Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (209)

Search Parameters:
Keywords = Candida Antarctica

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2014 KiB  
Article
CALB Immobilized on Octyl-Agarose—An Efficient Pharmaceutical Biocatalyst for Transesterification in Organic Medium
by Joanna Siódmiak, Jacek Dulęba, Natalia Kocot, Rafał Mastalerz, Gudmundur G. Haraldsson and Tomasz Siódmiak
Int. J. Mol. Sci. 2025, 26(14), 6961; https://doi.org/10.3390/ijms26146961 - 20 Jul 2025
Viewed by 282
Abstract
The growing need for developing safer and more effective methods for obtaining enantiomers of chiral compounds, particularly those with pharmacological activity, highlights the potential of biocatalysis as an appropriate pharmaceutical research direction. However, low catalytic activity and stability of free enzymes are often [...] Read more.
The growing need for developing safer and more effective methods for obtaining enantiomers of chiral compounds, particularly those with pharmacological activity, highlights the potential of biocatalysis as an appropriate pharmaceutical research direction. However, low catalytic activity and stability of free enzymes are often among the substantial limitations to the wide application of biocatalysis. Therefore, to overcome these obstacles, new technological procedures are being designed. In this study, we present optimized protocols for the immobilization of Candida antarctica lipase B (CALB) on an octyl- agarose support, ensuring high enantioselectivity in an organic reaction medium. The immobilization procedures (with drying step), including buffers with different pH values and concentrations, as well as the study of the influence of temperature and immobilization time, were presented. It was found that the optimal conditions were provided by citrate buffer with a pH of 4 and a concentration of 300 mM. The immobilized CALB on the octyl-agarose support exhibited high catalytic activity in the kinetic resolution of (R,S)-1-phenylethanol via enantioselective transesterification with isopropenyl acetate in 1,2-dichloropropane (DCP), as a model reaction for lipase activity monitoring on an analytical scale. HPLC analysis demonstrated that the (R)-1-phenylethyl acetate was obtained in an enantiomeric excess of eep > 99% at a conversion of approximately 40%, and the enantiomeric ratio was E > 200. Thermal and storage stability studies performed on the immobilized CALB octyl-agarose support confirmed its excellent stability. After 7 days of thermal stability testing at 65 °C in a climatic chamber, the (R)-1-phenylethyl acetate was characterized by enantiomeric excess of eep > 99% at a conversion of around 40% (similar values of catalytic parameters to those achieved using a non-stored lipase). The documented high catalytic activity and stability of the developed CALB-octyl-agarose support allow us to consider it as a useful tool for enantioselective transesterification in organic medium. Full article
Show Figures

Figure 1

35 pages, 2913 KiB  
Article
Effect of Supplementation of Antioxidant Lipids Synthetized by Enzymatic Acidolysis with EPA/DHA Concentrate and Maqui (Aristotelia chilensis (Mol.) Stuntz) Seed Oil for Mitigating High-Fat Diet-Induced Obesity and Metabolic Disorders in Mice
by Benjamín Claria, Alejandra Espinosa, Alicia Rodríguez, María Elsa Pando, Gretel Dovale-Rosabal, Nalda Romero, Katherynne Mayorga, Evelyn Tapia, Jenifer Saez, Melissa Tsuchida, Karla Vásquez, Rodrigo Valenzuela, Álvaro Pérez, Patricio Díaz and Santiago P. Aubourg
Antioxidants 2025, 14(7), 790; https://doi.org/10.3390/antiox14070790 - 26 Jun 2025
Viewed by 602
Abstract
Bioactive compounds have shown significant potential in the management of obesity and metabolic syndrome (MetS). This study investigates the effects of antioxidant lipids (ALω-3), synthetized through enzymatic acidolysis using non-specific lipase B from Candida antarctica under supercritical CO2 conditions. These lipids were [...] Read more.
Bioactive compounds have shown significant potential in the management of obesity and metabolic syndrome (MetS). This study investigates the effects of antioxidant lipids (ALω-3), synthetized through enzymatic acidolysis using non-specific lipase B from Candida antarctica under supercritical CO2 conditions. These lipids were derived from a concentrate of rainbow trout (Oncorhynchus mykiss) belly oil, rich in long-chain polyunsaturated omega-3 fatty acids (LCPUFAn-3), and cold-pressed maqui seed oil (MO, Aristotelia chilensis (Mol.) Stuntz). Their effects were then evaluated in a murine high-fat diet (HFD) model. The fatty acid profile, tocopherol and tocotrienol content, and thin-layer chromatography of ALω-3 were analyzed. After 8 weeks on an HFD, male C57BL/6 mice were divided into four groups and switched to a control diet (CD) with the following supplements for 3 weeks: Glycerol (G), commercial marine Omega-3 (CMω-3), a mixture of LCPUFAn-3 concentrate + MO (Mω-3), or ALω-3. The total body and organ weights, serum markers, and liver and visceral fat pro-inflammatory marker expression levels were assessed. ALω-3 contained 13.4% oleic, 33.9% linoleic, 6.3% α-linolenic, 10.7% eicosapentaenoic, and 16.2% docosahexaenoic fatty acids. The β, γ, δ-tocopherol, and β, γ-tocotrienol values were 22.9 ± 1.4, 24.9 ± 0.2, 6.8 ± 0.7, 22.9 ± 1.7, and 22.4 ± 4.7 mg·kg−1, respectively, with α-tocopherol detected in traces. ALω-3 supplementation increased serum Trolox equivalent capacity, significantly reduced serum GPT levels (p < 0.01), and enhanced postprandial glucose tolerance (p < 0.001), although it did not alter insulin resistance (HOMA-IR). These findings indicate ALω-3′s potential for mitigating the glucose intolerance, liver damage, and oxidative stress associated with obesity and MetS, highlighting the need for additional research to explore its potential health benefits. Full article
(This article belongs to the Collection Advances in Antioxidant Ingredients from Natural Products)
Show Figures

Figure 1

19 pages, 1622 KiB  
Article
Enzymatic Production of p-Methoxycinnamate Monoglyceride Under Solventless Conditions: Kinetic Analysis and Product Characterization
by Laura Molinero, Juan J. Tamayo, José J. Gandia, Félix García-Ochoa and Miguel Ladero
Catalysts 2025, 15(6), 548; https://doi.org/10.3390/catal15060548 - 31 May 2025
Viewed by 2141
Abstract
With the increase in biodiesel production experienced in the last decades, biomass-derived glycerol is obtained at a high rate, so glycerol availability in the market has scaled up while this polyol price has been reduced, with the exception of high-quality glycerol. In this [...] Read more.
With the increase in biodiesel production experienced in the last decades, biomass-derived glycerol is obtained at a high rate, so glycerol availability in the market has scaled up while this polyol price has been reduced, with the exception of high-quality glycerol. In this context, novel and sustainable products based on glycerol are actively looked for. Octyl-methoxycinnamate (OMC) is a common cosmetic ingredient and sunscreen with potential activity as an endocrine disruptor that is considered an emergent contaminant in aquatic environments. As possible substituents, glycerol-based methoxycinnamates such as monoglycerides can be obtained via lipase-driven esterification. In this work, we develop an enzymatic process under solventless conditions to obtain p-methoxycinnamate monoglyceride under mild conditions using Novozym 435—an immobilized industrial preparation of the lipase B of Candida antarctica—observing the effect of key process variables such as temperature and enzyme, water and acid concentrations. Furthermore, the obtained product was assessed for its activity as UVB-filter and for its stability under irradiation conditions, showing a similar SPF activity and a much higher stability toward photooxidation than OMC. Full article
Show Figures

Graphical abstract

13 pages, 1023 KiB  
Article
Hydroxytyrosyl Eicosapentaenoate as a Potential Antioxidant for Omega-3 Fatty Acids: Improved Synthesis and Comparative Evaluation with Other Natural Antioxidants
by Natalia García-Acosta, Rosa Cert, Marta Jordán, Luis Goya, Raquel Mateos and Jose Luis Espartero
Biomolecules 2025, 15(5), 714; https://doi.org/10.3390/biom15050714 - 13 May 2025
Viewed by 655
Abstract
Hydroxytyrosol (HT), the primary phenolic compound in virgin olive oil, has notable cardiovascular benefits, particularly in preventing low-density lipoprotein (LDL) oxidation. However, its hydrophilicity limits its solubility and integration into lipid-based formulations. This study aimed to enhance its lipophilicity by synthesizing hydroxytyrosyl eicosapentaenoate [...] Read more.
Hydroxytyrosol (HT), the primary phenolic compound in virgin olive oil, has notable cardiovascular benefits, particularly in preventing low-density lipoprotein (LDL) oxidation. However, its hydrophilicity limits its solubility and integration into lipid-based formulations. This study aimed to enhance its lipophilicity by synthesizing hydroxytyrosyl eicosapentaenoate (HT-EPA), a derivative of HT and eicosapentaenoic acid (EPA), using a one-step enzymatic catalysis with lipase B from Candida antarctica (CALB). The reaction, performed as a suspension of HT in ethyl eicosapentaenoate (Et-EPA) (1:9 molar ratio) under vacuum, achieved higher yields and shorter reaction times than previously reported, with a purity exceeding 98%, confirmed by 1H-NMR. For the first time, the antioxidant capacity of HT-EPA in comparison with other natural antioxidants was assessed using the FRAP assay, while its oxidative stability in an omega-3-rich oil matrix was evaluated via the Rancimat method. HT-EPA and hydroxytyrosyl acetate (HT-Ac) displayed antioxidant activity comparable to HT but significantly higher than α-tocopherol, a common food antioxidant. Given the scarcity of effective lipid-soluble antioxidants, HT-EPA represents a promising candidate for omega-3 nutraceuticals, offering enhanced stability and potential health benefits. This study provides a simple, efficient, and scalable strategy for developing functional lipid-based formulations with cardioprotective potential by improving HT solubility while preserving its antioxidant properties. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

17 pages, 1547 KiB  
Article
Green Biocatalysis of Xylitol Monoferulate: Candida antarctica Lipase B-Mediated Synthesis and Characterization of Novel Bifunctional Prodrug
by Federico Zappaterra, Francesco Presini, Domenico Meola, Chaimae Chaibi, Simona Aprile, Lindomar Alberto Lerin and Pier Paolo Giovannini
BioTech 2025, 14(2), 25; https://doi.org/10.3390/biotech14020025 - 2 Apr 2025
Viewed by 801
Abstract
Natural compounds with significant bioactive properties can be found in abundance within biomasses. Especially prominent for their anti-inflammatory, neuroprotective, antibacterial, and antioxidant activities are cinnamic acid derivatives (CAs). Ferulic acid (FA), a widely studied phenylpropanoid, exhibits a broad range of therapeutic and nutraceutical [...] Read more.
Natural compounds with significant bioactive properties can be found in abundance within biomasses. Especially prominent for their anti-inflammatory, neuroprotective, antibacterial, and antioxidant activities are cinnamic acid derivatives (CAs). Ferulic acid (FA), a widely studied phenylpropanoid, exhibits a broad range of therapeutic and nutraceutical applications, demonstrating antidiabetic, anticancer, antimicrobial, and hepato- and neuroprotective activities. This research investigates the green enzymatic synthesis of innovative and potentially bifunctional prodrug derivatives of FA, designed to enhance solubility and stability profiles. Selective esterification was employed to conjugate FA with xylitol, a biobased polyol recognized for its bioactive antioxidant properties and safety profile. Furthermore, by exploiting t-amyl alcohol as a green solvent, the enzymatic synthesis of the derivative was optimized for reaction parameters including temperature, reaction time, enzyme concentration, and molar ratio. The synthesized derivative, xylitol monoferulate (XMF), represents a novel contribution to the literature. The comprehensive characterization of this compound was achieved using advanced spectroscopic methods, including 1H-NMR, 13C-NMR, COSY, HSQC, and HMBC. This study represents a significant advancement in the enzymatic synthesis of high-value biobased derivatives, demonstrating increased biological activities and setting the stage for future applications in green chemistry and the sustainable production of bioactive compounds. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

20 pages, 2315 KiB  
Article
Optimization of the Full Hydrolysis of Babassu Oil by Combi-Lipases
by Rayan P. S. Santos, Lucas L. Araujo, Airton A. Oliveira, Thamyres F. da Silva, Thales G. Rocha, Roberto Fernandez-Lafuente, Rodolpho R. C. Monteiro and Rodrigo S. Vieira
Catalysts 2025, 15(3), 209; https://doi.org/10.3390/catal15030209 - 22 Feb 2025
Cited by 1 | Viewed by 909
Abstract
The concept of combi-lipases is herein explored in the full hydrolysis of babassu oil. The commercially immobilized lipases from Candida antarctica (form B) (Novozym® 435), Rhizomucor miehei (Lipozyme® RM-IM), and Thermomyces lanuginosus (Lipozyme® TL-IM) were evaluated as single and combined [...] Read more.
The concept of combi-lipases is herein explored in the full hydrolysis of babassu oil. The commercially immobilized lipases from Candida antarctica (form B) (Novozym® 435), Rhizomucor miehei (Lipozyme® RM-IM), and Thermomyces lanuginosus (Lipozyme® TL-IM) were evaluated as single and combined biocatalysts by a mixture design with triangular surface. As a result, after evaluating the response desirability profiling for all biocatalysts, the best biocatalyst in the reaction was the combi-lipases composed of 75% of Lipozyme® RM-IM, 17% of Novozym® 435, and 8% of Lipozyme® TL-IM, reaching full hydrolysis (>99%) after 4 h of reaction. Subsequently, such combi-lipases were employed as biocatalysts in the optimization of the reaction in a shorter reaction time (3 h). After optimization by the Taguchi method, full hydrolysis (>99%) was reached under optimized reaction conditions (9 wt.% of biocatalyst content, 1:2 (oil/water), 40 °C, and 180 rpm). Under such conditions, the combi-lipases maintained 70% of their initial activity after 10 reaction cycles. The antimicrobial activity against some of the most common environmental bacteria of the obtained free fatty acids (FFAs) was also evaluated. The FFAs inhibited more than 90% of the growth of S. aureus, E. coli, and P. aeruginosus when using 10 mg FFAs/mL. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

23 pages, 970 KiB  
Article
Synthesis of Enantiostructured Triacylglycerol Prodrugs Constituting an Active Drug Located at Terminal sn-1 and sn-3 Positions of the Glycerol Backbone
by Lena Rós Jónsdottir and Gudmundur G. Haraldsson
Molecules 2025, 30(5), 991; https://doi.org/10.3390/molecules30050991 - 21 Feb 2025
Viewed by 591
Abstract
The current paper reports the asymmetric synthesis of a focused library of enantiostructured triacylglycerols (TAGs) constituting a potent drug of the NSAID type (ibuprofen or naproxen) along with a pure bioactive n-3 polyunsaturated fatty acid (PUFA) intended as a novel type of prodrug. [...] Read more.
The current paper reports the asymmetric synthesis of a focused library of enantiostructured triacylglycerols (TAGs) constituting a potent drug of the NSAID type (ibuprofen or naproxen) along with a pure bioactive n-3 polyunsaturated fatty acid (PUFA) intended as a novel type of prodrug. In this second category, a TAG prodrug of the terminal sn-1 or sn-3 position of the glycerol skeleton is acylated with a single saturated medium-chain fatty acid (C6, C8, C10, or C12), and another with the drug entity; the PUFA (EPA or DHA) is located in the sn-2 position. This was accomplished by a six-step chemoenzymatic approach, two of which were promoted by a lipase, starting from enantiopure (R)- and (S)-solketals. The highly regioselective immobilized Candida antarctica lipase (CAL-B) played a crucial role in the regiocontrol of the synthesis. The most challenging key step involved the incorporation of the drugs that were activated as oxime esters by the lipase exclusively in the terminal position of glycerol that is protected as a benzyl ether. All combinations, a total of 32 such prodrug TAGs, were prepared, isolated, and fully characterized, along with 24 acylglycerol intermediates, obtained in very-high-to-excellent yields in the majority of cases. Full article
Show Figures

Figure 1

15 pages, 2361 KiB  
Article
Streamlined Production, Protection, and Purification of Enzyme Biocatalysts Using Virus-like Particles and a Cell-Free Protein Synthesis System
by Seung O. Yang, Joseph P. Talley, Gregory H. Nielsen, Kristen M. Wilding and Bradley C. Bundy
SynBio 2025, 3(1), 5; https://doi.org/10.3390/synbio3010005 - 5 Feb 2025
Cited by 1 | Viewed by 1630
Abstract
Enzymes play an essential role in many different industries; however, their operating conditions are limited due to the loss of enzyme activity in the presence of proteases and at temperatures significantly above physiological conditions. One way to improve the stability of these enzymes [...] Read more.
Enzymes play an essential role in many different industries; however, their operating conditions are limited due to the loss of enzyme activity in the presence of proteases and at temperatures significantly above physiological conditions. One way to improve the stability of these enzymes against high temperatures and proteases is to encapsulate them in protective shells or virus-like particles. This work presents a streamlined, three-step, cell-free protein synthesis (CFPS) procedure that enables rapid in vitro enzyme production, targeted encapsulation in protective virus-like particles (VLPs), and facile purification using a 6× His-tag fused to the VLP coat protein. This process is performed in under 12 h and overcomes several limitations of enzyme encapsulation, such as the control of packing density, speed, and complexity of the process. Here, we encapsulate the enzyme Candida antarctica lipase B in the VLP from the bacteriophage Qβ, while in the presence of a linking RNA aptamer. The encapsulated enzymes largely retained their activity in comparison to the free enzymes. Additionally, when subjected to 90 °C temperatures or 5 h incubation with proteases, the encapsulated enzymes maintained their activity, whereas the free enzymes lost their activity. In this work, we also demonstrate control over packing density by achieving packing densities of 4.7 and 6.5 enzymes per VLP based off the concentration of enzyme added to the encapsulation step. Full article
Show Figures

Figure 1

15 pages, 1682 KiB  
Article
High-Level Expression and Engineering of Candida antarctica Lipase B in a Non-Methanol-Induced Pichia pastoris System
by Xinkun Lu, Bin Chen, Xiaowei Shen, Ziheng Cui and Biqiang Chen
Catalysts 2025, 15(1), 27; https://doi.org/10.3390/catal15010027 - 30 Dec 2024
Viewed by 1586
Abstract
The efficient expression and excellent thermal stability of Candida antarctica lipase B (CALB) are crucial for its industrial production. In this study, through genetic engineering and rational design, while preserving the superior catalytic properties of CALB, we optimized the induction pathway using glycerol [...] Read more.
The efficient expression and excellent thermal stability of Candida antarctica lipase B (CALB) are crucial for its industrial production. In this study, through genetic engineering and rational design, while preserving the superior catalytic properties of CALB, we optimized the induction pathway using glycerol as the sole carbon source; moreover, the thermal stability sites of CALB were predicted and optimized. The results revealed that the level of CALB expression in this expression system reached 2.27 g/L under the condition of a 5 L fermenter. The Tm value of the CALB-Q231F increased by 10 °C. Moreover, after thermal inactivation at 80 °C for 1 h, the retention rate of esterification enzymatic activity over 24 h was 2.99 times that of wild-type (WT) CALB, whereas the retention rate of hydrolytic enzymatic activity was 2.23 times that of WT CALB. In this study, a non-methanol-induced Pichia pastoris expression system was successfully designed and constructed; a non-methanol-induced CALB-producing strain, X33-pGAPZ(Mα) A-CalB-Q231F, with high thermal stability and a high expression level was obtained, which can be used for the development of industrial enzymes. Full article
(This article belongs to the Special Issue Recent Advances in Biocatalysis and Enzyme Engineering)
Show Figures

Figure 1

23 pages, 869 KiB  
Article
Synthesis of Enantiostructured Triacylglycerols Possessing a Saturated Fatty Acid, a Polyunsaturated Fatty Acid and an Active Drug Intended as Novel Prodrugs
by Lena Rós Jónsdóttir and Gudmundur G. Haraldsson
Molecules 2024, 29(23), 5745; https://doi.org/10.3390/molecules29235745 - 5 Dec 2024
Cited by 1 | Viewed by 990
Abstract
This report describes the asymmetric synthesis of a focused library of enantiopure structured triacylglycerols (TAGs) comprised of a single saturated fatty acid (C6, C8, C10, C12, C14 or C16), a pure bioactive n-3 polyunsaturated fatty acid (EPA or DHA) and a potent drug [...] Read more.
This report describes the asymmetric synthesis of a focused library of enantiopure structured triacylglycerols (TAGs) comprised of a single saturated fatty acid (C6, C8, C10, C12, C14 or C16), a pure bioactive n-3 polyunsaturated fatty acid (EPA or DHA) and a potent drug (ibuprofen or naproxen) intended as a novel type of prodrug. One of the terminal sn-1 or sn-3 positions of the glycerol backbone is occupied with a saturated fatty, the remaining one with a PUFA, and the drug entity is present in the sn-2 position. This was accomplished by a six-step chemoenzymatic approach starting from enantiopure (R)- and (S)-solketals. The highly regioselective immobilized Candida antarctica lipase (CAL-B) played a crucial role in the regiocontrol of the synthesis. All combinations, a total of 48 such prodrug TAGs, were prepared, isolated and fully characterized, along with 60 acylglycerol intermediates, obtained in very high to excellent yields. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

19 pages, 3997 KiB  
Article
In Situ CALB Immobilization in Xerogel and Sonogel Employing TMOS as Silica Precursor and Polyethylene Glycol as Additive
by Angela Antunes, Carolina E. Demaman Oro, Andressa Franco Denti, Leonardo M. da Silva, Aline M. M. Ficanha, Jéssica Mulinari, Luciana D. Venquiaruto, Jamile Zeni, Marcelo L. Mignoni and Rogério M. Dallago
Processes 2024, 12(11), 2411; https://doi.org/10.3390/pr12112411 - 1 Nov 2024
Cited by 3 | Viewed by 1288
Abstract
The immobilization of enzymes, especially lipases, presents a significant challenge in contemporary biotechnology due to their wide-ranging application in industrial processes. Given the array of available techniques for enzyme immobilization, this study aimed to immobilize Candida antarctica B (CALB) lipase within silica xerogel [...] Read more.
The immobilization of enzymes, especially lipases, presents a significant challenge in contemporary biotechnology due to their wide-ranging application in industrial processes. Given the array of available techniques for enzyme immobilization, this study aimed to immobilize Candida antarctica B (CALB) lipase within silica xerogel and sonogel matrices obtained through the sol–gel technique. Polyethylene glycol (PEG) was incorporated as an additive, with tetramethylorthosilicate (TMOS) serving as the silica precursor. This study assessed the operational stability, storage stability, and thermal properties of the resulting supports. Results revealed that both sonogel and xerogel supports, supplemented with PEG, maintained storage stability above 50% throughout a 365-day period. Moreover, operational stability tests demonstrated that the xerogel support could be reused up to 21 times, while the sonogel support exhibited 10 reuses. Thermal analysis further highlighted a reduction in the deactivation constant and an elongation of the half-life time for both supports. These observations suggest that the supports effectively shield the enzyme from thermal inactivation. Overall, these findings underscore the potential utility of PEG-enhanced sonogel and xerogel supports in various industrial enzyme applications, providing valuable insights into their operational, storage, and thermal stability. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

17 pages, 9525 KiB  
Article
Structured Triacylglycerol with Optimal Arachidonic Acid and Docosahexaenoic Acid Content for Infant Formula Development: A Bio-Accessibility Study
by Luis Vázquez, Blanca Pardo de Donlebún, Alejandra Gutiérrez-Guibelalde, Assamae Chabni and Carlos F. Torres
Foods 2024, 13(17), 2797; https://doi.org/10.3390/foods13172797 - 2 Sep 2024
Cited by 2 | Viewed by 1676
Abstract
Polyunsaturated fatty acids (PUFAs), especially arachidonic acid (ARA) and docosahexaenoic acid (DHA), are extremely important fatty acids for brain development in the fetus and early childhood. Premature infants face challenges obtaining these two fatty acids from their mothers. It has been reported that [...] Read more.
Polyunsaturated fatty acids (PUFAs), especially arachidonic acid (ARA) and docosahexaenoic acid (DHA), are extremely important fatty acids for brain development in the fetus and early childhood. Premature infants face challenges obtaining these two fatty acids from their mothers. It has been reported that supplementation with triacylglycerols (TAGs) with an ARA:DHA (w/w) ratio of 2:1 may be optimal for preterm infants, as presented in commercial formulas such as Formulaid™. This study explored methods to produce TAGs with a 2:1 ratio (ARA:DHA), particularly at the more bioavailable sn-2 position of the glycerol backbone. Blending and enzymatic acidolysis of microalgae oil (rich in DHA) and ARA-rich oil yielded products with the desired ARA:DHA ratio, enhancing sn-2 composition compared to Formulaid™ (1.6 for blending and 2.3 for acidolysis versus 0.9 in Formulaid™). Optimal acidolysis conditions were 45 °C, a 1:3 substrate molar ratio, 10% Candida antarctica lipase, and 4 h. The process was reproducible, and scalable, and the lipase could be reused. In vitro digestion showed that 75.5% of the final product mixture was bio-accessible, comprising 19.1% monoacylglycerols, ~50% free fatty acids, 14.6% TAGs, and 10.1% diacylglycerols, indicating better bio-accessibility than precursor oils. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

21 pages, 5112 KiB  
Article
A Study on the Regioselective Acetylation of Flavonoid Aglycons Catalyzed by Immobilized Lipases
by Angelos Papanikolaou, Alexandra V. Chatzikonstantinou, Renia Fotiadou, Aliki Tsakni, Dimitra Houhoula, Angeliki C. Polydera, Ioannis V. Pavlidis and Haralambos Stamatis
Biomolecules 2024, 14(8), 897; https://doi.org/10.3390/biom14080897 - 24 Jul 2024
Viewed by 1832
Abstract
This study aimed to explore the capacity of immobilized lipases on the acetylation of six aglycon flavonoids, namely myricetin, quercetin, luteolin, naringenin, fisetin and morin. For this purpose, lipase B from Candida antarctica (CaLB) and lipase from Thermomyces lanuginosus (TLL) were immobilized onto [...] Read more.
This study aimed to explore the capacity of immobilized lipases on the acetylation of six aglycon flavonoids, namely myricetin, quercetin, luteolin, naringenin, fisetin and morin. For this purpose, lipase B from Candida antarctica (CaLB) and lipase from Thermomyces lanuginosus (TLL) were immobilized onto the surface of ZnOFe nanoparticles derived from an aqueous olive leaf extract. Various factors affecting the conversion of substrates and the formation of monoesterified and diesterified products, such as the amount of biocatalyst and the molar ratio of the substrates and reaction solvents were investigated. Both CaLB and TLL-ZnOFe achieved 100% conversion yield of naringenin to naringenin acetate after 72 h of reaction time, while TLL-ZnOFe achieved higher conversion yields of quercetin, morin and fisetin (73, 85 and 72% respectively). Notably, CaLB-ZnOFe displayed significantly lower conversion yields for morin compared with TLL-ZnOFe. Molecular docking analysis was used to elucidate this discrepancy, and it was revealed that the position of the hydroxyl groups of the B ring on morin introduced hindrances on the active site of CaLB. Finally, selected flavonoid esters showed significantly higher antimicrobial activity compared with the original compound. This work indicated that these lipase-based nanobiocatalysts can be successfully applied to produce lipophilic derivatives of aglycon flavonoids with improved antimicrobial activity. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

16 pages, 2117 KiB  
Article
Analysis of the Behavior of Deep Eutectic Solvents upon Addition of Water: Its Effects over a Catalytic Reaction
by Paola R. Campodónico, Jazmín Alarcón-Espósito, Jackson J. Alcázar, Belén Olivares and Cristian Suárez-Rozas
Molecules 2024, 29(14), 3296; https://doi.org/10.3390/molecules29143296 - 12 Jul 2024
Viewed by 2183
Abstract
This study presents the potential role of deep eutectic solvents (DESs) in a lipase-catalyzed hydrolysis reaction as a co-solvent in an aqueous solution given by a phosphate buffer. Ammonium salts, such as choline chloride, were paired with hydrogen bond donors, such as urea, [...] Read more.
This study presents the potential role of deep eutectic solvents (DESs) in a lipase-catalyzed hydrolysis reaction as a co-solvent in an aqueous solution given by a phosphate buffer. Ammonium salts, such as choline chloride, were paired with hydrogen bond donors, such as urea, 1,2,3-propanetriol, and 1,2 propanediol. The hydrolysis of p-nitrophenyl laureate was carried out with the lipase Candida antarctica Lipase B (CALB) as a reaction model to evaluate the solvent effect and tested in different DES/buffer phosphate mixtures at different % w/w. The results showed that two mixtures of different DES at 25 % w/w were the most promising solvents, as this percentage enhanced the activities of CALB, as evidenced by its higher catalytic efficiency (kcatKM). The solvent analysis shows that the enzymatic reaction requires a reaction media rich in water molecules to enable hydrogen-bond formation from the reaction media toward the enzymatic reaction, suggesting a better interaction between the substrate and the enzyme-active site. This interaction could be attributed to high degrees of freedom influencing the enzyme conformation given by the reaction media, suggesting that CALB acquires a more restrictive structure in the presence of DES or the stabilized network given by the hydrogen bond from water molecules in the mixture improves the enzymatic activity, conferring conformational stability by solvent effects. This study offers a promising approach for applications and further perspectives on genuinely green industrial solvents. Full article
(This article belongs to the Special Issue Catalysts: New Materials for Green Chemistry)
Show Figures

Figure 1

14 pages, 1436 KiB  
Article
Enzymatic Desymmetrisation of Prochiral meso-1,2-Disubstituted-1,2-Diaminoethane for the Synthesis of Key Enantioenriched (−)-Nutlin-3 Precursor
by Virginia Cristofori, Davide Illuminati, Chiara Bisquoli, Martina Catani, Greta Compagnin, Giulia Turrin, Claudio Trapella and Anna Fantinati
Molecules 2024, 29(14), 3267; https://doi.org/10.3390/molecules29143267 - 10 Jul 2024
Cited by 1 | Viewed by 1105
Abstract
Herein we present the biocatalysed preparation of a mono-N-carbamate-protected precursor of antitumoral Nutlin-3a through enantioselective alkoxycarbonylation of meso-1,2-disubstituted-1,2-diaminoethane using enzyme lipases and dialkyl carbonates as acylating agents. A series of supported or free lipase enzymes were screened in combination with [...] Read more.
Herein we present the biocatalysed preparation of a mono-N-carbamate-protected precursor of antitumoral Nutlin-3a through enantioselective alkoxycarbonylation of meso-1,2-disubstituted-1,2-diaminoethane using enzyme lipases and dialkyl carbonates as acylating agents. A series of supported or free lipase enzymes were screened in combination with commercially available diallyl, diethyl and dimethyl carbonates. The reactions were conducted at different temperatures, for different reaction times and with variable co-solvent systems to evaluate the effects on the enzyme catalytic activity. The best results in terms of conversion, enantiomeric excess and yield were obtained when lipase from Candida antarctica B (CAL-B) was used with diallyl carbonate (DAC) when conducting the reaction solventless at 75 °C. Full article
Show Figures

Figure 1

Back to TopTop