Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = CORDEX-Africa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3922 KiB  
Article
Future Climate Trends in the Wine-Growing Regions of the Western Cape of South Africa
by Helga Chauke and Rita Pongrácz
Atmosphere 2025, 16(2), 227; https://doi.org/10.3390/atmos16020227 - 18 Feb 2025
Viewed by 2297
Abstract
The Western Cape province is among the best wine-producing regions; however, the province has been facing environmental challenges due to the rapidly changing climate. This study analyses the projected changes in temperature and precipitation patterns across seven wine-producing districts in the Western Cape [...] Read more.
The Western Cape province is among the best wine-producing regions; however, the province has been facing environmental challenges due to the rapidly changing climate. This study analyses the projected changes in temperature and precipitation patterns across seven wine-producing districts in the Western Cape using high-resolution regional climate model (RCM) simulations from the CORDEX-Africa framework. The model simulations highlight spatial variability due to variable topography and microclimates within the province wherein variable changes in climate conditions are projected over the selected wine-producing regions. The Olifants River is projected to experience the most substantial temperature increases—greater than 5 °C—under the very high baseline emission scenario at the end of the century, while regions closer to the coast, such as Cape Agulhas, are projected to experience moderate changes in both temperature and precipitation changes. The projected changes in precipitation indicate a strong drying trend, especially over regions that are farther from the south coast. The results highlight the vulnerability of vinicultural practices due to climate change; therefore, this study can be used to provide stakeholders with information needed so that they can adapt to the changing climate conditions across wine regions. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

15 pages, 1622 KiB  
Article
Trends in the Occurrence of Compound Extremes of Temperature and Precipitation in Côte d’Ivoire
by Elisée Yapo Akobé, Adama Diawara, Fidèle Yoroba, Benjamin K. Kouassi, Assi Louis Martial Yapo, Ibrahima Diba, Kouakou Kouadio, Dro T. Tiémoko, Dianikoura Ibrahim Koné and Arona Diedhiou
Atmosphere 2025, 16(1), 3; https://doi.org/10.3390/atmos16010003 - 24 Dec 2024
Viewed by 984
Abstract
The aim of this study is to characterize the compound extremes of rainfall and temperature in Côte d’Ivoire. For this purpose, we analyzed the outputs of fourteen (14) climate models from the CORDEX-Africa project. Results show an increase (approximately 4.3 °C) in the [...] Read more.
The aim of this study is to characterize the compound extremes of rainfall and temperature in Côte d’Ivoire. For this purpose, we analyzed the outputs of fourteen (14) climate models from the CORDEX-Africa project. Results show an increase (approximately 4.3 °C) in the surface temperature and a decrease (5.90%) of the mean rainfall in the near (2036–2065) and far futures (2071–2100) over Côte d’Ivoire during the January–February–March (JFM) period. The analysis of the compound extremes of the wet/warm type highlights an increase in the frequency of this climatic hazard in the northern and central parts of the country during the January–March (JFM) season in the near and far futures. The dry/warm mode will increase in the central and southern parts of the country in the near future and in the whole country in the far future. These increases in compound extremes could lead to an increase in droughts and natural disasters across the country and could have a negative impact on socio-economic activities, such as transportation and agricultural production. This work could provide decision support for political decision-makers in formulating future public policies for managing agricultural production, food security, and natural disasters. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

24 pages, 6036 KiB  
Article
Projected Changes in Dry and Wet Spells over West Africa during Monsoon Season Using Markov Chain Approach
by Jules Basse, Moctar Camara, Ibrahima Diba and Arona Diedhiou
Climate 2024, 12(12), 211; https://doi.org/10.3390/cli12120211 - 6 Dec 2024
Cited by 2 | Viewed by 1369
Abstract
This study examines projected changes in dry and wet spell probabilities in West Africa during the July–August–September monsoon season using a Markov chain approach. Four simulations of regional climate models from the CORDEX-Africa program were used to analyze projected changes in intraseasonal variability. [...] Read more.
This study examines projected changes in dry and wet spell probabilities in West Africa during the July–August–September monsoon season using a Markov chain approach. Four simulations of regional climate models from the CORDEX-Africa program were used to analyze projected changes in intraseasonal variability. The results show an increase in the probability of having a dry day, a dry day preceding a wet day, and a dry day preceding a dry day, and a decrease in the probability of wet days in the Sahel region under anthropogenic forcing scenarios RCP4.5 and RCP8.5. The decrease in wet days is stronger in the far future and under the RCP8.5 scenario (up to −30%). The study also finds that the probability of consecutive dry days (lasting at least 7 days and 10 days) is expected to increase in western Sahel, central Sahel, and the Sudanian Area under both scenarios, with stronger increases in the RCP8.5 scenario. In contrast, a decrease is expected over the Guinea Coast, with the changes being more important under the RCP4.5. Dry spell probabilities increasing in the Sahel areas and in the northern Sudanian Area is linked to the increase in the very wet days (R95P) in the daily rainfall intensity index (SDII). These changes in dry and wet spell probabilities are important for water management decisions and risk reduction in the energy and agricultural sectors. This study also highlights the need for decision-makers to implement mitigation and adaptation policies to minimize the adverse effects of climate change. Full article
Show Figures

Figure 1

20 pages, 11907 KiB  
Article
Effects of Climate Variability on Malaria Transmission in Southern Côte d’Ivoire, West Africa
by Madina Doumbia, Jean Tenena Coulibaly, Dieudonné Kigbafori Silué, Guéladio Cissé, Jacques-André N’Dione and Brama Koné
Int. J. Environ. Res. Public Health 2023, 20(23), 7102; https://doi.org/10.3390/ijerph20237102 - 23 Nov 2023
Cited by 6 | Viewed by 2986
Abstract
Malaria continues to be a major public health concern with a substantial burden in Africa. Even though it has been widely demonstrated that malaria transmission is climate-driven, there have been very few studies assessing the relationship between climate variables and malaria transmission in [...] Read more.
Malaria continues to be a major public health concern with a substantial burden in Africa. Even though it has been widely demonstrated that malaria transmission is climate-driven, there have been very few studies assessing the relationship between climate variables and malaria transmission in Côte d’Ivoire. We used the VECTRI model to predict malaria transmission in southern Côte d’Ivoire. First, we tested the suitability of VECTRI in modeling malaria transmission using ERA5 temperature data and ARC2 rainfall data. We then used the projected climatic data pertaining to 2030, 2050, and 2080 from a set of 14 simulations from the CORDEX-Africa database to compute VECTRI outputs. The entomological inoculation rate (EIR) from the VECTRI model was well correlated with the observed malaria cases from 2010 to 2019, including the peaks of malaria cases and the EIR. However, the correlation between the two parameters was not statistically significant. The VECTRI model predicted an increase in malaria transmissions in both scenarios (RCP8.5 and RCP4.5) for the time period 2030 to 2080. The monthly EIR for RCP8.5 was very high (1.74 to 1131.71 bites/person) compared to RCP4.5 (0.48 to 908 bites/person). These findings call for greater efforts to control malaria that take into account the impact of climatic factors. Full article
Show Figures

Figure 1

21 pages, 8157 KiB  
Article
Changes in the Seasonal Cycle of Heatwaves, Dry and Wet Spells over West Africa Using CORDEX Simulations
by Assi Louis Martial Yapo, Benjamin Komenan Kouassi, Adama Diawara, Fidèle Yoroba, Adjoua Moise Landry Famien, Pêlèmayo Raoul Touré, Kouakou Kouadio, Dro Touré Tiemoko, Mouhamadou Bamba Sylla and Arona Diedhiou
Atmosphere 2023, 14(10), 1582; https://doi.org/10.3390/atmos14101582 - 19 Oct 2023
Cited by 2 | Viewed by 1926
Abstract
This study analyzes the potential response of the seasonal cycle of heatwaves (HWDI) and dry (CDD) and wet (CWD) spell indices over West Africa for the near- (2031–2060) and the far-future periods (2071–2100) under RCP4.5 and RCP8.5 scenarios using Coordinated Regional Climate Downscaling [...] Read more.
This study analyzes the potential response of the seasonal cycle of heatwaves (HWDI) and dry (CDD) and wet (CWD) spell indices over West Africa for the near- (2031–2060) and the far-future periods (2071–2100) under RCP4.5 and RCP8.5 scenarios using Coordinated Regional Climate Downscaling Experiment (CORDEX) simulations. Despite the fact that some relative biases (an underestimation of 30% for CDD, an overestimation of about 60% for CWD, and an overestimation of about 50% for HWDI) exist, during the historical period (1976–2005) in general, the CORDEX simulations and their ensemble mean outperform the seasonal variability in the above-mentioned indices over three defined subregions of West Africa (i.e., the Gulf of Guinea and Western and Eastern Sahel). They show high correlation coefficients (0.9 in general) and less RMSE. They project an increase (about 10 and 20 days) in heatwave days for both the near- and far-future periods over the whole West African region under both RCP scenarios. In addition, projections indicate that the Sahel regions will experience a decrease (about 5 days) in wet spell days from March to November, while in the Gulf of Guinea, a decrease (about 3 days) is projected throughout the year, except in the CCCLM simulation, which indicates an increase (about 5 days) during the retreat phase of the monsoon (October to December). Our results also highlight an increase (about 80%) in dry spells over the Sahel regions that are more pronounced during the March–November period, while over the Gulf of Guinea, an increase (about 40%) is projected over the entire year. Moreover, the months of increasing dry spells and decreasing wet spells coincide, suggesting that countries in these regions could be simultaneously exposed to dry seasons associated with a high risk of drought and heatwaves under future climate conditions. Full article
(This article belongs to the Special Issue Heat Waves: Perspectives from Observations, Reanalysis and Modeling)
Show Figures

Figure 1

7 pages, 3102 KiB  
Proceeding Paper
Change in Aridity Index in the Mediterranean Region under Different Emission Scenarios
by Kostas Douvis, John Kapsomenakis, Stavros Solomos, Anastasia Poupkou, Theodora Stavraka, Panagiotis Nastos and Christos Zerefos
Environ. Sci. Proc. 2023, 26(1), 171; https://doi.org/10.3390/environsciproc2023026171 - 5 Sep 2023
Cited by 3 | Viewed by 1296
Abstract
In the present study, the spatial and temporal variability of the Aridity Index (AI) in the Mediterranean region during the 30-year period 1971–2000 is analyzed. The analysis is performed on a decadal timescale. Subsequently, the projected change in the AI in the periods [...] Read more.
In the present study, the spatial and temporal variability of the Aridity Index (AI) in the Mediterranean region during the 30-year period 1971–2000 is analyzed. The analysis is performed on a decadal timescale. Subsequently, the projected change in the AI in the periods 2031–2060 (near future) and 2071–2100 (far future) under the RCP4.5 and RCP8.5 emission scenarios in comparison with 1971–2000 (reference period) is presented. The input of the calculations are simulation results supplied by the CORDEX EU project. In total, an ensemble of 20 combinations of global climate models (GCMs) and regional climate models (RCMs) are used. The calculation of the AI is based on potential evapotranspiration, which, in turn, is calculated according to the classic method of Thornthwaite. Our results show that drier conditions are to be expected in the future along a wide zone in southern Europe, including Spain, Italy, Bulgaria, Greece and Turkey, as well as in Northern Africa, particularly under the RCP8.5 scenario and towards the end of the century. Full article
Show Figures

Figure 1

19 pages, 4478 KiB  
Article
Impacts of Climate Change on Hydrological Regimes in the Congo River Basin
by Sara Karam, Baba-Serges Zango, Ousmane Seidou, Duminda Perera, Nidhi Nagabhatla and Raphael M. Tshimanga
Sustainability 2023, 15(7), 6066; https://doi.org/10.3390/su15076066 - 31 Mar 2023
Cited by 14 | Viewed by 6470
Abstract
Surface water resources are essential for a wide range of human activities, such as municipal water supply, fishing, navigation, irrigation, and hydropower. Their regime is also linked to environmental sustainability, water-related risks, human health, and various ecosystem services. Global warming is expected to [...] Read more.
Surface water resources are essential for a wide range of human activities, such as municipal water supply, fishing, navigation, irrigation, and hydropower. Their regime is also linked to environmental sustainability, water-related risks, human health, and various ecosystem services. Global warming is expected to modify surface water availability, quality, and distribution and therefore affect water use productivity as well as the incidence of water-related risks. Thus, it is important for communities to plan and adapt to the potential impacts of climate change. The Congo River Basin, home to 75 million people, is subject to recurrent flood and drought events, which are expected to worsen as a result of climate change. This study aims to assess future modifications of the hydrological regime of the Congo River and the socio–economic impacts of these projected changes for three future periods: 2011–2041, 2041–2070, and 2071–2100. A Soil and Water Assessment Tool (SWAT) model of the Congo River Basin was developed, calibrated, and validated using daily rainfall observations combined with daily time series of precipitation, temperatures, relative humidity, solar radiation, and wind speed derived from the WFDEI (Watch Forced Era Interim) reanalysis data set. The outputs of ten Regional Climate Models (RCMs) from the Coordinated Downscaling Experiment (CORDEX-AFRICA) were statistically downscaled to obtain future climate time series, considering two Representative Concentration Pathways: RCP8.5 and RCP4.5. The calibrated model was used to assess changes in streamflow in all reaches of the Congo River. Results suggest relative changes ranging from −31.8% to +9.2% under RCP4.5 and from −42.5% to +55.5% under RCP 8.5. Larger relative changes occur in the most upstream reaches of the network. Results also point to an overall decrease in discharge in the center and southern parts of the basin and increases in the northwestern and southeastern parts of the basin under both emission scenarios, with RCP8.5 leading to the most severe changes. River discharge is likely to decrease significantly, with potential consequences for agriculture, hydropower production, and water availability for human and ecological systems. Full article
(This article belongs to the Special Issue Water-Related Disasters and Risks)
Show Figures

Figure 1

22 pages, 14702 KiB  
Article
Projected Changes in Solar PV and Wind Energy Potential over West Africa: An Analysis of CORDEX-CORE Simulations
by Aissatou Ndiaye, Mounkaila Saley Moussa, Cheikh Dione, Windmanagda Sawadogo, Jan Bliefernicht, Laouali Dungall and Harald Kunstmann
Energies 2022, 15(24), 9602; https://doi.org/10.3390/en15249602 - 17 Dec 2022
Cited by 14 | Viewed by 3336
Abstract
Renewable energy development is growing fast and is expected to expand in the next decades in West Africa as a contribution to addressing the power demand and climate change mitigation. However, the future impacts of climate change on solar PV and the wind [...] Read more.
Renewable energy development is growing fast and is expected to expand in the next decades in West Africa as a contribution to addressing the power demand and climate change mitigation. However, the future impacts of climate change on solar PV and the wind energy potential in the region are still unclear. This study investigates the expected future impacts of climate change on solar PV and wind energy potential over West Africa using an ensemble of three regional climate models (RCMs). Each RCM is driven by three global climate models (GCMs) from the new coordinated high-resolution output for regional evaluations (CORDEX-CORE) under the RCP8.5 scenario. Two projection periods were used: the near future (2021–2050) and the far future (2071–2100). For the model evaluation, reanalysis data from ERA5 and satellite-based climate data (SARAH-2) were used. The models and their ensemble mean (hereafter Mean) show acceptable performance for the simulations of the solar PV potential, the wind power density, and related variables with some biases. The Mean predicts a general decrease in the solar PV potential over the region of about −2% in the near future and −4% in the far future. The wind power density (WPD) is expected to increase by about 20% in the near future and 40% in the far future. The changes for solar PV potential seem to be consistent, although the intensity differs according to the RCM used. For the WPD, there are some discrepancies among the RCMs in terms of intensity and direction. This study can guide governments and policymakers in decision making for future solar and wind energy projects in the region. Full article
(This article belongs to the Special Issue Climate Change and Sustainable Energy Transition)
Show Figures

Figure 1

27 pages, 2848 KiB  
Article
Downscaled Climate Change Projections in Urban Centers of Southwest Ethiopia Using CORDEX Africa Simulations
by Tesfaye Dessu Geleta, Diriba Korecha Dadi, Chris Funk, Weyessa Garedew, Damilola Eyelade and Adefires Worku
Climate 2022, 10(10), 158; https://doi.org/10.3390/cli10100158 - 21 Oct 2022
Cited by 10 | Viewed by 4698
Abstract
Projections of future climate change trends in four urban centers of southwest Ethiopia were examined under a high Representative Concentration Pathways (RCP8.5) scenario for near- (2030), mid- (2050), and long-term (2080) periods based on high-resolution (0.220) Coordinated Regional Climate Downscaling Experiment [...] Read more.
Projections of future climate change trends in four urban centers of southwest Ethiopia were examined under a high Representative Concentration Pathways (RCP8.5) scenario for near- (2030), mid- (2050), and long-term (2080) periods based on high-resolution (0.220) Coordinated Regional Climate Downscaling Experiment (CORDEX) for Africa data. The multi-model ensemble projects annual maximum and minimum temperatures increasing by 0.047 °C per year (R2 > 0.3) and 0.038 °C per year (R2 > 0.7), respectively, with the rates increased by a factor of 10 for decadal projections between the 2030s and 2080s. The monthly maximum temperature increase is projected to be 1.41 °C and 2.82 °C by 2050 and 2080, respectively. In contrast, the monthly minimum temperature increase is projected to reach +3.2 °C in 2080. The overall seasonal multi-model ensemble average shows an increment in maximum temperature by +1.1 °C and +1.9 °C in 2050 and 2080, with the highest change in the winter, followed by spring, summer, and autumn. Similarly, the future minimum temperature is projected to increase across all seasons by 2080, with increases ranging from 0.4 °C (2030s) to 3.2 °C (2080s). All models consistently project increasing trends in maximum and minimum temperatures, while the majority of the models projected declining future precipitation compared to the base period of 1971–2005. A two-tailed T-test (alpha = 0.05) shows a significant change in future temperature patterns, but no significant changes in precipitation were identified. Changes in daily temperature extremes were found in spring, summer, and autumn, with the largest increases in extreme heat in winter. Therefore, our results support proactive urban planning that considers suitable adaptation and mitigation strategies against increasing air temperatures in urban centers in southwest Ethiopia. Future work will examine the likely changes in temperature and precipitation extremes. Full article
(This article belongs to the Special Issue Microclimate Variations and Urban Heat Island)
Show Figures

Figure 1

19 pages, 2765 KiB  
Article
A Multi Criteria Decision Analysis Approach for Regional Climate Model Selection and Future Climate Assessment in the Mono River Basin, Benin and Togo
by Nina Rholan Hounguè, Adrian Delos Santos Almoradie and Mariele Evers
Atmosphere 2022, 13(9), 1471; https://doi.org/10.3390/atmos13091471 - 10 Sep 2022
Cited by 11 | Viewed by 2693
Abstract
Regional climate models (RCMs) are key in the current context of global warming, and they are increasingly used to support decision-making and to identify adaptation measures in response to climate change. However, considering the wide range of available RCMs, it is important to [...] Read more.
Regional climate models (RCMs) are key in the current context of global warming, and they are increasingly used to support decision-making and to identify adaptation measures in response to climate change. However, considering the wide range of available RCMs, it is important to identify the most suitable ones prior to climate impact studies, especially at small scales like catchments. In this study, a multicriteria decision analysis approach, namely the technique for order preferences by similarity to an ideal solution (TOPSIS) was applied to select the best performing RCMs in the Mono River Basin of Benin and Togo (West Africa). The TOPSIS method was used to systematically rank 15 RCMs accessed from the coordinated regional downscaling experiment (CORDEX) database. Six RCMs were finally selected and averaged into an ensemble to assess the future climate in the Mono River Basin until 2070 compared to the period 1966–2015. Two climate change scenarios, RCP 4.5 and RCP 8.5, were considered. The results show that under both climate change scenarios, the annual temperature has an increasing trend during the period 1966–2070, whereas annual rainfall for the next 50 years presents high variability and no statistically significant trend. Furthermore, seasonal cycles of rainfall are expected to change in the different parts of the catchment with delayed onset of rainfall, longer dry seasons, and rainfall intensification. In response to the projected changes, impact studies and risk assessments need to be carried out to evaluate potential implications for human security in the Mono River Basin and to provide adequate adaptation measures. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

22 pages, 4398 KiB  
Article
Improving Future Estimation of Cheliff-Mactaa-Tafna Streamflow via an Ensemble of Bias Correction Approaches
by Mohammed Renima, Ayoub Zeroual, Yasmine Hamitouche, Ali Assani, Sara Zeroual, Ahmed Amin Soltani, Cedrick Mulowayi Mubulayi, Sabrina Taibi, Senna Bouabdelli, Sara Kabli, Allal Ghammit, Idris Bara, Abdennour Kastali and Ramdane Alkama
Climate 2022, 10(8), 123; https://doi.org/10.3390/cli10080123 - 22 Aug 2022
Cited by 2 | Viewed by 2878
Abstract
The role of climate change in future streamflow is still very uncertain, especially over semi-arid regions. However, part of this uncertainty can be offset by correcting systematic climate models’ bias. This paper tries to assess how the choice of a bias correction method [...] Read more.
The role of climate change in future streamflow is still very uncertain, especially over semi-arid regions. However, part of this uncertainty can be offset by correcting systematic climate models’ bias. This paper tries to assess how the choice of a bias correction method may impact future streamflow of the Cheliff-Mactaa-Tafna (CMT) rivers. First, three correction methods (quantile mapping (QM), quantile delta mapping (QDM), and scaled distribution mapping (SDM)) were applied to an ensemble of future precipitation and temperature coming from CORDEX-Africa, which uses two Representative Concentration Pathways: RCP4.5 and RCP8.5. Then, the Zygos model was used to convert the corrected time series into streamflow. Interestingly, the findings showed an agreement between the three methods that revealed a decline in future streamflow up to [−42 to −62%] in autumn, [+31% to −11%] in winter, [−23% to −39%] in spring, and [−23% to −41%] in summer. The rate of decrease was largest when using QM-corrected model outputs, followed by the raw model, the SDM-corrected model, and finally, the QDM-corrected model outputs. As expected, the RCP presents the largest decline especially by the end of the 21st Century. Full article
Show Figures

Figure 1

20 pages, 10736 KiB  
Article
Resolution-Sensitive Added Value Analysis of CORDEX-CORE RegCM4-7 Past Seasonal Precipitation Simulations over Africa Using Satellite-Based Observational Products
by Gnim Tchalim Gnitou, Guirong Tan, Yan Hongming, Isaac Kwesi Nooni and Kenny Thiam Choy Lim Kam Sian
Remote Sens. 2022, 14(9), 2102; https://doi.org/10.3390/rs14092102 - 27 Apr 2022
Cited by 5 | Viewed by 2317
Abstract
This study adopts a two-way approach to CORDEX-CORE RegCM4-7 seasonal precipitation simulations’ Added Value (AV) analysis over Africa, which aims to quantify potential improvements introduced by the downscaling approach at high and low resolution, using satellite-based observational products. The results show that RegCM4-7 [...] Read more.
This study adopts a two-way approach to CORDEX-CORE RegCM4-7 seasonal precipitation simulations’ Added Value (AV) analysis over Africa, which aims to quantify potential improvements introduced by the downscaling approach at high and low resolution, using satellite-based observational products. The results show that RegCM4-7 does add value to its driving Global Climate Models (GCMs) with a positive Added Value Coverage (AVC) ranging between 20 and 60% at high resolution, depending on the season and the boundary conditions. At low resolution, the results indicate an increase in the positive AVC by up to 20% compared to the high-resolution results, with an up to 8% decrease for instances where an increase is not observed. Typical climate zones such as West Africa, Central Africa, and Southern East Africa, where improvements by Regional Climate Models (RCMs) are expected due to strong dependence on mesoscale and fine-scale features, show positive AVC greater than 20%, regardless of the season and the driving GCM. These findings provide more evidence for confirming the hypothesis that the RCMs AV is influenced by their internal physics rather than being the product of a mere disaggregation of large-scale features provided by GCMs. Although the results show some dependencies to the driving GCMs relating to their equilibrium climate sensitivity nature, the findings at low resolutions similar to the native GCM resolutions make the influence of internal physics more important. The findings also feature the CORDEX-CORE RegCM4-7 precipitation simulations’ potential in bridging the quality and resolution gap between coarse GCMs and high-resolution remote sensing datasets. Even if further post-processing activities, such as bias correction, may still be needed to remove persistent biases at high resolution, using upscaled RCMs as an alternative to GCMs for large-scale precipitation studies over Africa can be insightful if the AV and other performance statistics are satisfactory for the intended application. Full article
(This article belongs to the Special Issue Remote Sensing for Climate Change)
Show Figures

Figure 1

31 pages, 8872 KiB  
Article
Impact of Climate Change on Hydrometeorology and Droughts in the Bilate Watershed, Ethiopia
by Yoseph Arba Orke and Ming-Hsu Li
Water 2022, 14(5), 729; https://doi.org/10.3390/w14050729 - 24 Feb 2022
Cited by 29 | Viewed by 5647
Abstract
This study aims to assess the potential impacts of climate change on hydrometeorological variables and drought characteristics in the Ethiopian Bilate watershed. Climate projections under two Representative Concentration Pathways (RCP4.5 and RCP8.5) were obtained from the Coordinated Regional Downscaling Experiment (CORDEX) Africa for [...] Read more.
This study aims to assess the potential impacts of climate change on hydrometeorological variables and drought characteristics in the Ethiopian Bilate watershed. Climate projections under two Representative Concentration Pathways (RCP4.5 and RCP8.5) were obtained from the Coordinated Regional Downscaling Experiment (CORDEX) Africa for the near future (2021–2050) and far future (2071–2100) periods. The Soil and Water Assessment Tool (SWAT) model was applied to assess changes in watershed hydrology with the CORDEX-Africa data. The Standardized Precipitation Index (SPI), Streamflow Drought Index (SDI), and Reconnaissance Drought Index (RDI) were calculated to identify the characteristics of meteorological, hydrological, and agricultural droughts, respectively. Due to a significant rise in temperature, evapotranspiration will increase by up to 16.8% by the end of the 21st century. Under the RCP8.5 scenario, the annual average rainfall is estimated to decrease by 38.3% in the far future period, inducing a reduction of streamflow of up to 37.5%. Projections in reduced diurnal temperature range might benefit crop growth but suggest elevated heat stress. Probabilities of drought occurrence are expected to be doubled in the far future period, with increased intensities for all three types of droughts. These projected impacts will exacerbate water scarcity and threaten food securities in the study area. The study findings provide forward-looking quantitative information for water management authorities and decision-makers to develop adaptive measures to cope with the changing climate. Full article
Show Figures

Figure 1

26 pages, 4171 KiB  
Article
Modeling the Impact of Climate and Land Use/Land Cover Change on Water Availability in an Inland Valley Catchment in Burkina Faso
by Mouhamed Idrissou, Bernd Diekkrüger, Bernhard Tischbein, Felix Op de Hipt, Kristian Näschen, Thomas Poméon, Yacouba Yira and Boubacar Ibrahim
Hydrology 2022, 9(1), 12; https://doi.org/10.3390/hydrology9010012 - 11 Jan 2022
Cited by 26 | Viewed by 4905
Abstract
Water scarcity for smallholder farming in West Africa has led to the shift of cultivation from uplands to inland valleys. This study investigates the impacts of climate and land use/land cover (LULC) change on water resources in an intensively instrumented inland valley catchment [...] Read more.
Water scarcity for smallholder farming in West Africa has led to the shift of cultivation from uplands to inland valleys. This study investigates the impacts of climate and land use/land cover (LULC) change on water resources in an intensively instrumented inland valley catchment in Southwestern Burkina Faso. An ensemble of five regional climate models (RCMs) and two climate scenarios (RCP 4.5 and RCP 8.5) was utilized to drive a physically-based hydrological model WaSiM after calibration and validation. The impact of climate change was quantified by comparing the projected period (2021–2050) and a reference period (1971–2000). The result showed a large uncertainty in the future change of runoff between the RCMs. Three models projected an increase in the total runoff from +12% to +95%, whereas two models predicted a decrease from −44% to −24%. Surface runoff was projected to show the highest relative change compared to the other runoff components. The projected LULC 2019, 2025, and 2030 were estimated based on historical LULC change (1990–2013) using the Land Change Modeler (LCM). A gradual conversion of savanna to cropland was shown, with annual rates rom 1 to 3.3%. WaSiM was used to simulate a gradual increase in runoff with time caused by this land use change. The combined climate and land use change was estimated using LULC-2013 in the reference period and LULC-2030 as future land use. The results suggest that land use change exacerbates the increase in total runoff. The increase in runoff was found to be +158% compared to the reference period but only +52% without land use change impacts. This stresses the fact that land use change impact is not negligible in this area, and climate change impact assessments without land use change analysis might be misleading. The results of this study can be used as input to water management models in order to derive strategies to cope with present and future water scarcities for smallholder farming in the investigated area. Full article
Show Figures

Figure 1

17 pages, 5986 KiB  
Article
Characteristics of Enhanced Heatwaves over Tanzania and Scenario Projection in the 21st Century
by Amatus Gyilbag, Martial Amou, Roberto Xavier Supe Tulcan, Lei Zhang, Tsedale Demelash and Yinlong Xu
Atmosphere 2021, 12(8), 1026; https://doi.org/10.3390/atmos12081026 - 11 Aug 2021
Cited by 7 | Viewed by 3875
Abstract
Extreme hot temperature is dangerous to the bioeconomy, and would worsen with time. Ambient heatwaves accompanied by unusual droughts are major threats to poverty eradication in Tanzania. Due to sparsity of observation data and proper heatwave detection metrics, there has been a paucity [...] Read more.
Extreme hot temperature is dangerous to the bioeconomy, and would worsen with time. Ambient heatwaves accompanied by unusual droughts are major threats to poverty eradication in Tanzania. Due to sparsity of observation data and proper heatwave detection metrics, there has been a paucity of knowledge about heatwave events in Tanzania. In this study, the Heatwave Magnitude Index daily (HWMId) was adopted to quantitatively analyze heatwave characteristics throughout Tanzania at mid-21st century (2041–2070) and end of 21st century (2071–2100), relative to the reference period (1983–2012) using the CHIRTS-daily quasi-global high-resolution temperature dataset and climate simulations from a multi-modal ensemble of median scenarios (RCP4.5, from CORDEX-Africa). The results showed that moderate to super-extreme heatwaves occurred in Tanzania between 1983 and 2012, particularly in 1999, when ultra-extreme heatwaves (HWMId > 32) occurred in the Lake Victoria basin. It is projected that by mid-21st century, the upper category of HWMId would be hotter and longer, and would occur routinely in Tanzania. The spatial extent of all of the HWMId categories is projected to range from 34% to 73% by the end of the 21st century with a duration of 8 to 35 days, compared to 1 to 5 days during the reference period. These findings will contribute to increasing public awareness of the need for adaptation. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

Back to TopTop