, P.; Palmqvist, A. High-entropy alloys as high-temperature thermoelectric materials. J. Appl. Phys. 2015, 118, 184905. [Google Scholar] [CrossRef]
HEA | Al | Co | Cr | Fe | Ni | |
---|---|---|---|---|---|---|
Al0.3CoCrFeNi | nominal compositions | 7.2 | 23.2 | 23.2 | 23.2 | 23.2 |
actual compositions | 8.27 | 24.26 | 22.11 | 22.43 | 22.93 | |
Al1CoCrFeNi | nominal compositions | 20 | 20 | 20 | 20 | 20 |
actual compositions | 21.40 | 20.49 | 19.57 | 19.52 | 19.02 |
Point | Al | Ti | Cr | Fe | Co | Ni | Ga | Sb | La |
---|---|---|---|---|---|---|---|---|---|
A | 0.04 | 0 | 2.08 | 23.30 | 11.87 | 14.31 | 0 | 50.01 | 0.34 |
B | 0.02 | 0.32 | 2.16 | 25.13 | 9.29 | 13.22 | 0 | 50.19 | 0.07 |
C | 20.54 | 0.01 | 19.55 | 22.34 | 18.68 | 13.59 | 0.34 | 3.83 | 0.02 |
D | 1.1 | 0.06 | 20.13 | 11.81 | 15.57 | 16.04 | 2.26 | 33.02 | 0.06 |
E | 25.28 | 0 | 28.85 | 13.65 | 17.22 | 12.34 | 0.51 | 2.12 | 0.03 |
Point | Al | Ti | Cr | Fe | Co | Ni | Ga | Sb | La |
---|---|---|---|---|---|---|---|---|---|
1 | 0.55 | 0.00 | 0.06 | 16.08 | 5.10 | 0.21 | 0.45 | 75.39 | 2.16 |
2 | 0.50 | 0.00 | 0.10 | 17.61 | 4.72 | 0.09 | 0.08 | 74.52 | 2.37 |
3 | 0.33 | 0.00 | 0.07 | 17.64 | 5.37 | 0.32 | 0.30 | 74.09 | 1.87 |
4 | 0.38 | 0.00 | 0.13 | 16.73 | 6.39 | 0.12 | 0.03 | 74.33 | 1.88 |
p-SKD | - | 0.59 | - | 17.65 | 5.88 | - | 0.59 | 70.59 | 4.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, X.; Zhou, W.; Li, X.; Gao, Y.; Yu, J.; Zeng, L.; Yang, G.; Liu, L.; Ren, W.; Sun, Y. AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces. Materials 2025, 18, 3688. https://doi.org/10.3390/ma18153688
Zou X, Zhou W, Li X, Gao Y, Yu J, Zeng L, Yang G, Liu L, Ren W, Sun Y. AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces. Materials. 2025; 18(15):3688. https://doi.org/10.3390/ma18153688
Chicago/Turabian StyleZou, Xiaoxia, Wangjie Zhou, Xinxin Li, Yuzeng Gao, Jingyi Yu, Linglu Zeng, Guangteng Yang, Li Liu, Wei Ren, and Yan Sun. 2025. "AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces" Materials 18, no. 15: 3688. https://doi.org/10.3390/ma18153688
APA StyleZou, X., Zhou, W., Li, X., Gao, Y., Yu, J., Zeng, L., Yang, G., Liu, L., Ren, W., & Sun, Y. (2025). AlxCoCrFeNi High-Entropy Alloys Enable Simultaneous Electrical and Mechanical Robustness at Thermoelectric Interfaces. Materials, 18(15), 3688. https://doi.org/10.3390/ma18153688