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Abstract: Malaria continues to be a major public health concern with a substantial burden in Africa.
Even though it has been widely demonstrated that malaria transmission is climate-driven, there have
been very few studies assessing the relationship between climate variables and malaria transmission
in Côte d’Ivoire. We used the VECTRI model to predict malaria transmission in southern Côte
d’Ivoire. First, we tested the suitability of VECTRI in modeling malaria transmission using ERA5
temperature data and ARC2 rainfall data. We then used the projected climatic data pertaining to 2030,
2050, and 2080 from a set of 14 simulations from the CORDEX-Africa database to compute VECTRI
outputs. The entomological inoculation rate (EIR) from the VECTRI model was well correlated with
the observed malaria cases from 2010 to 2019, including the peaks of malaria cases and the EIR.
However, the correlation between the two parameters was not statistically significant. The VECTRI
model predicted an increase in malaria transmissions in both scenarios (RCP8.5 and RCP4.5) for the
time period 2030 to 2080. The monthly EIR for RCP8.5 was very high (1.74 to 1131.71 bites/person)
compared to RCP4.5 (0.48 to 908 bites/person). These findings call for greater efforts to control
malaria that take into account the impact of climatic factors.
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1. Introduction

Malaria is the leading cause of hospital visits in Côte d’Ivoire, with more than 40 to 62%
of hospitalizations occurring among children less than 5 years of age [1,2]. In most endemic
countries, children under five years old and pregnant women are the most vulnerable and
are therefore more likely to develop severe malaria [3]. In 2017, the estimated number of
malaria cases and deaths was approximately 3.5 million and 10 thousand in Côte d’Ivoire,
respectively [4]. Pregnant women are the most affected. Indeed, the risk of death from
severe malaria is twice as high in pregnant women [5]. This is due to the fact that pregnancy
decreases immunity and increases the likelihood of severe anemia [6].

The transmission of malaria in Côte d’Ivoire is primarily carried out by five main
species of mosquito, namely, An. Gambiae s.s., An. Coluzzii, An. funestus s.s., An. nili s.s.,
and An. Melas, with the first three being the most predominant species in transmission.
However, An. nili s.s. and An. melas can play important roles in certain areas of the
country [7,8]. These vector species are therefore not homogeneously distributed, and their
vectorial capacity also varies enormously depending on the location and the season [7,9–11],
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leading to heterogeneity in the transmission rate across the country [3]. Of note, human
activities, through the establishment of rice fields in some regions, provide additional
optimal conditions for Anopheles mosquito breeding and larval development [9,12,13].
In addition, the impact of climatic variables on malaria varies across the region and the
ecological systems [14,15]. Numerous studies have used statistical malaria models, such as
the regression model, the Bayesian model, and the Hydrology, Entomology, and Malaria
Transmission Simulator (HYDREMATS), to determine the effect of climate change on
reported malaria rates in endemic malaria regions of Africa [16–22]. In the northern part
of Côte d’Ivoire, for example, M’Bra et al. [16] have demonstrated that an incremental
increase of 10 mm of monthly precipitation was, on average, associated with a 1% and a
1.2% increase in the number of clinical malaria episodes with 1 to 2 months lag by using
negative binomial regression models. These models cannot reproduce well the vector
population density, the entomological inoculation rate (EIR), the force of infection, or
the infection prevalence or parasite rate (PR) [23–25]. In contrast to other models, the
vector-borne disease community model VECTRI was first used to highlight the impact of
climate variability and change on malaria transmission in West Africa, mainly in Burkina
Faso, Cameroon, Ghana, and Senegal [21,26–33]. The VECTRI model reflects how climatic
variables affect the biology of the vector and the parasite and therefore the transmission
of the disease. The benefit of the VECTRI model is its calibration considering hydrology,
evaporation, infiltration, weather, and population migration. The VECTRI model is a
dynamic biological model, in contrast to the simple statistical approaches [31]. The VECTRI
model is also able to simulate EIR, vector density, malaria cases, etc. Hence, it appears to
be the best tool for assessing the effect of climate variability on malaria transmission.

Our study aims to enhance the understanding of rainfall and temperature effects
on the transmission of malaria in the southern part of Côte d’Ivoire, characterized by an
equatorial transition climate [34], by using the VECTRI model. Although several studies
have been published that have assessed the relationship between climatic parameters
and malaria transmission using the VECTRI model, the potential of this model remains
unexplored in Côte d’Ivoire. The key findings of the current study could be considered in
the national malaria control strategies to support the ongoing effort of elimination.

2. Materials and Methods
2.1. Ethics Statement

The Climate Research for Development (CR4D) via the African Academy of Sciences
granted this research project. The study was approved by the Comité National d’Éthique
des Sciences de la Vie et de la Santé of Côte d’Ivoire (N/Ref: 114-20/MSHP/CNESVS_km,
dated 17 August 2020). The local Health District Officer’s permission was also obtained.
The participants were enrolled, and signed consent was required for adults, in addition to
assent for participants below 18 years. Clinical malaria cases were treated according to the
national policy for the management of malaria cases.

2.2. Study Area

The health district of Tiassalé is located in the southern part of Côte d’Ivoire (5◦53′ N,
4◦49′ W), in the tropical zone (Figure 1). It is characterized by an equatorial transition
climate, governed by the meridional movement of the intertropical discontinuity or conver-
gence zone.

The annual rainfall in Tiassalé ranges between 600 and 2000 mm per year, with four
distinct climatic seasons that are (1) a long rainy season from March to June, (2) a short
dry season from July to August, (3) a short rainy season from September to November,
and (4) a long dry season from December to March. Two-thirds of the annual rainfall is
observed during the long rainy season. The city of Tiassalé is part of the evergreen forest
zone of the country, which includes flooded swampy forest and hydromorphic soil.
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Figure 1. Map of the study area (Tiassalé) located in the southern part of Côte d’Ivoire (5° 53 N, 4° 
49 W). 
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distinct climatic seasons that are (1) a long rainy season from March to June, (2) a short 
dry season from July to August, (3) a short rainy season from September to November, 
and (4) a long dry season from December to March. Two-thirds of the annual rainfall is 
observed during the long rainy season. The city of Tiassalé is part of the evergreen forest 
zone of the country, which includes flooded swampy forest and hydromorphic soil. 

Furthermore, the city and its surroundings are characterized by rice cultivation, 
which has led to the development of mosquito breeding sites [35]. The city’s annual rela-
tive humidity is very high, with an average of 90%. The average duration of sunshine is 
around 2000 h. The population of Tiassalé has increased from 26,580 inhabitants in 2010 
to 83,648 in 2021, with an estimated growth rate of 11.91% [35,36]. The population density 
has increased from 30 inhab/ha in 1992 to 118.2 inhab/ha in 2021 [35,37]. 

2.3. Study Design 
2.3.1. Data Collection 
Malaria Data 

Data on malaria cases were obtained from health facilities using the patient consul-
tation register and extracted by trained health workers (nurses) recruited from the Tias-
salé health district. As described elsewhere [16], a malaria case refers to an individual who 
exhibits fever symptoms or fever accompanied by headaches, back pain, chills, sweats, 
myalgia, nausea, or vomiting and who has been clinically diagnosed, with an additional 
confirmed laboratory test consisting of a rapid diagnostic test plus blood smears. 

Meteorological Data 
There is currently no synoptic weather station located in Tiassalé. We consequently 

used satellite data covering the period 1987 to 2019 from Africa Rainfall Climatology ver-
sion 2 (ARC2), which was obtained from the European Organization for the Exploitation 
of Meteorological Satellites (EUMETSAT), and from the European Center for Medium-

Figure 1. Map of the study area (Tiassalé) located in the southern part of Côte d’Ivoire (5◦53′ N, 4◦49′ W).

Furthermore, the city and its surroundings are characterized by rice cultivation, which
has led to the development of mosquito breeding sites [35]. The city’s annual relative
humidity is very high, with an average of 90%. The average duration of sunshine is around
2000 h. The population of Tiassalé has increased from 26,580 inhabitants in 2010 to 83,648 in
2021, with an estimated growth rate of 11.91% [35,36]. The population density has increased
from 30 inhab/ha in 1992 to 118.2 inhab/ha in 2021 [35,37].

2.3. Study Design
2.3.1. Data Collection
Malaria Data

Data on malaria cases were obtained from health facilities using the patient consulta-
tion register and extracted by trained health workers (nurses) recruited from the Tiassalé
health district. As described elsewhere [16], a malaria case refers to an individual who
exhibits fever symptoms or fever accompanied by headaches, back pain, chills, sweats,
myalgia, nausea, or vomiting and who has been clinically diagnosed, with an additional
confirmed laboratory test consisting of a rapid diagnostic test plus blood smears.

Meteorological Data

There is currently no synoptic weather station located in Tiassalé. We consequently
used satellite data covering the period 1987 to 2019 from Africa Rainfall Climatology
version 2 (ARC2), which was obtained from the European Organization for the Exploitation
of Meteorological Satellites (EUMETSAT), and from the European Center for Medium-
Range Weather Forecasts (ECMWF) reanalysis v5 (ERA5). We also used temperature and
rainfall data from four weather stations surrounding Tiassalé and located in the cities of
Abidjan, Yamoussoukro, Gagnoa, and Dimbokro to assess the accuracy of the ERA5 and
ARC2 data. The observational data of the four stations were from 1960 to 2019 and were
provided by the Société D’exploitation et de Développement Aéroportuaire, Aéronautique Et
Météorologue (SODEXAM), which is responsible for meteorological data collection, analysis,
and management in Côte d’Ivoire.
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Data from the ERA5 Reanalysis Database

ERA5 Reanalysis is the fifth-generation reanalysis product from the European Centre
for Medium-Range Weather Forecasts (ECMWF) for the global climate. It provides hourly
data at a high spatial resolution available at 10 Km, based on statistical and/or remote
sensing for many land applications [38–41], and combines vast amounts of historical
observations into global estimations using advanced modeling and data assimilation
systems. The data produced in ERA5 are most valuable as substitutes for observational
data where such data are limited or unavailable [33]. The 2 m surface air temperatures of
ERA5 are similar to those of in situ observations in some studies, although some bias has
been observed in some others [33,42,43]. We used the 2 m air daily maximum (Tmax) and
daily minimum temperatures (Tmin).

African Rainfall Climatology Version 2 (ARC2)

ARC2 is a revision of the first version of the ARC and uses inputs from two sources:
(i) 3-hourly geostationary infrared (IR) data centered over Africa from the European Or-
ganization for the Exploitation of Meteorological Satellites (EUMETSAT) and (ii) quality-
controlled Global Telecommunication System (GTS) gauge observations reporting 24 h
rainfall accumulations over Africa. ARC2 is expected to provide users with real-time
monitoring of the daily evolution of precipitation, which will be instrumental in improving
decision making. The ARC2 database has been available since 1983, a longer period than
the Rainfall Estimate, which also justifies the choice of ARC2 for precipitation in Tiassalé
(1987 to 2019).

Model Input Data from CORDEX

We used data from the climate change scenario based on a set of 14 simulations
(Figure A5) from the most up-to-date ensemble of high-resolution regional climate model
(RCM) projections produced in recent years for Africa from the Coordinated Regional
Climate Downscaling Experiment (CORDEX) Africa [44,45]. In this ensemble, the sim-
ulation period is 1976–2100 over Africa (24.64◦ W–60.28◦ E, 45.76◦ S–42.24◦ N), with a
spatial resolution of 0.44◦ (~50 km) in latitude and longitude under the Representative
Concentration Pathways (RCPs) for climate stabilization (RCP4.5) and high greenhouse
gas emissions (RCP8.5). These RCP scenarios correspond to radiative forcings of about
4.5 w/m2 and 8.5 w/m2 generated by an anthropogenic production of about 660 eq-CO2
and 1370 eq-CO2, respectively.

2.3.2. Data Analysis

a. Assessing the suitability of CORDEX Models in generating climate projections for
the Tiassalé region

Taylor diagrams [46] were used in the CORDEX model intercomparison with observed
data to identify the best-performing model. The evaluation was applied to historical data
from ERA5 and ARC2 and observational data (Figure A4). In addition, we used RCP4.5
and RCP 8.5, although the latter represents the most realistic warming scenario considering
today’s global greenhouse gas emission trajectory [47,48] and has been widely used for
the analysis of projections in sub-Saharan Africa [49–52]. Prediction data from CORDEX
models were collected pertaining to 2030, 2050, and 2081. We used a multi-model mean
(EMM) of the CORDEX-Africa simulation scenario, which is currently the most accurate
one. Then, the prediction data from CORDEX were corrected using cumulative distribution
function transform (CDFt) bias-corrected simulations, as described elsewhere [53–55].
The data were corrected based on different calibration periods and were compared with
observational data (ERA5 and ARC2) to correct the bias of the historical data from Cordex.
Then, these corrected historical data from Cordex were used to carry out the projection
(2030–2080) for the RCPs. Whatever the calibration period used, CDFt corrected well the
mean state of variables and preserved their trends, as well as daily rainfall occurrence and
intensity distributions [54].
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b. Malaria morbidity

The monthly and annual values for the number of malaria cases were computed and
used for interannual and monthly analysis with the seasonal and annual distribution of
precipitation and temperature.

c. Using the VECTRI model to predict malaria transmission in the health district
of Tiassalé

VECTRI model Version v1.3.0 was developed in the Abdus Salam International Centre
for Theoretical Physics (ICTP) in Trieste (Italy) by Tompkins and Ermert [26]. VECTRI is
a piece of software focused on mathematical models dealing with malaria that accounts
for the effects of daily temperature and precipitation on P. falciparum and An. gambiae life
cycles [26] to investigate malaria transmission patterns. VECTRI accounts for the effects of
temperature on the sporogonic and gonotrophic cycles, as well as the mortality rate, of adult
mosquitoes. We used the default parameters of the model with the new surface hydrology
scheme [26,26]. After running the model, the simulated output variables (Figure A6)
considered in this study were the adult mosquito (vector) density (per square meter) and
the entomological inoculation rate (EIR) corresponding to the number of infective bites
per person per day, because they can establish a direct link between malaria transmission
and climatic variables. Also, the VECTRI model was able to predict EIR values that were
compared by monthly variations in reported malaria cases from Kumasi in Ghana [27].
We then computed the correlation coefficient between the VECTRI output (EIR) and the
malaria case data obtained from health registers. For the VECTRI simulations, we used
daily rainfall (mm day−1), Tmin and Tmax (◦C), and population density (per square meter)
in Tiassalé between 1987 and 2019. Assessing the suitability of ARC2 and ERA5 data was
used to back their choice in the meteorological data collection (Appendix A). In Tiassalé, the
human population density used for the simulation was 0.53 inhabitants per Km2 [35]. To
simulate transmission at horizons 2030, 2050, and 2081 for the RCP4.5 and RCP8.5 scenarios,
we used the prediction data of rainfall and temperature from CORDEX-Africa, corrected
using CDFt bias-corrected simulations [53–55]. The predicted values were used in VECTRI
to simulate transmission patterns (using EIR and vector density) at the same time horizons
for both scenarios in Tiassalé.

3. Results and Discussion
3.1. Temporal Distribution of Malaria Cases in Tiassalé

Figure 2 shows the interannual distribution of climatic factors and malaria cases
between 2010 and 2019 in Tiassalé. A strong increase in the number of malaria cases in
Tiassalé was observed, starting in 2014. This increase could be linked to the significant rate
of population growth (10.4% from 2010 to 2014) in this malaria-endemic area, which could
explain the rise in the number of malaria cases.

Even if the number of malaria cases was permanently high over the years, we found
that it varied greatly over the years, with three important peaks observed in 2015, 2017,
and 2019, whereas the lower malaria case rates in 2011 and 2013 coincided with years of
low to moderate rainfall and high Tmax.

Figure 3 shows the intra-annual variability of monthly mean values for rainfall, Tmin,
Tmax, and malaria cases from 2010 and 2019.

The peaks for rainfall were in June, October, and November, while malaria case
peaks were in July, October, and November. Rainfall and malaria case rates were lower
in August and September, respectively. Malaria transmission was low over two months
(September and October), and a one-month lag was observed between the peak rainfall
and the number of malaria cases. The results clearly show that peak malaria transmission
generally follows rainfall.
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The monthly pattern of malaria observed in Tiassalé, southern Côte d’Ivoire, is distinct
from that observed in Korhogo, in northern Côte d’Ivoire, in the study of Mbra et al. [16].
Of note, Tiassalé and Korhogo belong to two climatic zones that differ in their rainfall
regimes [56–58] and are located in forest and savannah, respectively. M’Bra et al. [16]
showed that, in Korhogo, a high number of malaria cases were recorded at the beginning
of June, one month after the beginning of the rainy season, starting in May until November,
2 months after the end of the rainy season. Conversely, the lowest numbers of malaria cases
were observed between December and April (during the dry season). However, in Tiassalé,
malaria cases have been high over the years and follow the same trend as the forest zone in
Ghana, the neighboring country, with low transmission only occurring over three months
between February and April [27].

3.2. Suitability of the VECTRI Model for Predicting Malaria Transmission in Tiassalé

Figure 4 shows the monthly variation of the VECTRI-simulated EIR and malaria cases
in Tiassalé from 2010 to 2019. The patterns of malaria based on observed malaria case data
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and the EIR simulated with the VECTRI model are globally similar, despite the disparity in
the magnitude of each pattern from one month to another, leading to a weak correlation
coefficient (Table A2). The slight differences between the EIR and malaria cases may be
due to the fact that the VECTRI results are based on 32-year climatology simulations,
while malaria cases are reported values. Despite this, VECTRI has demonstrated its ability
to simulate malaria patterns, and it has already been used across some West African
countries [27,29–32]. The global similarity observed allowed the use of the VECTRI model
to predict future malaria transmission.
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Figure 5 shows anomalies between the rainfall, temperature simulated EIR, and vector
density in Tiassalé at a yearly scale. The EIR (red color) and vector density (green color)
follow generally the same trends as Tmin and Tmax (deficit or surplus years) and show
variability in precipitation for some years. The trends in EIR and vector density were in
accordance with the trends observed in rainfall (Figure 5a). Before the year 2000, the rainfall
was in deficit (decrease) and thereafter was in surplus (increase). The EIR correlation with
Tmax (0.63) was the highest, followed by the EIR correlation with rainfall (0.55), which was
greater than that of Tmin (0.51). EIR followed the trend in rainfall but exhibited interannual
variability. However, these results were obtained without the non-climatic factors being
included in the model and were integrated with the same population density. Previous
studies have shown, in Emena (the forest zone of Ghana), that malaria transmission is
predominantly controlled by rainfall [55]. This correlation is lower than it is in the Sahel
regions, where malaria is more rainfall-driven. The maximum and minimum temperature
surpluses are in accordance with the EIR and vector density (Figure 5b,c). These results
confirm the known role of temperature in malaria transmission [22,29,59]. In Tiassalé, the
dynamics of malaria patterns are controlled by the interaction between climate variables
and the ecosystem (river, swamp, and amorphous soil). The EIR and vector density revealed
an upward trend from 2003, which can be attributed to an increase in rainfall. Rainfall is
a key factor that determines the abundance of mosquitoes and the length of the malaria
transmission season [29,59–61].
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In addition, daily life patterns, the location of homes relative to mosquito breeding
sites, the type of materials used to build, and the structure of houses are key determinants
of malaria transmission [62]. Thus, it is imperative to incorporate into the VECTRI model
the permanent features of each area, such as rivers, lakes, and dams. For example, in
Cameroon, the seasonality of malaria closely follows that of rainfall, with a lag of 1 to
2 months in locations far from permanent water bodies [21]. However, in locations close to
permanent water sources, the seasonality of malaria is year-round, as in Tiassalé.

3.3. Relationship between Observed Meteorological Parameters and Malaria Transmission Patterns
Derived from VECTRI

Figure 6 illustrates the monthly variability and relationship between meteorological
parameters (temperature and rainfall) and malaria transmission patterns from 1987 to 2019.
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Tiassalé over the period 1987 to 2019. (a–c) represent respectively the rainfall, Tmin and Tmax. The
malaria transmission indicators obtained by VECTRI model are EIR (d) and Vector density (e).

We observed a general increase in malaria transmission (the EIR and vector density)
from March to July of every year (Figure 6d,e). The increasing trend was also observed in
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temperature and rainfall (Figure 7a–c). The high-temperature period overlaps with both
the higher vector density and the EIR, with a time lag of one month. These results are
within the range of observed malaria cases with high transmission all the year, except for
the months of September and October.
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During the dry season (July to October and December to February), the values of EIR
and vector density decrease (Figure 6a,d,e). The upper and lower limits of temperature
are within the range that supports malaria transmission. Of note, the life cycle of the
vector is optimal under the temperatures between 28 ◦C and 32 ◦C [15,59,63]. However,
temperatures exceeding 35 ◦C are detrimental to the growth and survival of mosquitoes [64].
Within this period, the EIR and vector density values increase when the temperature
remains within the range of 22–26 ◦C (Tmin) or above 30 ◦C (Tmax) and rainfall values
decrease below 10 mm·month−1. We found that, on average, the EIR and vector density
are higher during April to June compared to over the period of the year.

The above result confirms that the VECTRI model is able to account for the relationship
between rainfall, temperature, and malaria transmission.

3.4. Malaria Prediction

Figure 7 shows the changes in the EIR in Tiassalé for the period 2030 to 2080. For
the scenario RCP4.5, the monthly EIR varies between 0.48 and 908 bites per person from
2030 to 2080. The number of bites or the EIR for the scenario RCP8.5 is very high, be-
tween 1.74 and 1131.71 bites per person per month, compared to RCP4.5. In addition, it
should be emphasized that the VECTRI model was also able to account for the significant
impact of temperature in malaria transmission dynamics. For instance, despite the fact
that, in scenarios RCP4.5 and RCP8.5, almost similar rainfall patterns can be observed
(Figure 7A(a),B(a)), the VECTRI-simulated EIR and vector density show lower values at
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RCP4.5 relative to RCP8.5 (Figure 7A(d,e),B(d,e)). This observation is significantly due to
the lower temperatures recorded at RCP4.5 relative to RCP8.5. Malaria transmission varies
from one year to the next. For RCP8.5, low transmissions were observed from March to
May and from August to September for the years 2050 and 2080, respectively. The same
increasing trend of EIR was observed for the study period 1987 to 2019, which suggests
that malaria will still be an important cause of mortality in Tiassalé in the coming year. This
trend is similar to what was observed in East Africa, where malaria transmission tended to
increase between 2008 and 2052 under the RCP8.5 scenario [52]. In addition to predicting
the malaria peak months in Tiassale, the VECTRI model was able to predict EIR values for
the coming decade.

A previous study predicted an increase in malaria transmission, with an additional
51.3 million people to be at risk of malaria in West Africa by 2050 [22]. Furthermore,
hotspots of seasonal malaria transmission suitability in both climate scenarios (RCP4.5
and RCP8.5) are predicted to either continue to concentrate or shift both northward and
southward into the highlands of Ethiopia and Southern Africa toward 2050 [22]. Despite
malaria awareness campaigns in Côte d’Ivoire, the number of malaria cases remains high
in Tiassalé. In addition, the simulated EIR and density vector were important, showing
that there is a need to evaluate the potential of ongoing malaria control interventions in the
country. There is a possibility of using the VECTRI model to provide an advance warning
of malaria transmission and call for anticipating malaria control actions.

3.5. Study Limitations

There are two main limitations to this work, namely, the unavailability of meteorologi-
cal station data in the study city and the lack of clinical data on malaria morbidity in all
the town’s health centers over a sustained period of at least 10 years. The use of satellite
data (ARC2 and ERA5) for the city of Tiassalé remained the only possible option for charac-
terizing the climatic dynamics of the study area, after obtaining a satisfactory correlation
between ARC2 and ERA5 data from four other cities surrounding Tiassalé and data from
meteorological stations in these cities. For malaria morbidity data, only one health center
had a complete set of consultation data for ten consecutive years. Therefore, these data
were used to assess the prevalence of malaria as a cause of consultation in this health center.
This morbidity indicator may therefore not represent the reality of all malaria morbidity in
Tiassalé. These two weaknesses respecting meteorological and health data may explain the
low correlations observed between them and between malaria morbidity and the outputs
of the VECTRI model, which also uses satellite data. However, the study has the merit of
outlining ways of circumventing the difficulties inherent in building scientific evidence on
the links between climate and malaria transmission in African areas suffering for the most
part from the same difficulties of access to quality data. The study also enabled the VECTRI
model to be tested in an endemic area of annual high malaria transmission and to be used
to predict future transmission. It is likely that transmission within Tiassalé may be different
from the model results due to some effects not accounted for in the VECTRI model, such as
permanent water bodies that can sustain transmission during the dry season.

4. Conclusions

Malaria transmission in Tiassalé is annual, with peaks from May to July and September
to November. December to February and August are the driest periods of the year. Average
temperatures are highest from December to May. The monthly EIR values obtained from
the VECTRI model fit well overall with observed malaria cases, rainfall, and temperatures
from 2010 to 2019. The VECTRI model predicts an increase in malaria transmission (EIR
and vector density) between 2030 and 2080 and calls for a strengthening of the national
malaria control strategy to combat this trend.
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Appendix A. Assessing the Suitability of ARC2 and ERA5 Data

We compared data from the satellite with data from four weather stations located around
Tiassalé. First, we carried out a quality control to assess the completeness of the four stations’
data and their consistency over the period from 1960 to 2019 (see Figure A1). We then
used Taylor diagrams to summarize the similarities and evaluate the consistencies between
observational data from these weather stations (Yamoussokro, 1975–2019; Abidjan, 1970–2019;
Gagnoa, 1960–2019; and Dimbokro, 1970–2019) [46] and the estimated precipitation data from
ARC2 and the temperature data (Tmin and Tmax) from ERA5 (see Figure A2).

Figure A1 shows how the quality control was carried out to check the completeness of
the SODEXAM data and to assess their consistency. We found that more than 80% of the
daily weather data existed for the four (4) stations (Abidjan, Yamoussoukro, Gagnoa, and
Dimbokro) close to Tiassalé. We then considered the level of confidence acceptable for the
time series data.
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maximum temperature (ERA5) datasets as a reference for the observational meteorological data ob-
tained from the closest four stations to Tiassalé, namely, (A) Abidjan, (B) Yamoussoukro, (C) Gagnoa,
and (D) Dimbokro. The dotted lines indicate the correlation coefficients; the standard deviations are
shown in blue and the root mean square errors in magenta. In the top row, “RR” means rainfall.
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The Taylor diagram summarizes the similarity between two data (estimations and
observations) by showing a polar graph correlation coefficient (gauging similarity in pattern
between the estimated and observed fields). The root mean square error (RMSE) in the
estimated field is proportional to the distance from the point identified as “observed”, and
standard deviations of the estimated pattern are proportional to the radial distance from
the origin. Taylor diagrams are commonly used for multi-model comparison [65]. The
centered pattern or the root mean square error (RMSE) difference is the mean-removed
RMSE difference, calculated as follows:

RMSE =
1
n

N

∑
n=1

[( fn − f )− (rn − r)]2 (A1)

where RMS is the root mean square error, fn is the time series of the model parameter that
is being tested, and rn is the time series of the observation data. The correlation coefficient
is related by:

x =
1
n ∑N

n=1( fn − f )(rn − r)
σf σr

(A2)

where x is the correlation coefficient and σf and σr are the standard deviations of the model
and observation, respectively.

Figure A2 shows the Taylor diagrams for the four stations, namely, Abidjan, Yamous-
soukro, Gagnoa, and Dimbokro. Overall, the three interpolation (bilinear, cubic, and
nearest) methods used to extract ARC2 data at different station locations gave the same
information for rainfall and temperature. Here, we chose the nearest method for this study.
Over the four stations, the Tmin and Tmax values showed a high correlation and the lowest
RMSE (Figure A2). ERA5 reproduces well over the Tmin and Tmax. We conclude that these
data can be used for Tiassalé.

Regarding rainfall, the correlation coefficient is around 0.5. This explains why barely
50% of the ARC information was correlated with the observed data. Shown in purple,
the root mean square error is around 8, and, shown in blue, the standard deviation is
very high (around 7.5). ARC can keep up with the daily variability of rainfall even if the
correlation is average.

When assessing the monthly variability of precipitation, the average was obtained
by cumulating the rainfall over the number of rainy days for each month. This allowed
the peak of the rainy season to be determined from the observed data. The graphs in
Figure A3(i) show two peaks for the four stations, the first peak (between March and June)
and the second (between September and October).

Figure A3(ii) shows the bias, the difference between the precipitation from the ARC
data and the observed data for each month. ARC is able to reproduce the monthly variability
with some biases. We decided to use ARC2 rainfall data for Tiassalé.

Overall, the three interpolation (bilinear, cubic, and nearest) methods used to extract
the data from ARC2 and ERA5 at different stations provided the same information for
the rainfall and the temperature (Figure A2). The daily Tmin and Tmax values from the
four stations revealed a high correlation and the lowest root mean square error (RMSE)
(Figure A2). We observed a good agreement between Tmin and Tmax values derived from
ERA5 compared to those from the local weather station. ARC2 was globally able to produce
the daily variability of observed rainfall with a correlation coefficient varying from 0.5 to
0.6. The correlation coefficient for monthly data was higher than for daily data (Figure A3).
We then used ERA5 data (temperatures) and ARC2 data (rainfall) covering the period from
1987 to 2019 for the study.

Figure A4 shows the Taylor diagrams of the simulated model and the observed crude
values for Tiassalé used to select the best model among the 14 CORDEX models for scenario
8.5. The multi-model means (EMM) of the CORDEX-Africa simulations (MEAN) and the
BWRF model were close to the observations and are better than other data.
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For this study, we then used EMM or MEAN model data as input data (daily precipi-
tation, Tmin, and Tmax) for VECTRI to perform future simulations.

Figure A5 shows the list of 14 models of CORDEX-AFRICA data.
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Figure A6 shows the output files after running VECTRI.
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Appendix B. Statistical Analysis

Table A1. Summary statistics.

Variable Observations Obs. with
Missing Data

Obs. without
Missing Data Minimum Maximum Mean Std. Deviation

PREV 102 0 102 0.000 76.000 41.444 14.419
EIR 102 0 102 1.160 130.060 53.850 33.716

Vector 102 0 102 0.005 3.518 1.605 1.012
Rain 102 0 102 0.000 398.600 109.249 89.238
Tmax 102 0 102 28.269 36.313 31.572 1.885
Tmin 102 0 102 20.490 24.963 23.111 0.713

Table A2. Correlation matrix (Pearson (n)).

Variables Malaria Cases Rain Tmax Tmin EIR Vector

CaseM 1 −0.071 0.031 0.151 0.042 −0.086
Rain −0.071 1 −0.041 0.322 0.041 0.151
Tmax 0.031 −0.041 1 0.524 −0.318 −0.279
Tmin 0.151 0.322 0.524 1 −0.130 −0.159
EIR 0.042 0.041 −0.318 −0.130 1 0.854

Vector −0.086 0.151 −0.279 −0.159 0.854 1
Values in bold are different from 0 with a significance level.
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