Characteristics of Enhanced Heatwaves over Tanzania and Scenario Projection in the 21st Century
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Description
2.3. Bias Correction
2.4. Methodology
2.5. Ranking Method
3. Results
3.1. Heatwave Climatology
3.2. Top Ten Heatwave Events in Tanzania from 1983 to 2016
3.3. Spatio-Temporal Evolution of Heatwaves in the 21st Century
4. Conclusions and Discussion
4.1. Key Findings
- Heatwave events increased marginally with time in Tanzania between 1983 and 2016; however, harmful heatwaves including super-extreme and ultra-extreme heatwaves occurred in the country within this period. The highest HWMId peak value of 42 was recorded in 1999, and the duration for all HWMId categories ranged from 1 to 5 days. Extreme heatwaves (defined as 4 ≤ HWMId < 8) characterized the “top ten years” with the highest HWMId peak values; nearly 15% of the total land area of Tanzania was affected in each of these years.
- The intensity and duration of heatwave events are predicted to increase more rapidly in the 21st century. The highest HWMId peak value may exceed 80, with a duration of 8 to 35 days by the end of the 21st century. While lower-level heatwaves are anticipated to decrease in number by mid-century (2041), higher-level heatwaves such as super-extreme and ultra-extreme heatwaves are expected to be hotter and longer, and occur regularly in Tanzania by 2041.
- HWMId exhibits different spatial patterns in the 21st century. The heatwave magnitudes vary substantially depending on location. Whereas the mountainous areas of the northeastern highlands could experience cooler conditions, the Lake Victoria basin, parts of Lake Nyasa and the edges of southern, eastern and southwestern Tanzania are predicted to experience frequent lethal heatwaves during the 21st century.
4.2. Discussion of Key Findings
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sherwood, S.C.; Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA 2010, 107, 9552–9555. [Google Scholar] [CrossRef] [Green Version]
- FAO. Rapid Agriculture Needs Assessment in Response to the ‘El-Niño’ Effects in the United Republic of Tanzania; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Meehl, G.A. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [Green Version]
- Glaser, J.; Lemery, J.; Rajagopalan, B.; Diaz, H.F.; García-Trabanino, R.; Taduri, G.; Madero, M.; Amarasinghe, M.; Abraham, G.; Anutrakulchai, S.; et al. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy. Clin. J. Am. Soc. Nephrol. 2016, 11, 1472–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.; et al. Global risk of deadly heat. Nat. Clim. Chang. 2017, 7, 501–506. [Google Scholar] [CrossRef]
- CRED. Economic Losses, Poverty and Disasters 1998–2017; Centre for Research on the Epidemiology of Disasters (CRED): Brussels, Belgium; UNISDR: Geneva, Switzerland, 2017. [Google Scholar]
- Habeeb, D.; Vargo, J.; Stone, B. Rising heat wave trends in large US cities. Nat. Hazards 2015, 76, 1651–1665. [Google Scholar] [CrossRef]
- Zander, K.; Botzen, W.J.W.; Oppermann, E.; Kjellstrom, T.; Garnett, S.T. Heat stress causes substantial labour productivity loss in Australia. Nat. Clim. Chang. 2015, 5, 647–651. [Google Scholar] [CrossRef]
- Nairn, J.; Fawcett, R. Defining Heatwaves: Heatwave Defined as a Heat-Impact Event Servicing All Community and Business Sectors in Australia; Technical Report no. 060; The Centre for Australian Weather and Climate Research: Melbourne, VIC, Australia, 2013. [Google Scholar]
- Robine, J.-M.; Cheung, S.L.K.; Le Roy, S.; Van Oyen, H.; Griffiths, C.; Michel, J.-P.; Herrmann, F. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biol. 2008, 331, 171–178. [Google Scholar] [CrossRef]
- Hoag, H. Russian summer tops ’universal’ heatwave index. Nature 2014. [Google Scholar] [CrossRef]
- Sun, X.; Sun, Q.; Yang, M.; Zhou, X.; Li, X.; Yu, A.; Geng, F.; Guo, Y. Effects of temperature and heat waves on emergency department visits and ambulance dispatches in Pudong New Area, China: A time series analysis. Environ. Health 2014, 13, 76. [Google Scholar] [CrossRef] [Green Version]
- Saeed, F.; Salik, K.M.; Ishfaq, S. Climate Induced Rural-to-Urban Migration in Pakistan’ Pathways to Resilience in Semi-Arid Economies (PRISE) Working Paper. 2015. Available online: http://prise.odi.org/research/climateinduced-rural-to-urban-migration-in-pakistan/ (accessed on 28 July 2021).
- Rohini, P.; Rajeevan, M.; Srivastava, A.K. On the Variability and Increasing Trends of Heat Waves over India. Sci. Rep. 2016, 6, 26153. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, D.; Sehgal, V.K.; Dhakar, R.; Ray, M.; Das, D.K. Spatio-temporal trend in heat waves over India and its impact assessment on wheat crop. Theor. Appl. Climatol. 2019, 138, 1925–1937. [Google Scholar] [CrossRef]
- Pai, D.S.; Nair, S.A.; Ramanathan, A.N. Long term climatology and trends of heat waves over India during the recent 50 years (1961–2010). Mausam 2012, 64, 585–604. [Google Scholar]
- Saeed, F.; Almazroui, M.; Islam, N.; Khan, M.S. Intensification of future heat waves in Pakistan: A study using CORDEX regional climate models ensemble. Nat. Hazards 2017, 87, 1635–1647. [Google Scholar] [CrossRef]
- Alahmad, B.; Shakarchi, A.F.; Khraishah, H.; Alseaidan, M.; Gasana, J.; Al-Hemoud, A.; Koutrakis, P.; Fox, M.A. Extreme temperatures and mortality in Kuwait: Who is vulnerable? Sci. Total Environ. 2020, 732, 139289. [Google Scholar] [CrossRef]
- Wang, S.S.; Kim, H.; Coumou, D.; Yoon, J.; Zhao, L.; Gillies, R.R. Consecutive extreme flooding and heat wave in Japan: Are they becoming a norm? Atmos. Sci. Lett. 2019, 20, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, S.; Zhao, J.; Fang, S. Impacts of climate change on net primary productivity in Africa continent from 2001 to 2010. Int. J. Sci. Environ. Technol. 2018, 7, 365–381. [Google Scholar]
- Herold, N.; Alexander, L.; Green, D.; Donat, M. Greater increases in temperature extremes in low versus high income countries. Environ. Res. Lett. 2017, 12, 034007. [Google Scholar] [CrossRef] [Green Version]
- Harrington, L.J.; Otto, F.E.L. Reconciling theory with the reality of African heatwaves. Nat. Clim. Chang. 2020, 10, 796–798. [Google Scholar] [CrossRef]
- EM-DAT. The International Disaster Database. Available online: https://public.emdat.be/mapping (accessed on 25 March 2021).
- Ceccherini, G.; Russo, S.; Ameztoy, I.; Marchese, A.F.; Carmona-Moreno, C. Heat waves in Africa 1981–2015, observations and reanalysis. Nat. Hazards Earth Syst. Sci. 2017, 17, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Mbokodo, I.; Bopape, M.-J.; Chikoore, H.; Engelbrecht, F.; Nethengwe, N. Heatwaves in the Future Warmer Climate of South Africa. Atmosphere 2020, 11, 712. [Google Scholar] [CrossRef]
- Ahram Online: Egypt’s Heatwave Death Toll Reaches 110. Thursday 20 August 2015. Available online: https://english.ahram.org.eg/NewsContent/1/0/138329/Egypt/Egypts-heatwave-death-toll-reaches--.aspx (accessed on 28 July 2021).
- Hafez, Y.Y.; Almazroui, M. Study of the relationship between African ITCZ variability and an extreme heat wave on Egypt in summer 2015. Arab. J. Geosci. 2016, 9, 476. [Google Scholar] [CrossRef]
- Vizy, E.K.; Cook, K.H. Mid-Twenty-First-Century Changes in Extreme Events over Northern and Tropical Africa. J. Clim. 2012, 25, 5748–5767. [Google Scholar] [CrossRef]
- Fontaine, B.; Janicot, S.; Monerie, P.-A. Recent changes in air temperature, heat waves occurrences, and atmospheric circulation in Northern Africa. J. Geophys. Res. Atmos. 2013, 118, 8536–8552. [Google Scholar] [CrossRef]
- Garland, R.M.; Matooane, M.; Engelbrecht, F.A.; Bopape, M.-J.; Landman, W.A.; Naidoo, M.; Van Der Merwe, J.; Wright, C.Y. Regional Projections of Extreme Apparent Temperature Days in Africa and the Related Potential Risk to Human Health. Int. J. Environ. Res. Public Health 2015, 12, 12577–12604. [Google Scholar] [CrossRef]
- Dosio, A. Projection of temperature and heat waves for Africa with an ensemble of CORDEX Regional Climate Models. Clim. Dyn. 2017, 49, 493–519. [Google Scholar] [CrossRef] [Green Version]
- Ragatoa, D.S.; Ogunjobi, K.O.; Klutse, N.A.B.; Okhimamhe, A.A.; Eichie, J.O. A change comparison of heat wave aspects in climatic zones of Nigeria. Environ. Earth Sci. 2019, 78, 1–16. [Google Scholar] [CrossRef]
- Naik, M.; Abiodun, B.J. Projected changes in drought characteristics over the Western Cape, South Africa. Meteorol. Appl. 2020, 27, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Russo, S.; Marchese, A.F.; Sillmann, J.; Immé, G. When will unusual heat waves become normal in a warming Africa? Environ. Res. Lett. 2016, 11, 054016. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobías, A.; Tong, S.; Rocklöv, J.; Forsberg, B.; et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
- Prenatal Exposure to Heat Waves and Child Health in Sub-Saharan Africa. Available online: https://www.iza.org/publications/dp/14424/prenatal-exposure-to-heat-waves-and-child-health-in-sub-saharan-africa (accessed on 28 July 2021).
- Green, H.; Bailey, J.; Schwarz, L.; Vanos, J.; Ebi, K.; Benmarhnia, T. Impact of heat on mortality and morbidity in low and middle income countries: A review of the epidemiological evidence and considerations for future research. Environ. Res. 2019, 171, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Ahmadalipour, A.; Moradkhani, H. Escalating heat-stress mortality risk due to global warming in the Middle East and North Africa (MENA). Environ. Int. 2018, 117, 215–225. [Google Scholar] [CrossRef]
- Challinor, A.J.; Koehler, A.-K.; Ramirez-Villegas, J.; Whitfield, S.; Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Chang. 2016, 6, 954–958. [Google Scholar] [CrossRef]
- Battisti, D.S.; Rosamond, L.N. Historical warnings of future food insecurity with unprecedented seasonal Heat. Science 2009, 323, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Rowhani, P.; Lobell, D.; Linderman, M.; Ramankutty, N. Climate variability and crop production in Tanzania. Agric. For. Meteorol. 2011, 151, 449–460. [Google Scholar] [CrossRef]
- Gourdji, S.M.; Sibley, A.M.; Lobell, D. Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environ. Res. Lett. 2013, 8, 024041. [Google Scholar] [CrossRef]
- Pasquini, L.; van Aardenne, L.; Godsmark, C.N.; Lee, J.; Jack, C. Emerging climate change-related public health challenges in Africa: A case study of the heat-health vulnerability of informal settlement residents in Dar es Salaam, Tanzania. Sci. Total Environ. 2020, 747, 141355. [Google Scholar] [CrossRef]
- Shemdoe, R.S. Tracking effective indigenous adaptation strategies on impacts of climate variability on food security and health of subsistence farmers in Tanzania. Afr. Portal 2011, 4, 34. [Google Scholar]
- Ndetto, E.L.; Matzarakis, A. Assessment of human thermal perception in the hot-humid climate of Dar es Salaam, Tanzania. Int. J. Biometeorol. 2016, 61, 69–85. [Google Scholar] [CrossRef]
- National Adaptation Programme of Action (NAPA). Available online: https://unfccc.int/resource/docs/napa/moz01.pdf (accessed on 28 July 2021).
- National Climate Change Strategy. Available online: https://www.nccs.gov.sg/media/publications/national-climate-change-strategy (accessed on 28 July 2021).
- Chang’A, L.B.; Kijazi, A.L.; Luhunga, P.M.; Ng’Ongolo, H.K.; Mtongor, H.I. Spatial and Temporal Analysis of Rainfall and Temperature Extreme Indices in Tanzania. Atmos. Clim. Sci. 2017, 7, 525–539. [Google Scholar] [CrossRef] [Green Version]
- Meshi, E.; Kishinhi, S.S.; Mamuya, S.H.; Rusibamayila, M.G. Thermal Exposure and Heat Illness Symptoms among Workers in Mara Gold Mine, Tanzania. Ann. Glob. Health 2018, 84, 360–368. [Google Scholar] [CrossRef] [Green Version]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Changes in temperature and precipitation extremes in Ethiopia, Kenya, and Tanzania. Int. J. Climatol. 2019, 39, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Filho, W.L. Handbook of Climate Change Adaptation; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Donat, M.; Alexander, L.; Yang, H.; Durre, I.; Vose, R.S.; Caesar, J. Global Land-Based Datasets for Monitoring Climatic Extremes. Bull. Am. Meteorol. Soc. 2013, 94, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Peterson, S.; Shukla, S.; Davenport, F.; Michaelsen, J.; Knapp, K.R.; Landsfeld, M.; Husak, G.; Harrison, L. A High-resolution 1983–2016 tmax climate data record based on infrared temperatures and stations by the climate hazard center. J. Clim. 2019, 32, 5639–5658. [Google Scholar] [CrossRef]
- Yang, W.; Seager, R.; Cane, M.A.; Lyon, B. The Annual Cycle of East African Precipitation. J. Clim. 2015, 28, 2385–2404. [Google Scholar] [CrossRef] [Green Version]
- Schär, C.; Jendritzky, G. Climate change: Hot news from summer 2003. Nature 2004, 432, 559–560. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Tank, A.M.G.K.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Phys. 2006, 111, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Klein Tank, A.M.G.; Zwiers, F.W.; Zhang, X. Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation; World Meteorological Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Sen, S.R. The impact of the positive Indian Ocean dipole on Zimbabwe droughts tropical climate is understood to be dominated by. Int. J. Climatol. 2008, 28, 2011–2029. [Google Scholar] [CrossRef]
- Seneviratne, S.; Donat, M.; Mueller, B.; Alexander, L. No pause in the increase of hot temperature extremes. Nat. Clim. Chang. 2014, 4, 161–163. [Google Scholar] [CrossRef]
- Tao, H.; Fraedrich, K.; Menz, C.; Zhai, J. Trends in extreme temperature indices in the Poyang Lake Basin, China. Stoch. Environ. Res. Risk Assess. 2014, 28, 1543–1553. [Google Scholar] [CrossRef]
- Orlowsky, B.; Seneviratne, S.I. Global changes in extreme events: Regional and seasonal dimension. Clim. Chang. 2011, 110, 669–696. [Google Scholar] [CrossRef] [Green Version]
- Russo, S.; Sterl, A. Global changes in indices describing moderate temperature extremes from the daily output of a climate model. J. Geophys. Res. Space Phys. 2011, 116, 1–12. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- ETCCDI Climate Change Indices. Available online: http://etccdi.pacificclimate.org/list_27_indices.shtml (accessed on 25 December 2020).
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 2014, 119, 500–512. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. In A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; p. 52. [Google Scholar]
- Nairn, J.R.; Fawcett, R.J.B. The Excess Heat Factor: A Metric for Heatwave Intensity and Its Use in Classifying Heatwave Severity. Int. J. Environ. Res. Public Health 2014, 12, 227–253. [Google Scholar] [CrossRef] [Green Version]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Amou, M.; Gyilbag, A.; Demelash, T.; Xu, Y. Heatwaves in Kenya 1987–2016: Facts from CHIRTS High Resolution Satellite Remotely Sensed and Station Blended Temperature Dataset. Atmosphere 2020, 12, 37. [Google Scholar] [CrossRef]
- Borhara, K.; Pokharel, B.; Bean, B.; Deng, L.; Wang, S.Y.S. On Tanzania’s precipitation climatology, variability, and future projection. Climate 2020, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Kijazi, A.L.; Reason, C.J.C. Analysis of the 2006 floods over northern Tanzania. Int. J. Climatol. 2009, 29, 955–970. [Google Scholar] [CrossRef]
- Chang’a, L.B.; Yanda, P.Z.; Ngana, J. Spatial and temporal analysis of recent climatological data in Tanzania. J. Geogr. Reg. Plan. 2010, 3, 44–65. [Google Scholar]
- Verdin, A.; Funk, C.; Peterson, P.; Landsfeld, M.; Tuholske, C.; Grace, K. Development and validation of the CHIRTS-daily quasi-global high-resolution daily temperature data set. Sci. Data 2020, 7, 1–14. [Google Scholar] [CrossRef]
- Arora, V.K.; Scinocca, J.F.; Boer, G.J.; Christian, J.R.; Denman, K.L.; Flato, G.M.; Kharin, V.V.; Lee, W.; Merryfield, W.J. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett. 2011, 38, 3–8. [Google Scholar] [CrossRef]
- Bentsen, M.; Bethke, I.; Debernard, J.B.; Iversen, T.; Kirkev, A.; Seland, Ø.; Drange, H.; Roelandt, C.; Seierstad, I.A.; Hoos, C.; et al. The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev. 2013, 6, 687–720. [Google Scholar] [CrossRef] [Green Version]
- Teutschbein, C.; Seibert, J. Regional Climate Models for Hydrological Impact Studies at the Catchment Scale: A Review of Recent Modeling Strategies. Geogr. Compass 2010, 4, 834–860. [Google Scholar] [CrossRef] [Green Version]
- Ning, L.; Riddle, E.E.; Bradley, R.S. Projected Changes in Climate Extremes over the Northeastern United States. J. Clim. 2015, 28, 3289–3310. [Google Scholar] [CrossRef] [Green Version]
- Werner, A.T.; Cannon, A. Hydrologic extremes—An intercomparison of multiple gridded statistical downscaling methods. Hydrol. Earth Syst. Sci. 2016, 20, 1483–1508. [Google Scholar] [CrossRef] [Green Version]
- Ndetto, E.L.; Matzarakis, A. Basic analysis of climate and urban bioclimate of Dar es Salaam, Tanzania. Theor. Appl. Clim. 2013, 114, 213–226. [Google Scholar] [CrossRef]
- Ndetto, E.L.; Matzarakis, A. Urban atmospheric environment and human biometeorological studies in Dar es Salaam, Tanzania. Air Qual. Atmos. Health 2014, 8, 175–191. [Google Scholar] [CrossRef]
- Masih, I.; Maskey, S.; Mussá, F.E.F.; Trambauer, P. A review of droughts on the African continent: A geospatial and long-term perspective. Hydrol. Earth Syst. Sci. 2014, 18, 3635–3649. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Beguería, S.; Gimeno, L.; Eklundh, L.; Giuliani, G.; Weston, D.; El Kenawy, A.; López-Moreno, J.; Nieto, R.; Ayenew, T.; et al. Challenges for drought mitigation in Africa: The potential use of geospatial data and drought information systems. Appl. Geogr. 2012, 34, 471–476. [Google Scholar] [CrossRef] [Green Version]
- Kijazi, A.; Reason, C. Analysis of the 1998 to 2005 drought over the northeastern highlands of Tanzania. Clim. Res. 2009, 38, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Drought Conditions and Management Strategies in Tanzania. Available online: https://www.droughtmanagement.info/literature/UNW-DPC_NDMP_Country_Report_Tanzania_2014.pdf (accessed on 28 July 2021).
- Tomalka, J.; Lange, S.; Röhrig, F.; Gornott, C. Climate Risk Profile: Tanzania Summary. Federal Ministry for Economic Cooperation and Development (BMZ). 2020. Available online: https://www.climate.gov/news-features/blogs/beyond-data/climate-change-rule-thumb-cold-things-warming-faster-warm-things (accessed on 28 July 2021).
- Luhunga, P.M.; Kijazi, A.L.; Chang’A, L.; Kondowe, A.; Ng’Ongolo, H.; Mtongori, H. Climate Change Projections for Tanzania Based on High-Resolution Regional Climate Models from the Coordinated Regional Climate Downscaling Experiment (CORDEX)-Africa. Front. Environ. Sci. 2018, 6, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Arndt, D. Climate Change Rule of Thumb: Cold “Things” Warming Faster than Warm Things. 2015. Available online: https://www.climate.gov/print/806251 (accessed on 28 July 2021).
- Huang, J.; Guan, X.; Ji, F. Enhanced cold-season warming in semi-arid regions. Atmos. Chem. Phys. Discuss. 2012, 12, 5391–5398. [Google Scholar] [CrossRef] [Green Version]
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García-Herrera, R. The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef] [PubMed]
Country | Occurrences of Heatwave Disasters | Total Deaths |
---|---|---|
India | 28 | 12,343 |
USA | 24 | 4801 |
Japan | 15 | 1040 |
Pakistan | 15 | 2936 |
Belgium | 8 | 4701 |
France | 8 | 27,517 |
Romania | 8 | 138 |
Australia | 7 | 509 |
China | 6 | 206 |
Italy | 6 | 20,118 |
Heatwave Category | Range | Description |
---|---|---|
Normal | 1 ≤ HWMId < 2 | Grid points exhibit at least one heatwave with magnitude, HWMI ≥ 1 in the study period. Heatwaves under this category are relatively harmless |
Moderate | 2 ≤ HWMId < 3 | At least one heatwave with HWMI ≥ 2 is detected. |
Severe | 3 ≤ HWMId < 4 | At least one heatwave with HWMI ≥ 3 is detected |
Extreme | 4 ≤ HWMId < 8 | At least one heatwave with HWMI ≥ 4 is detected |
Very extreme | 8 ≤ HWMId < 16 | At least one heatwave with HWMI ≥ 8 is detected |
Super extreme | 16 ≤ HWMId < 32 | HWMI ≥ 16 |
Ultra-extreme | HWMId ≥ 32 | HWMI ≥ 32 |
Year | Hwmid Peak | Land Area Affected (%) | Land Area Ratio (%) of Heatwave Categories | |||||
---|---|---|---|---|---|---|---|---|
Moderate | Severe | Extreme | Very Extreme | Super Extreme | Ultra-Extreme | |||
1983 | 9.74 | 45.1 | 10.7 | 11.7 | 22.8 | 1.0 | ||
1992 | 13.83 | 33.2 | 9.2 | 6.9 | 14.9 | 2.5 | ||
1994 | 8.28 | 20.1 | 8.2 | 7.2 | 13.7 | 0.5 | ||
1997 | 14.91 | 39.4 | 13.4 | 8.4 | 15.9 | 2.7 | ||
1999 | 41.58 | 15.4 | 8.4 | 1.7 | 2.2 | 0.7 | 1.2 | 1.0 |
2005 | 16.99 | 34.2 | 9.4 | 6.5 | 10.4 | 8.2 | 0.3 | |
2010 | 16.67 | 39.9 | 12.2 | 6.2 | 16.1 | 5.2 | 0.3 | |
2011 | 10.29 | 33.2 | 10.9 | 7.9 | 13.7 | 0.7 | ||
2014 | 15.9 | 14.9 | 5.2 | 4.0 | 5.7 | 3.0 | 0.3 | |
2015 | 7 | 24.1 | 11.4 | 5.7 | 7.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyilbag, A.; Amou, M.; Tulcan, R.X.S.; Zhang, L.; Demelash, T.; Xu, Y. Characteristics of Enhanced Heatwaves over Tanzania and Scenario Projection in the 21st Century. Atmosphere 2021, 12, 1026. https://doi.org/10.3390/atmos12081026
Gyilbag A, Amou M, Tulcan RXS, Zhang L, Demelash T, Xu Y. Characteristics of Enhanced Heatwaves over Tanzania and Scenario Projection in the 21st Century. Atmosphere. 2021; 12(8):1026. https://doi.org/10.3390/atmos12081026
Chicago/Turabian StyleGyilbag, Amatus, Martial Amou, Roberto Xavier Supe Tulcan, Lei Zhang, Tsedale Demelash, and Yinlong Xu. 2021. "Characteristics of Enhanced Heatwaves over Tanzania and Scenario Projection in the 21st Century" Atmosphere 12, no. 8: 1026. https://doi.org/10.3390/atmos12081026
APA StyleGyilbag, A., Amou, M., Tulcan, R. X. S., Zhang, L., Demelash, T., & Xu, Y. (2021). Characteristics of Enhanced Heatwaves over Tanzania and Scenario Projection in the 21st Century. Atmosphere, 12(8), 1026. https://doi.org/10.3390/atmos12081026