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Abstract: This study aims to assess the potential impacts of climate change on hydrometeorological
variables and drought characteristics in the Ethiopian Bilate watershed. Climate projections under two
Representative Concentration Pathways (RCP4.5 and RCP8.5) were obtained from the Coordinated
Regional Downscaling Experiment (CORDEX) Africa for the near future (2021–2050) and far future
(2071–2100) periods. The Soil and Water Assessment Tool (SWAT) model was applied to assess
changes in watershed hydrology with the CORDEX-Africa data. The Standardized Precipitation Index
(SPI), Streamflow Drought Index (SDI), and Reconnaissance Drought Index (RDI) were calculated to
identify the characteristics of meteorological, hydrological, and agricultural droughts, respectively.
Due to a significant rise in temperature, evapotranspiration will increase by up to 16.8% by the end
of the 21st century. Under the RCP8.5 scenario, the annual average rainfall is estimated to decrease
by 38.3% in the far future period, inducing a reduction of streamflow of up to 37.5%. Projections
in reduced diurnal temperature range might benefit crop growth but suggest elevated heat stress.
Probabilities of drought occurrence are expected to be doubled in the far future period, with increased
intensities for all three types of droughts. These projected impacts will exacerbate water scarcity and
threaten food securities in the study area. The study findings provide forward-looking quantitative
information for water management authorities and decision-makers to develop adaptive measures to
cope with the changing climate.

Keywords: climate change; drought indices; Ethiopia; hydrological impacts; RCPs; SWAT model

1. Introduction

Climate change is associated with shifts in average climatic conditions and extreme
events likely to impact human and ecological systems [1]. According to the Intergov-
ernmental Panel on Climate Change report (IPCC), the frequency and intensity of heavy
precipitation events and daily temperature extremes are expected to increase in the mid-21st
century [2]. Based on past studies, the increase in long-term temperature and variability
in precipitation in different parts of the world and their impacts on the environment are
becoming evident. For example, the pattern of climatic data in East Africa showed a signifi-
cant increasing trend of maximum and minimum temperatures and a non-significant trend
of rainfall from 1981–2016 [3]. A decreasing trend of differences between the maximum
and minimum temperatures was observed for 1979–2004 in Kenya and Tanzania due to a
substantial rise in the minimum temperature faster than the maximum temperature [4]. On
the other hand, rainfall variability and trends studies over the African continent during
1983–2020 designated statistically significant increases in the northern and central regions
and no significant change in Africa’s southern and eastern areas [5]. A recent study in the
Bilate watershed also reported a considerable rise in temperature with a faster-increasing
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rate in the minimum temperature than the maximum and a significant decrease in rainfall
and streamflow [6,7].

There are inter-regional variations in the magnitude of the impacts of climate change
and the relationship between the effects at different levels of temperature increase. Some
impact indicators, such as temperature extremes, heatwaves, hydrological changes, floods,
and droughts, increase with the global average temperature and show very high regional
variabilities. For example, the emergence of hot and humid days is concentrated in South
Asia and parts of Africa, and the damaging effects of hot spells to spring wheat remain very
rare in Europe and North America, even with 4 ◦C of warming [8]. These effects of climate
change show a disturbance in the global and regional hydrologic cycle. Water resources,
which were always limited and unevenly distributed, become regionally/locally scarce
under the pressure of water consumption dependent on population growth and climate
change. Thus, this intensifies scarcity, shocks, and access inequalities [9].

The frequency and severity of extreme hydrological hazards, floods, and droughts are
closely linked to climate change [2,10]. Droughts can result in crop failures, leading to loss
of life and livelihood, especially in developing economies [11]. These extreme events have
profoundly influenced the African economy [12,13]. Water is an economic good with the
attribute of being a necessity [9], so drought-induced scarcity has an augmented impact.
Ethiopia is one of these drought-prone countries whose economy is primarily dependent
on rain-fed agriculture. Its low adaptive capacity makes it highly vulnerable to climate
change and drought [14]. For example, the droughts of 1984 and 2015 had severe impacts
on Ethiopia’s agricultural production [15,16].

Climate change impact assessments are based on future climate change scenarios to
obtain projected temperature, precipitation, rise in sea level, and other changes [17]. For
example, future temperature predictions in the IPCC mid-range scenario show that the
average annual temperature in Ethiopia will increase by 2.7–3.4 ◦C by 2080 compared to the
baseline of 1961–1990 [18]. The IPCC regional review on climate change identified three vul-
nerable sectors in Ethiopia: food security, water resources, and health [19]. Natural hazards
have claimed millions of lives and destroyed crops [20] as Ethiopia was highly affected by
increased soil erosion [21], reduction in available water [22], and severe droughts [23,24].

Climate change impact studies were conducted in Ethiopia using the outputs of
different global climate models (GCMs) as the input data for hydrologic models to evaluate
the influence of climate change on hydrology. Previous studies have found conflicting
results regarding the likely effects of climate change on river basin hydrology. For instance,
some river basins have experienced excess flow, while others have low flow [22,25–27]. The
trends and magnitude of rainfall projections from different GCM scenarios for East Africa
are uncertain, leading to inconsistent streamflow projections. For example, some studies
predict an increase in streamflow in the Nile Basin by the end of the 21st century [26,28,29],
while others [30–32] predict a decline.

Although several studies have assessed the impact of climate change on the hydrology
of different Ethiopian regions, only a few have discussed the Rift Valley Lakes Basin, let
alone the Bilate watershed. Streamflow is projected to increase in the Hare watershed
and Lake Ziway sub-basin in the Rift Valley Lakes Basin in the future [33,34], but de-
crease in the Kulfo, Shala, Abiyata, and Langano catchments [35,36]. The estimated total
population dependent on agriculture in the Bilate watershed is around 2.4 million. The
watershed is also known for the highest rural population density in Ethiopia, with about
500 persons/km2 [36,37]. Since the economy in the Bilate watershed is mainly dependent
on agriculture with a low adaptive capacity, the area is particularly vulnerable [38], and
the sustainability of water resources in the Bilate watershed is worsening due to climate
change [39]. Water demand continues to grow because of increased agricultural activi-
ties, population growth, and urban water use [35]. Past studies of the impact of climate
change on the Bilate watershed’s hydrology were conducted using a single GCM and the
Fourth Assessment Report (AR4) emission scenarios [36,38]. However, it is necessary to
consider multiple GCM projections with different scenarios to alleviate the uncertainties in



Water 2022, 14, 729 3 of 31

climate simulations. Thus, in this study, the Coordinated Regional Downscaling Experi-
ment (CORDEX) Africa dataset is utilized with multiple models and high spatial resolution
scenarios. The CORDEX-Africa prioritizes RCP4.5 and RCP8.5 scenarios [40]. An increase
in greenhouse gas emissions characterizes RCP8.5, and no climate mitigation target is
assumed through the period [41]. In contrast, RCP4.5 is characterized by the stabilization
of radiative forcing after 2100 without exceeding the long-run radiative target [42].

Drought is a major problem in any country or climatic zone in which it occurs [43]. The
effect of drought on the water cycle and agricultural activities can be significant, especially
in regions dependent on rainfall-fed agriculture [44]. Preparation and planning to cope
with adverse drought events are subject to its characteristics, such as intensity, magnitude,
and duration. These characteristics can be obtained through monitoring and forecasting,
usually using drought indices to provide quantitative information to decision-makers [45].
Many weather-related drought indices have been utilized in various climatic conditions for
different purposes. Since drought indices have advantages and disadvantages, multiple
indices can better characterize drought events instead of applying a single index for drought
monitoring [46,47]. Therefore, in the study, drought assessments have been carried out
using three drought indices: the Standardized Precipitation Index (SPI), the Streamflow
Drought Index (SDI), and the Reconnaissance Drought Index (RDI).

SPI is calculated from a long-time precipitation series for any location [48]. Due to
its low data requirements, it has become popular [49,50]. SDI was developed by [51]
using the SPI as a base for its calculation to characterize hydrological drought. The RDI
has significant advantages over other indices because it includes another meteorological
parameter, potential evaporation (PET), apart from rainfall. Moreover, it provides reliable
outcomes for agricultural droughts [52]. Thus, the inclusion of PET in the calculation of
the RDI enhances its validity in studies aiming at risk assessment in agriculture caused by
drought occurrence.

Here, the characteristics of future droughts are analyzed using multiple GCM emis-
sion scenarios and hydrological modeling. Climate projections are adopted to provide
temperature and rainfall data as inputs of hydrological simulations to obtain streamflow
data. Meteorological, hydrological, and agricultural drought characteristics are evaluated
using the SPI, SDI, and RDI drought indices. The impact of climate change on drought in
different Ethiopian river basins has been assessed in previous studies, for instance, [23] in
the Blue Nile Basin and [24] in the Awash Basin of Ethiopia. However, few studies have
been conducted in the Rift Valley Lakes Basin, despite the fact that this basin has 15 million
stakeholders [53]. To ensure better planning of adaption measures for the future, it is essen-
tial to evaluate the impact of climate change on the hydrology and droughts in this area.
The study’s main objective is to evaluate the impact of climate change on the hydrology
and drought characteristics of the Bilate watershed in two periods, the near (2021–2050)
and the far future (2071–2100), in comparison to the baseline period (1986–2005).

We obtained the projected temperature and rainfall outputs of five bias-corrected
GCMs under two representative concentration pathways (RCP4.5 and RCP8.5). The stream-
flow in the Bilate watershed was simulated with a calibrated and validated SWAT model,
which is a physically based, semi-distributed, basin-scale hydrologic model. It can be used
to predict the impact of watershed management on hydrology, sediment yield, and water
quality [54,55]. The climate model data were obtained from the Coordinated Regional
Climate Downscaling Experiment’s (CORDEX) African database. Study results are dis-
cussed and compared with recent studies [33–36,38,56–60] in the same and neighboring
watersheds. The findings could be helpful with the provision of appropriate adaptation
plans for water managers to make timely decisions to deal with the potential impacts of
climate change.
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2. Materials and Methods
2.1. Study Area

The Bilate watershed is a sub-basin of the Ethiopian Rift Valley Lakes Basin (RVLB).
It is located between 6◦38′18” N and 8◦6′57” N in latitude and 37◦47′6” E to 38◦20′14” E
in longitude. The Bilate River is the main perennial stream and a primary contributor to
Lake Abaya. It flows from the north and rises from the slope of Mount Gurage [36,61]. It
has a stream length of 197 km and covers 5518 km2 ranging in elevation from 1176 m to
3328 m asl [36], as shown in Figure 1. The mean annual rainfall in the watershed varies
from 916 to 1407 mm/year, and the temperature ranges from 10.9 ◦C to 30.4 ◦C. The daily
river discharge at the Bilate gauging station is from 3 m3/s to 45.7 m3/s [36,62]. The rainfall
pattern can be characterized as bimodal, with one dry season, the Bega (October–January),
and two rainy seasons, locally called the Kiremt/main rainy season (June–September) and
the Belg/minor rainy season (February–May). Overall, the watershed is characterized
by arid and semi-arid climatic conditions. The average annual and seasonal rainfall and
temperature variability in the watershed correlate with the altitudinal variations [62]. The
seasonal climate is influenced by the Inter-Tropical Convergence Zone (ITCZ) [61]. The
Belg and Kiremt seasons are the main crop growing periods, and any climatic variability
affects the farmers’ agricultural activities [63].
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Figure 1. Map of the study area: (a) world map; (b) RVLB; (c) DEM and meteorological stations in
the Bilate watershed.

Land use in the Bilate watershed is dominated by agriculture, with over 90% of land
area in the watershed, followed by shrublands which occupy about 6.5%, as illustrated in
Figure 2a. With the growth in the population, forests have been transformed into croplands
and grazing lands [62]. The study area is characterized by six different soil types, as shown
in Figure 2b, the dominant type being Haplic Xerosols that constitute about 43%, followed
by Eutric Nitosols, covering 29.5%, then Plinthic Ferralsols, accounting for 27.9%.

2.2. Data

Daily streamflow data from the Bilate gauging station for a period of 20 years (1986–2005),
and spatial data including a 30 × 30 m digital elevation model (DEM), as well as soil and
land use data collected from the Ministry of Water, Irrigation and Electricity (MoWIE) of
Ethiopia, are utilized in our study. The DEM is required to calculate the flow accumulation,
stream networks, slope, and watershed delineation [65,66]. The land use–land cover
(LULC) dataset is required for hydrological simulations to understand the hydrological
processes [67,68]. The meteorological data, such as daily rainfall, maximum and minimum
temperatures, relative humidity, solar radiation, and wind speed from 1986 to 2015, are
obtained from the Ethiopian National Meteorological Agency (NMA).
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2.3. The SWAT Hydrological Model

The Soil and Water Assessment Tool (SWAT) [69–73] is widely used for assessing cli-
mate change impacts on hydrological processes because of its computational efficiency for
large basins and wide global acceptability [74]. The SWAT model computes water balance
components, such as evapotranspiration, runoff, lateral flow, and baseflow at the HRU
level. The flows from each HRU are summed for each sub-basin, and the resulting loads are
routed via channels, ponds, or reservoirs to the watershed outlet. The hydrologic cycle is
computed by the water balance model expressed in equation 1 [54]. The Soil Conservation
Service (SCS) curve number approach is applied to compute surface runoff [75], while
evapotranspiration is estimated using the Penman–Monteith equation [76]. We imple-
mented a Muskingum routing method for flow routing that models the storage volume as a
combination of wedge and prism storage [77]. Thus, we arrived at the following equation:

SWt = SW0 + ∑t
i=1 (Ri −Qsi − Ei −Wi −Qgi) (1)

where t is the time (days); SWt is the final soil water content (mm); SW0 is the initial soil
water content on day i (mm); Ri is the amount of precipitation on day i (mm); Qsi, is the
amount of surface runoff on day i (mm); Ei is the amount of evapotranspiration on day i
(mm); Wi is the amount of water entering the vadose zone from the soil profile on day i
(mm); and Qgi is the amount of return flow on day i (mm).

2.3.1. Model Setup

The geographical information system interface, ArcSWAT 2012 [55], was used to set
up and parameterize the model. The model was built using hydrometeorological and
geospatial (DEM, land use, and soil) data. The DEM was used to delineate the catchment’s
boundaries and divide the catchment into sub-catchments. The Bilate watershed was
divided into nine sub-basins, then further subdivided into 246 hydrological response units
(HRUs), spatially overlaying the land use map, soil map, and slope classes. It was based
on user-defined threshold values that limit the number of HRUs in each sub-basin. For
this study, land use, soil, and slope that comprise over 10%, 5%, and 5%, respectively, of
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the subbasin were used for HRU definition. This enabled us to include critical factors in
assessing river basin hydrology studies. Because of high topographic variability and to
minimize complexity and use manageable data while considering the steepness of the
area, five slope classes (0–5%, 5–10%, 10–15%, 15–20%, and >20%) were defined based on
literature slope classes of the area [78].

2.3.2. Sensitivity Analysis, Calibration, and Validation of SWAT Model

The Sequential Uncertainty Fitting 2 (SUFI-2) approach was used with the SWAT
Calibration Uncertainty Procedure (SWAT-CUP) [79] for sensitivity analysis and model
calibration and validation. Twenty years of observed daily streamflow data from the
Bilate gauging station were used for the model calibration (1989–2000) and validation
(2001–2005). A warm-up period of three years (1986–1988) was employed to help the model
reach optimum efficiency. Before the calibration and validation process, it is necessary to
determine the most sensitive parameters for a given watershed [55]. Sensitivity analysis is
helpful to identify and rank the parameters that have a significant impact on the model
output [80]. The parameters used in the calibration and validation of the SWAT model were
determined by using a one-at-a-time (OAT) and global sensitivity analysis technique [81].

In the sensitivity analysis procedure, a multiple regression system was used to obtain
the statistical value of the parameter sensitivity. A t-test (Student’s t-distribution) and
p-value test were applied to calculate the relative significance of each calibrated parameter.
A parameter with a large t-Stat value and a small p-value suggests a higher sensitiv-
ity [82,83]. During the calibration and validation process, the goodness-of-fit between
the simulated and observed streamflow was evaluated through the visual inspection of
hydrographs and using three objective functions, the Nash and Sutcliffe simulation (NSE),
the root mean square error observation standard deviation ratio (RSR), and the coefficient
of determination (R2) [84,85].

2.4. Climate Models and RCPs Emission Scenarios

The climate projections obtained from CORDEX-Africa provided GCM-RCM outputs
with a high spatial resolution of 0.44◦ × 0.44◦ (~50 × 50 km) resulting from the dynamic
downscaling of the fifth Coupled Model Intercomparison Project (CMIP5) [86] using the
Rossby Center Regional Atmospheric model (RCA4) developed by the Swedish Meteorolog-
ical and Hydrological Institute (SMHI). Our study area can be covered by eight grid points,
as shown in Figure 3. Further information about CORDEX-Africa can be found on the
project website https://www.csag.uct.ac.za/cordex-africa/ (accessed on 7 September 2021)
and in [87].

We used the available projected data to evaluate patterns of change in the climate
data with a temporal coverage from the baseline period (1986–2005) to 2021–2050 for
the near future and 2071–2100 for the far future. Details of the GCM data are provided
in Table 1. Since climate model outputs may differ systematically from the observed
data, bias correction techniques are often applied to adjust the mean and distribution of
downscaled variables. In this study, rainfall and temperature data were bias-corrected
using the power transformation (PT) and variance scaling (VARI) methods [88,89] to ensure
that the coefficient of variation and the mean of the model output were in line with the
corresponding statistics of the observed data [90].

https://www.csag.uct.ac.za/cordex-africa/
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Table 1. Description of the CORDEX-Africa Regional Climate Model (RCA4) simulations.

Modeling Center (Group) GCM Name Short Name

Canadian Centre for Climate Modelling
and Analysis CCCma-CanESM2 CanESM2

Institut Pierre-Simon Laplace, France IPSL-IPSL-CM5A-MR IPSL-CM5A-MR
National Institute for Environmental Studies and

Japan Agency for Marine-earth Science and
Technology (MIROC), Japan

MIROC-MIROC5 MIROC5

Commonwealth Scientific and Industrial
Research Organization CSIRO-MK3-6-0 CSIRO

Max Planck Institute for Meteorology, Germany MPI-M-MPI-ESM-LR MPI-ESM-LR

2.5. Drought Analysis

To reduce the negative impact of drought, it is crucial to predict magnitude and dura-
tion in a specific period using drought indices and numerical indicators [91,92]. We applied
three primary indices, SPI, SDI, and RDI, to assess the characteristics of meteorological,
hydrological, and agricultural droughts, respectively. A 12-month evaluation time scale
was selected because this is the time required for water deficit conditions to affect various
agricultural and hydrological systems, especially in arid and semi-arid African and Asian
basins [93–95]. The analysis also helps to identify the persistence of dry periods [96]. The
SPI, SDI, and RDI values were calculated using a specialized software package, the Drought
Indices Calculator (DrinC) version 1.7 (91) [97]. The two-step calculation process was the
same for all three drought indices. First, a gamma distribution was fitted to the monthly
data and then normalized so that the mean value of the new time series was equal to zero
over a specified period [98]. A time series of the observed and model-derived rainfall and
temperature, along with the streamflow data for the baseline and future periods, were used
as input for the Drought Indices Calculator (DrinC) software package.
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The SPI calculation involved fitting the gamma probability density function (PDF) to a
given precipitation time series. The gamma distribution can be defined by its probability
density function as:

g(xk) =
1

βαΓ(α)
xα−1e

−x
β , for x > 0 (2)

where Γ(α) is the gamma function, α is a shape factor, β is a scale factor, and x is the amount
of precipitation. The maximum probability for a dataset, α, and β vary according to the
following equation:

α =
1

4A
(1 +

√
1 +

4A
3
), β =

x
α

, where A = ln (x)− 1
n ∑n

i=1 ln (x) (3)

where x denotes the mean precipitation and n is the number of observations. Since the
gamma function is undefined when x = 0 and a precipitation distribution may contain
zeros, the cumulative probability becomes:

H(x) = q + (1− q)G(x) (4)

The probability of no precipitation (q) is calculated by dividing m and n as q = m/n,
where m is the number of the zero-precipitation in a temporal sequence of data. The H (x)
is then transformed into a z score value with mean zero and unit variance, which indicates
the value of the SPI [99]. Positive SPI values indicate wet conditions, and negative values
indicate a drought.

The RDI was calculated on a time basis of k (months) using the following equation

α
(i)
k =

∑k
j=1 Pij

∑k
j=1 PETij

, i = 1 to N and j = 1 to k (5)

where Pij and PETij are precipitation and PET of the j-th month of the i-th year, and N is the
total number of years of the available data. The normalized RDI (RDIn) is computed as:

RDI(i)n(k) =
α
(i)
k

αk
− 1 (6)

where αk is the arithmetic mean of αk values. The initial formulation of the standardized
RDI (RDIst) [52] uses the assumption that αk values follow the lognormal distribution,
and thus

RDI(i)st(k) =
y(i)

k − yk
σ̂yk

(7)

where y(i)
k is ln (αi

k), yk is the arithmetic mean of yk and σ̂yk, indicating the standard deviation.
Streamflow Drought Index (SDI) was calculated to characterize hydrological drought [51].

Monthly streamflow (Qij) data is used to investigate wet and dry periods, where i is the
hydrological year and j is the month within the hydrological year, then,

Vi, k =
k

∑
j=1

Qij, for i = 1, 2, 3, . . . N; j = 1, 2, . . . , 12 (8)

where Vik gives the cumulative streamflow volume of k months for the i-th year. For
example, the value of k = 3, 6, 9, and 12 can be selected for calculating 3, 6, 9, and 12 months
of SDI, respectively. N is the total number of data year. From cumulative flow values, for
each k, SDI is defined for the ith hydrological year as below:

SDIi,k =
Vi,k −Vk

Sk
, for i = 1, 2, 3 . . . N (9)



Water 2022, 14, 729 9 of 31

where Vk and Sk are the mean value and the standard deviation, respectively, of cumulative
streamflow for k months.

A drought event is defined as the period when the SPI, RDI, or SDI values are continu-
ously negative and less than the threshold value of −1.0 for more than two consecutive
months. It ends when the indices’ values become positive [48,100]. More negative values
indicate more severe conditions. The results for each index can be used to characterize and
classify the drought event. The classification varies depending on the impact of the drought
on specific systems and factors related to each application, such as study objectives and
location. The indices used in drought analysis are classified as: extremely wet conditions
(≥2); severely wet (1.5 to 1.99); moderately wet (1.0 to 1.49); near-normal (0.0 to 0.99); mild
drought (0.0 to −0.99); moderate drought (−1.0 to −1.49); severe drought (−1.5 to −1.99);
and extreme drought (≤−2.0) [52].

Droughts are characterized by drought duration (di), drought magnitude (DM), and
drought intensity (DI), as shown in Figure 4 and Equations 10–12 for SPI. It is similar for
SDI and RDI. The drought magnitude (DM) is the sum of the negative deviations of SPI,
SDI, and/or RDI during a drought event. The average is calculated by dividing by the
number of drought events in the study period [101]. DM measures the cumulative water
deficit over the drought period [48,102], which can be expressed as follows:

DM = ∑n
i=1 SPIi (10)

where DM denotes the drought magnitude and n represents the number of consecutive
months per drought event. The magnitudes of SDI and RDI are calculated similarly.

The drought intensity (DI) is the ratio of drought magnitude over the drought duration
of the drought index (SPI, SDI, or RDI) [103].

DI =
DM
Dd

(11)

where Dd is the average duration of the drought.
The average drought duration is calculated as the mean duration of all drought events

as represented in Equation (12) [104].

Dd =
∑n

i=1 di

n
(12)

where di is the duration of the ith drought event in an area, and n is the total number of
drought events.
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The long-term drought projection for the near future (2021–2050) and far future
(2071–2100) periods, relative to the baseline period (1986–2005), was analyzed for each
RCP. The change in drought characteristics was computed as percentage change from the
baseline. These results help us to derive a better understanding of the effect of climate
change on droughts in the Bilate watershed, which is helpful for policymakers to develop
adaptation strategies.

3. Results
3.1. SWAT Calibration and Validation

For optimization of the SWAT model, sensitivity analysis was conducted using the
global sensitivity analysis method in SWAT-CUP, SUFI2, as suggested by Abbaspour [81].
The most sensitive parameters with a larger absolute t-Stat value and a smaller p-value
(<0.05) were selected for calibration of the streamflow. The results showed the curve
number (CN2), soil evaporation compensation factor (ESCO), maximum canopy storage
(CANMAX), threshold depth of water in the shallow aquifer required for return flow to
occur (GWQMN), deep aquifer percolation fraction (RCHRG_DP), groundwater recession
factor (ALPHA_BF), plant evaporation compensation factor (EPCO), and average slope
steepness (HRU_SLP) to be the most sensitive parameters.

After identifying these parameters, streamflow calibration and validation were per-
formed using the SWAT-CUP SUFI2 algorithms to evaluate the model’s performance.
Despite the fact that some overestimations were observed, the results showed that the over-
all patterns of monthly streamflows were adequately captured (Figure 5). The statistical
analysis results showed the calibration performance obtained with R2 of 0.86, NSE of 0.75,
and RSR of 0.50 and the simulation validation period with R2 of 0.88, NSE of 0.79, and
RSR of 0.44. The simulated streamflow results show good agreement with the observed
streamflow, indicating that the SWAT model can be used to simulate the streamflow at the
catchment outlet with reasonable accuracy.
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3.2. Climate Change Impact Assessment
3.2.1. Baseline Hydroclimatic Variables

The monthly average temperatures (maximum and minimum) and GCM rainfall
outputs for the baseline period were compared with the observed data. Figure 6 shows
the monthly trends of observed maximum and minimum temperatures. They were well
captured by the GCM baseline period outputs, with deviations in minimum and maxi-
mum temperature generally being less than 0.35 ◦C (between 0.12–0.35 ◦C) and 0.5 ◦C
(between 0.12–0.46 ◦C), respectively. The seasonal pattern for the maximum temperature
is naturally different from the pattern for the minimum temperature. For example, the
highest maximum temperature (28.8 ◦C) is in February and the lowest is in July (23.0 ◦C)
(Figure 6a), while the highest minimum temperature is in March (13.1 ◦C) and the lowest is
in November (10.4 ◦C) (Figure 6b).
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We also compared observed rainfall and GCM baseline outputs, as illustrated in
Figure 7. Although the adopted models capture the observed monthly rainfall well, there
is a deviation between the observed and baseline rainfall. The baselines of the Can-ESM2,
IPSL-CM5A-MR, and MIROC5 models show more rainfall than observation in all three
seasons, while the CSIRO and MPI-ESM-LR baselines show lower rainfall in the Belg
and Kiremt seasons. The most significant discrepancy of 14 mm/month was between the
MIROC5 baseline and the July observations, as shown in Figure 7. The most significant
deviation in rainfall among all GCMs was obtained for the IPSL-CM5A-MR, and it was
more extensive than observed rainfall in all seasons.

As shown in Figure 8, there is a high correlation with a coefficient value of about
0.89 between the baseline monthly streamflows simulated with different GCMs and the
observed streamflow. However, there is a discrepancy between the observed and baseline
period. The greatest difference is 7.8 mm/month for November, obtained with the MIROC5
model, followed by 7.3 mm/month for March with the IPSL-CM5A-MR. The simulated
streamflows with CanESM2 and IPSL-CM5A-MR for the baseline period are greater than
the observed values, but with CSIRO, it is lower than the observed values, except for
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January. Furthermore, the simulated streamflow with MPI-ESM-LR was lower than the
observed streamflow in the Kiremt and Bega seasons. The larger simulated streamflows in
the baseline period given by CanESM2, MIROC5, and IPSL-CM5A-MR could be due to the
more significant rainfall than the observations.
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3.2.2. Climate Change Impacts on Hydroclimatology

A. Maximum and Minimum Temperatures

All GCMs indicated a projected increase in both monthly minimum and maximum
temperatures in both the near (2021–2050) and far future (2071–2100) (Figures 9–12). Model-
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ing results showed increases in temperature from 0.2–5.8 ◦C, with higher increases in both
the maximum and minimum temperatures in 2071–2100 than in 2021–2050. A comparison
shows that the IPSL-CM5A-MR gives the most significant projected maximum temperature
increase for the near future period of 3.7 ◦C (i.e., March) and for the far future period of
4.8 ◦C (i.e., February and March) in the RCP8.5 scenarios (Figures 9 and 10). A previous
study in the Lake Ziway watershed also reported that IPSL-CM5A-MR projected higher
mean temperatures than the other three models [34]. On the other hand, in this study,
CanESM2 and MIROC5 gave the lowest projected near future increase with a maximum
temperature of 0.2 ◦C for October and July under the RCP4.5 scenarios. The lowest pro-
jected increase in maximum temperature was for the Kiremt season, and the highest the
Belg. This indicates that the projected seasonal pattern for the maximum temperature will
be more significant due to the highest increase for the Belg, followed by the Bega, then the
Kiremt, indicating warmer in warm seasons and colder in cold seasons.

The IPSL-CM5A-MR under RCP8.5 projects the highest rise in minimum temperature
for the far future periods of 5.8 ◦C. (in March) and 5.6 ◦C (in February). It also projects
the largest increase in the minimum temperature of the near future of 4.0 ◦C and 4.5 ◦C
under RCP4.5 and RCP8.5, respectively. The CSIRO under RCP8.5 likewise shows one
of the most significant minimum temperature increases for the near future of 4.3 ◦C (in
March). On the other hand, CSIRO projects the lowest upward change in the minimum
temperature of the near future, under RCP4.5, of 0.3 ◦C (in November and December). The
lowest projected increase for the far future is given by the MIROC5 model of 1.1 ◦C under
RCP4.5 (in November). The minimum temperature increase in the Belg season (February
to May) is higher than in the Kiremt (June to September) and Bega (October to January)
seasons. The lowest projected change in increase in the minimum temperature is in the
Bega (Figures 11 and 12).
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The overall results showed that the increasing change in the minimum and maximum
temperatures under RCP8.5 exceeded that of RCP4.5. This occurred because RCP8.5 is
a high emission scenario (i.e., more greenhouse gases) than RCP4.5 [41]. In addition,
we generally found increases in the minimum temperatures to be more significant than
increases in the maximum temperatures in both periods. The growth of average monthly
mean maximum and minimum temperature projections obtained with the five models
is consistent with previous Rift Valley Lakes Basin studies. For example, the HadCM3
model projections for the far future period for the Ziway watershed in the Rift Valley Lakes
Basin under the A2a scenario showed a rise in maximum and minimum temperatures
of 3.6 ◦C and 4.2 ◦C, respectively [56]. The mean change in the maximum (minimum)
temperature for the Central Rift Valley sub-basin for the period 2041–2070 obtained for all
five GCMs shows increases of 1.73 ◦C (2.16 ◦C) and 2.36 ◦C (3.07 ◦C) under RCP4.5 and
RCP8.5, respectively [57]. Furthermore, a study of the Lake Chamo catchment area using
a single climate model predicted an increase of the maximum (minimum) temperature
of 0.1 ◦C to 2.8◦C (0.2 ◦C to 2.8 ◦C) in the far future [58]. This projected temperature
increase is consistent with the IPCC 2001 report predicting a probable rise in the global
mean temperature of 6.4 ◦C in the next 100 years [106].

The change in the global diurnal temperature range, DTR (Tmax − Tmin), is a valu-
able indicator of climate change. The decrease of global DTR is attributed to a faster
increase in the global minimum land-surface air temperatures than the maximum temper-
ature [107,108]. To investigate the implications of the uneven warming rate between the
minimum and maximum temperatures, we further examined the DTR in the Bilate water-
shed using the means of the five GCMs for the baseline and future periods, as shown in
Figure 13. The findings show that the DTR will be smaller in the Kiremt and late Belg in the
projected period than in the baseline period under all scenarios, and only slightly different
in the early Belg season. The projected DTR is larger than the baseline in November and
December, with the tipping point being in October. The smaller estimated DTR might be
because of a faster increase in minimum temperature than the maximum in the projected
period and vice versa. The DTR from June to August, under both emission scenarios,
would be much smaller in the far future period than in the near future period. There is no
significant difference among DTRs in other months between different projections.
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Figure 13. Diurnal temperature range (DTR) for the baseline, near, and far future periods.

B. Rainfall

Percentage changes in projected rainfall on a seasonal and annual basis for the near and
far future periods are illustrated in Figure 14. The projections mostly show an increase in
the Bega season and a decrease in the Belg and Kiremt seasons. The reduction in projected
annual rainfall ranges between 6.5% (MPI-ESM-LR-RCP4.5) in the near future to 38.3%
(CanEMS2-RCP8.5) in the far future. Seasonal projections obtained with CanESM2-RCP8.5
show the most significant decreases in the Belg (55.2%) and Kiremt (51.5%) seasons. The
lowest seasonal reductions of 8.5% in the Belg and 11.2% in the Kiremt season were obtained
with MPI-ESM-LR-RCP4.5. In contrast, the highest increases in the Bega were obtained
under RCP8.5, 34.9% in the near future, and 48.6% in the far future.
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The overall results indicated that in most GCM runs, the decline in the far future was
more significant than in the near future. It is understood that changes in annual rainfall can
mainly be attributed to changes during the Belg and Kiremt seasons. Even though there was
a difference in magnitude, our findings exhibited consistency in the percentage increases
or decreases in the annual and seasonal rainfall for all GCMs in the near and far future
periods. Previous studies of nearby watersheds predicted a decrease in projected rainfall.
For instance, the annual average projected rainfall in the Central Rift Valley sub-basin
with an ensemble of five models would decrease by 7.97% and 2.55% for 2041–2070 under
RCP4.5 and RCP8.5, respectively [57]. By the end of the 21st century, RCP4.5 predicts that
the Meki watershed can expect a decrease of 32.8%, while a reduction of 25.6% is predicted
under RCP8.5. Furthermore, a single model predicts that the annual rainfall in the Chamo
catchment in the Rift Valley Lakes Basin will likely decrease by 10% [58].

C. Evapotranspiration

The results of the current study reveal an increase in evapotranspiration by both
emission scenarios. The increase is associated with the higher estimated temperature
rise (Figures 9–12). Figure 15 shows a consistent rise in the average annual and seasonal
evapotranspiration rates for all scenarios. The estimated increase in the annual average
ranges from 6.3–14.8% and 8.9–16.8% for RCP4.5 and RCP8.5, respectively. The projected
seasonal change in the near future ranges from 2.6% in the Kiremt for MIROC5 under
RCP4.5 to 16.3% in the Belg for IPSL-CM5A-MR under RCP8.5. In the far future period, the
change in evapotranspiration ranges from 6.6%, given by MIROC5 under RCP4.5 during
the Kiremt, to 21.3%, obtained by IPSL-CM5A-MR under RCP8.5 during the Belg.
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The evapotranspiration results show the most significant increase to be obtained
with IPSL-CM5A-MR-RCP8.5 and the lowest rise with MIROC5-RCP4.5 among the five
GCMs. The most significant increase is in the Belg season, mainly due to the highest
projected rise in temperatures (Figures 9–12). The study points out a more significant
increase in the far future than in the near future. The decrease in rainfall and increase in
evapotranspiration in the Belg and Kiremt seasons would increase the severity of water
stress in the area, impacting agricultural activities. Agriculture is highly dependent on
climatic variables, such as temperature, rainfall, and relative humidity. Effects of climate
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change on these variables may induce water scarcity, affect the length of the growing period,
crop development, crop evaporation, and the amount of irrigation water, and reduce crop
yield [109,110]. It could also result in extreme droughts and loss of live stocks [6].

D. Streamflow

The calibrated and validated hydrological SWAT model was run to obtain streamflow
for the baseline, near future, and far future periods for RCP4.5 and RCP8.5 scenarios. A
comparison of the percentage change in projected streamflow simulated by the SWAT
model under five GCMs to the baseline period is presented in Figure 16. The estimated
decrease in average annual streamflow ranges from 8.9% to 26.6% in the near future and
from 15.2% to 37.5% by the end of the century. The decrease in annual streamflow during
the far future period is more significant than for the near future period. A study of the
nearby Lake Ziway catchment area also estimated a projected decline in the average annual
streamflow of 23.58% for the near future and 12.75% by the end of the century [56].
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In the far future, CanESM2 under RCP8.5 projected the most significant seasonal
decreases to occur in the Belg (69.1%) and Kiremt (67.0%) seasons. An estimated minimum
seasonal decrease of 23.5% in the Belg and 17.5% in the Kiremt was obtained with MPI-
ESM-LR under RCP4.5. In contrast, CanESM2-RCP8.5 gave the highest projected increase
in the Bega, 32.4% in the near future, and 44.4% in the far future. The pattern of decrease
and increase in the average annual and seasonal streamflow was consistent with the
rainfall projections, indicating that a change in streamflow is mainly attributable to changes
in rainfall. Increased evapotranspiration and a decrease in streamflow will affect water
availability in the watershed as demand increases, especially in the Kiremt and Belg seasons.

3.2.3. Climate Change Impact on Drought Characteristics

This study investigated drought characteristics, including the magnitude, duration,
and intensity. Five GCM projections were carried out to calculate the SPI, SDI, and RDI
indices using the bias-corrected rainfall, temperature, and streamflow from the SWAT model
simulation results for the baseline (1985–2005) and the two future periods (2021–2050 and
2071–2100). The results will help formulate better water resource management policies for
the agricultural production perspective in the study area [111].
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A. Drought Duration

Drought duration was calculated as the mean duration in months for all drought
events in each period. Table 2 shows the average duration of months for meteorological
(SPI), hydrological (SDI), and agricultural (RDI) droughts obtained with the five GCMs.
Under scenarios RCP4.5 and RCP8.5, the average duration of drought events in the near
future and far future is expected to increase in comparison with the baseline. The results
indicate that the worst scenario would be in the near future under RCP8.5, which showed
average increases of 1.8, 1.8, and 2.32 months with respect to those in the baseline for SPI,
SDI, and RDI, respectively. This most significant change in duration was obtained with the
CSIRO, MIROC5, and IPSL-CM5A-MR models.

Table 2. Average drought durations of months for the Bilate watershed (SPI, SDI, and RDI < −1).

Climate Model
Baseline

RCP4.5 RCP8.5

2021–2050 2071–2100 2021–2050 2071–2100

SPI SDI RDI SPI SDI RDI SPI SDI RDI SPI SDI RDI SPI SDI RDI

MPI-ESM-LR 6.8 9.3 8.3 7.6 10.0 9.2 7.1 9.6 8.8 7.8 10.7 9.7 8.0 10.0 9.0
MIROC5 5.2 8.3 5.3 5.9 9.6 5.8 6.3 8.9 7.4 6.7 10.1 8.4 7.6 9.4 7.8

IPSL-CM5A-MR 7.3 7.7 6.8 9.1 9.7 8.8 8.8 8.7 8.5 9.4 10.3 8.7 8.9 9.3 9.3
CSIRO 7.0 8.0 6.3 9.0 9.3 8.6 8.5 8.4 8.2 9.8 9.5 9.3 9.1 8.8 9.0

CanESM2 7.4 8.3 7.9 9.0 9.5 10.2 8.4 9.0 9.1 9.0 10.0 10.1 8.8 9.2 9.6

Average 6.74 8.32 6.92 8.12 9.62 8.52 7.82 8.92 8.4 8.54 10.12 9.24 8.48 9.34 8.94

By averaging increases in drought duration of all models, the average increase in
drought duration obtained by SPI under the RCP4.5 scenario is 1.38 months in the near
future and 1.08 months in the far future than those in the baseline. For the same scenario,
SDI gives an increase of about 1.3 months for 2021–2050 and 0.6 months for 2071–2100.
RDI also shows a consistent increase under RCP4.5 of 1.6 months for the near future and
1.4 months for the far future periods. In general, increases in drought duration in the
far future are less than those in the near future under the RCP4.5 scenario. Under the
RCP8.5 scenario, SPI predicts average increases in the drought duration of 1.8 months and
1.74 months in 2021–2050 and 2071–2100, respectively. For SDI, the average increase is
1.8 months in 2021–2050 and 1.02 months in 2071–2100. The RDI estimates average increases
in the drought duration of 2.32 months and 2.02 months for 2021–2050 and 2071–2100,
respectively. Similar to those in RCP4.5 projections, increases of drought duration in the
far future are less than those in the near future under the RCP8.5 scenario. The findings
indicate that future droughts will be longer lasting than the baseline regardless of the RCP,
and the worst case will be in the near future. Our result is consistent with the study in
Jordan that indicates the average drought duration of meteorological, agricultural, and
hydrological droughts will be increasing in 2011–2040, 2041–2070, and 2071–2100 for RCP4.5
and RCP8.5 compared to the baseline period (1981–2010) [112]. Similarly, the study in South
Korea reported that the projected average drought duration for almost all timescales would
constantly increase by the end of 2085 compared to the historical period 1981–2010 [113].

B. Drought Magnitude

The average results of drought magnitude in the Bilate watershed obtained using five
climate models are illustrated in Table 3. Future changes in magnitude are described by the
percentage of change from the baseline period. Based on the SPI, SDI, and RDI results, the
magnitude of droughts in the Bilate watershed can be expected to increase in the future. The
results show that climate change leads to a severe deficit in water accumulated in the near
and far future. For example, for the near future period, for scenario RCP4.5, the magnitudes
of SPI, SDI, and RDI are 29.8%, 24.6%, and 29.9% larger than the baseline, respectively.
Under the same scenario, the magnitude in the far future is expected to increase by 57.9%,
40.7%, and 58.6% for the SPI, SDI, and RDI indices, respectively.
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Under the RCP8.5 scenarios, the magnitude of meteorological, hydrological, and
agricultural droughts will increase by 49.1%, 33.7%, and 52.0% in the near future. In the
far future, using the same RCP, drought magnitude increases of 80.4% for meteorological
drought and 54.3% for hydrological drought are expected. The magnitude of agricultural
drought is projected to increase by 75.9%. The results suggest an even more significant
water deficit in the far future than in the near future.

Table 3. Average drought magnitude for Bilate watershed calculated from SPI, SDI, and RDI.

Climate Model
Baseline

RCP4.5 RCP8.5

2021–2050 2071–2100 2021–2050 2071–2100

SPI SDI RDI SPI SDI RDI SPI SDI RDI SPI SDI RDI SPI SDI RDI

MPI-ESM-LR −8.1 −11.1 −9.5 −9.2 −12.7 −11.6 −10.8 −14.1 −13.6 −10.3 −13.3 −13.3 −12.8 −15.1 −14.3
MIROC5 −7.0 −9.1 −7.1 −8.3 −11.4 −8.0 −10.2 −12.6 −12.1 −9.6 −12.1 −11.7 −12.8 −14.6 −13.4

IPSL-CM5A-MR −8.4 −9.4 −9.0 −11.4 −12.6 −12.8 −15.2 −14.8 −15.2 −14.4 −14.1 −14.4 −16.0 −16.0 −17.0
CSIRO −8.6 −10.2 −9.1 −11.9 −12.8 −12.0 −14.7 −14.1 −14.1 −13.7 −13.4 −13.6 −16.4 −15.6 −16.6

CanESM2 −8.5 −9.3 −9.1 −12.1 −11.5 −12.9 −13.4 −13.2 −14.0 −12.7 −12.4 −13.2 −15.1 −14.1 −15.5

Average −8.1 −9.8 −8.8 −10.6 −12.2 −11.5 −12.9 −13.8 −13.8 −12.1 −13.1 −13.2 −14.6 −15.1 −15.4

C. Drought Intensity

The impact of climate change on drought intensity can be discussed using the percent-
age of change between future periods compared to the baseline. The results are illustrated
in Table 4. The average drought intensity of the baseline was less for SDI (−1.18) than for
SPI (−1.21) or RDI (−1.28). The projected results exhibited a similar pattern to the baseline
results, indicating the possibility of larger intensities of meteorological and agricultural
droughts than hydrological drought.

The results projected an increase in the average drought intensity in both near future
and far future periods, with a more significant increase in the far future under RCP8.5. For
example, the average drought intensity determined using the SPI, SDI, and RDI indices in
the far future period can be expected to increase by 35.6%, 31.6%, and 28.8% for RCP4.5 and
43.0%, 37.4%, and 34.2% for RCP8.5, respectively. The intensity would be more profound
under scenarios RCP8.5 than RCP4.5. These findings suggest that the watershed will be
more susceptible to severe drought events in the far future. Our results are consistent with
previous studies in different parts of the world, which have found a widespread increase in
drought intensity [114,115].

Table 4. Average intensity of drought events calculated from the SPI, SDI, and RDI values for the
Bilate watershed.

Climate Model
Baseline

RCP 4.5 RCP 8.5

2021–2050 2071–2100 2021–2050 2071–2100

SPI SDI RDI SPI SDI RDI SPI SDI RDI SPI SDI RDI SPI SDI RDI

MPI-ESM-LR −1.18 −1.19 −1.15 −1.21 −1.24 −1.27 −1.53 −1.48 −1.55 −1.33 −1.24 −1.37 −1.60 −1.50 −1.58
MIROC5 −1.35 −1.09 −1.34 −1.39 −1.18 −1.38 −1.61 −1.42 −1.62 −1.45 −1.20 −1.39 −1.69 −1.56 −1.72

IPSL-CM5A-MR −1.15 −1.22 −1.32 −1.25 −1.30 −1.45 −1.73 −1.70 −1.78 −1.54 −1.38 −1.66 −1.81 −1.73 −1.82
CSIRO −1.23 −1.27 −1.45 −1.32 −1.37 −1.39 −1.72 −1.69 −1.76 −1.40 −1.42 −1.45 −1.82 −1.77 −1.84

CanESM2 −1.15 −1.12 −1.15 −1.36 −1.21 −1.26 −1.60 −1.48 −1.53 −1.40 −1.24 −1.32 −1.72 −1.54 −1.62

Average −1.21 −1.18 −1.28 −1.31 −1.26 −1.35 −1.64 −1.55 −1.65 −1.42 −1.30 −1.44 −1.73 −1.62 −1.72
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4. Discussion
4.1. Impacts of Climate Change on Hydroclimatology

The Bilate watershed is situated in the arid and semi-arid Ethiopian Rift Valley region,
where agriculture and natural resources are especially susceptible to the effects of climate
change [116]. The baseline temperature and rainfall estimate from all models are in good
agreement with observations in the study area.

A. Temperature

Our analysis for all scenarios projected increases in the maximum and minimum
temperatures, ranging from 0.2 ◦C to 5.8 ◦C, with the most significant projected change of
temperature in the area being in March and February. Previous studies [36,38] have argued
for an increasing trend of future temperature in the Bilate watershed. Comparable findings
have been reported for nearby areas, such as in the Awash Basin [22], Ziway catchment
of Central Rift Valley Basin [117], Omo Ghibe Basin [118], and Jema sub-basin [119] of the
Upper Blue Nile Basin. The findings align with the trend of global projections for a mean
temperature increase by the end of the 21st century [2,106]. A considerable temperature
rise might initiate higher evapotranspiration, amplifying the scarcity of available water and
aggravating droughts in the primary farming months in the study area. In addition, the
results indicated that the increase in the minimum temperature would be higher than the
increase in the maximum temperature. Studies of the Melka Kuntrie sub-basin [74] of the
Awash Basin and Jema sub-basin [79] of the Upper Blue Nile Basin reveal similar findings.
The findings also indicate significant DTR narrowing in the study area, which might benefit
crop growth by reducing chill damage in the watershed [87,88] but suggesting elevated
heat stress during future heat waves [120]. In addition, diurnal temperature reduction
might increase night respiration, allowing carbohydrate utilization for maintenance rather
than growth [121]. The increase in DTR in the study area in November and December is
responsible for an increase in nighttime respiration that might decrease crop yield [122].

B. Rainfall

The modeling results suggest that the annual average rainfall will decrease in the near
and far future, with a more pronounced decrease in the far future. The projected seasonal
rainfall patterns obtained with all selected GCMs show notable seasonality, with rainfall
likely to increase in the dry season (Bega) and decrease in the wet seasons (Kiremt and
Belg) under all scenarios. The decrease will be more significant during the Belg season
than the Kiremt, with the uncertainty being high in the Belg season. A previous study [36]
considering only the HadGEM2-ES model for 2016 to 2035 also reported similar seasonality
of rainfall in the watershed. A likely decrease in the wet seasons and an increase in the
dry season were also reported for Upper Blue Nile Basin [27]. The rainfall in the Jema
watershed of the Upper Blue Nile Basin was determined using an ensemble mean of six
models, suggesting a decrease in rainfall in all seasons except autumn [119].

In contrast to our findings, larger African river basins reported a less significant in-
crease or decrease in the dry and rainy seasons [123]. For example, the annual rainfall in
the Ziway watershed projected by a single model would increase by 9.4% [57]. A study of
the Ketar watershed [34] reported an estimated increase in rainfall of 6.4% under RCP4.5
and a decrease of 3.5% under RCP8.5 by the end of the 21st century. This inconsistency of
changes in rainfall patterns in Ethiopian river basins might be due to the uncertainty of the
projections and the period considered in the analysis. Our findings suggest that there will
be a larger rainfall reduction in the future in the Bilate watershed than in other watersheds
in the Rift Valley Lakes Basin. The reduction of rainfall accompanied by significant warm-
ing during the main crop growing seasons may adversely impact agricultural activities
where crop production mainly depends on rain-fed water resources. For example, lack of
rainfall during the Belg and Kiremt seasons might delay the planting of crops and decrease
productivity. Therefore, instead of only depending on rain-fed agriculture, inhabitants in
the Bilate watershed should look for modern irrigation technologies to enhance agricultural
production in the area.
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C. Evapotranspiration

Analysis of evapotranspiration with the SWAT model showed an increasing tendency
of seasonal and annual average evapotranspiration in both near future and far future peri-
ods under both RCPs. The increase in the Bilate watershed is associated with a significant
temperature rise, resulting in surface water storage depletion. Studies in neighboring
basins, such as the Omo-Ghibe Basin [86], Melka Kuntrie, and Keleta sub-basins of the
Awash Basin [59,60], also showed consistent growth in evapotranspiration. The IPSL-
CM5A-MR under RCP8.5 projected the most significant increase in evapotranspiration
among the five models adopted in this study. This increase is associated with the projected
significant increase of maximum and minimum temperatures obtained with IPSL-CM5A-
MR. The lowest increase was obtained with MIROC5, perhaps related to a smaller change
in minimum temperature with this model. This projected increase in evapotranspiration
and decrease in rainfall would strengthen the severity of water stress.

D. Streamflow

The simulated streamflow results exhibited a decreasing tendency of the annual
average flow for all time horizons under both RCPs. The largest projected decrease in
annual streamflow in the watershed at the end of the century would be 37.5%. A study in
the adjacent Chamo catchment of the Rift Valley Lakes Basin noted a comparable decrease
of the mean annual streamflow of 42.8% at the end of the century compared to the baseline
period [58]. The reduction of annual streamflow in the Bilate watershed is associated with a
decrease in streamflow in the Belg and Kiremt seasons. The projected seasonal streamflow
likely follows the rainfall pattern; it is expected to increase in the Bega and decrease in the
Belg and Kiremt. The similarity suggests that future increases and decreases in streamflow
will be associated with projected increases and reductions in rainfall. Our findings showed
that by the end of the century, the most significant increase in streamflow would be in the
Bega (44.4%), and the largest reduction could be in the Belg (69%). A previous study using
the HadGEM2-ES model has also projected a similar pattern from 2016 to 2035, except for a
reported decrease in the projected streamflow in the 2021–2025 Bega season [36]. Our results
are consistent with those from a study made in the Ziway watershed in the RVLB using the
HadCM3 model, which indicated an increase of streamflow in the Bega and a reduction in
the Belg and Kiremt seasons [56]. With the projected increase in evapotranspiration and
decrease in streamflow in the crop growing seasons, water stress in the Belg and Kiremt
would increase, affecting water security for agricultural production and other investment
sectors. In addition, increasing streamflow in the Bega might increase the danger of flash
floods and soil erosion. Therefore, watershed management adaptation strategies should be
developed to reduce the adverse effects of climate change on agricultural production, food
security, rural development, and natural resource conservation.

4.2. Impact of Climate Change on Drought Characteristics

We analyzed the probability of drought occurrence and average drought intensity
(SPI, RDI, SDI) in the Bilate watershed by an ensemble mean of five GCMs for near future
and far future periods under two scenarios, RCP4.5 and RCP8.5 (Figures 17 and 18). The
probability of drought occurrence from January to December is computed by taking the
ratio of the number of years having the drought index value ≤1 to the total number of
years in the period [124]. For meteorological drought (SPI), the projections indicated an
increase in the probability of drought from the baseline to the future. For example, the
likelihood of meteorological drought during the Kiremt (June to September) ranged from
0.10 in the baseline result to 0.16 for the far future period. It reached its maximum (0.19)
for the Belg (February to May) in the far future period under RCP8.5 (Figure 17a). This
higher chance of occurrence is mainly caused by a significant decrease in projected rainfall.
Higher variability of rainfall in the Belg [125] might be another reason. The RDI results
showed a similar temporal pattern of drought occurrence to the SPI results (Figure 17c). In
addition to reduced rainfall, the high probability of agricultural drought in the Belg may
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be related to the projected increase in evapotranspiration due to increased temperature.
A study of factors influencing a community’s vulnerability to drought shows that the
areas most vulnerable to agricultural drought were rainfed farmland and sandy pastures,
located in areas with a very high probability of moisture deficiency. This indicates that
drought vulnerability is also linked closely to types of land-uses conditions, which might
contribute to available water scarcity [126–128]. Although the current study took the
simplification without considering future LULC changes, it is noted that climate change
is likely to have significant impacts on LULC conditions, which is also highly related to
socioeconomic developments. Such changes in LULC will further induce feedback on
water resources and require proper adaptation measures to support the sustainability of
socio-economy developments.

Although the probabilities of hydrological drought showed relatively lower values,
from 0.07 for the baseline to 0.14 for the far future period, than those of meteorological
and agricultural drought, changes in increased probabilities are comparable among the
three types of droughts, showing doubled increases. The results also suggested a similar
seasonal pattern for the three kinds of drought with a lower possibility in the Kiremt than
in the other two seasons. Our results are reliable with those from studies in the Hare
watershed in the RVLB and the Upper Blue Nile Basin, indicating a 0.22 probability of
occurrence of meteorological drought in the Belg and 0.16 in the Kiremt [129,130]. The range
of drought probability of occurrence seen for different months shows a higher temporal
climate variability in the area. A study on drought hazard assessment in the context of
climate change for South Korea using the standardized precipitation evapotranspiration
index (SPEI) stated a gradual increase in the frequency of drought events by the end of
the century. For example, the frequency of drought events for 2085 will increase by 7.6%
(SPEI-6) and 18.8% (SPEI-12) for RCP 8.5 [113].
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The study findings suggest that climate change impacts on drought occurrence in the
Bilate watershed will exacerbate water scarcity in the future. Previous studies confirmed
that the watershed is highly susceptible to hydro climatological variability [6] with frequent
drought occurrences [125]. We also understand that these droughts will have a longer
duration than the baseline period due to climate change. A drought with a longer duration
would aggravate soil moisture deficit, disrupting hydrological processes like runoff and
intensifying the water shortage. In addition, more frequent drought events might reduce
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soil fertility, further disrupting agricultural activities [131]. As the Ethiopian economy
is primarily dependent on agriculture, any negative impact on crop production could
affect food security for the increasing population. Therefore, farmers are recommended
to adopt drought-resistant crops to cope with possible droughts and look for additional
water sources.
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The ensemble averages of drought intensity for the baseline, near future, and far future
periods under scenarios RCP4.5 and RCP8.5 are shown in Figure 18. The SPI findings
indicate that meteorological droughts will be more intense in both future periods, with the
intensity being larger in the Belg than in the Kiremt. The most severe drought intensity in
the far future period would occur under RCP8.5, reaching −1.71 to −1.79 from October to
May (Figure 18a). Similarly, a study of the upper Blue Nile basin noted that drought risk
was three times greater in the Belg than in the Kiremt [132]. The findings for agricultural
drought are consistent with those for meteorological drought, with the most significant
projected increase of intensity being in the Belg season. The most severe agricultural
drought intensity would be −1.69 to −1.79 from October to May (Figure 18c).

Since the Belg is one of the crop growing seasons in this watershed [6], an expected
increase in the intensity of droughts might affect the crop growing period. Impacts of
drought in the Belg season are more challenging than during the Kiremt due to water
shortages in dry seasons often inducing devastating effects to the society [98]. The SDI
calculation showed that the projected intensity of hydrological drought in the watershed
would increase in all seasons, with the most significant increased intensity during the Belg,
up to −1.68 in the far future under RCP8.5 (Figure 18b). A previous study in the Hare
watershed of the RVLB noted a comparable maximum intensity of −1.83 and −1.42 for
SPI and SDI, respectively [130]. Similarly, a study by [93] using two indices, Standardised
Soil Moisture Index (SSMI) and SPI, reported that drought intensity and average drought
duration would significantly increase in the future period (2006–2100) compared to the
baseline (1900–2005). Besides, they described that more severe drought hazards would
appear over a larger area, particularly in southern and eastern Australia.

Assessment of global drought propensity using reformulated standardized precipi-
tation evapotranspiration index (SPEI-PM) also indicated that due to significant increase
in temperature and decrease in precipitation, consistent and intensified drought would
occur in parts of South America and Africa under RCP2.6, RCP4.5, and RCP8.5 scenarios
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in the future period (the 2030s, 2050s, 2080s) compared to the baseline (1976–2005) [133].
A study on drought hazard assessment in the context of climate change for South Korea
stated that in 2085, a drought would be intensified by 25.5% and 34.2% for RCP4.5 and
RCP8.5, respectively, for the standardized precipitation evapotranspiration index (SPEI-6).
The SPEI-24 is projected to intensify by 37.3% under RCP 4.5 and 53.3% under RCP 8.5 in
2085 compared to the historical period 1981–2010 [113].

Overall, the change in average intensity of meteorological drought in the Bilate water-
shed during 2071–2100 under RCP8.5 (42.5%) will be more profound than under RCP4.5
(35.2%). The agricultural drought is projected to increase by 28.4% and 33.8% under RCP4.5
and RCP8.5, respectively. The intensity of hydrological drought is expected to increase by
2071–2100 compared to the baseline period, with 30.9% under RCP4.5 and 36.6% under
RCP8.5. These findings reveal that the Bilate watershed will experience a more severe cu-
mulative water deficit and longer-lasting droughts. Previous studies conducted in different
parts of the world also suggest an increased risk of drought in the 21st century [134,135].
A reduction of available water could result in water stress, reduced crop yields, hunger,
and loss of life and property. Water resource managers should consider the findings and
implement appropriate water resource management strategies to deal with water scarcity
issues in the future. For example, the early warning system for drought monitoring should
be developed with climate outlooks and drought indices proposed in this study. Water
infrastructures of reservoirs and water harvesting ponds to store the excess water of rainy
seasons should be constructed with irrigation systems.

5. Conclusions

The inhabitants of the Bilate watershed are heavily dependent on rain-fed agriculture
for their livelihood, but the hydrology and agriculture in the area are being affected by
climate change. The future projections considered in this study were selected based on data
availability and capturing the observed data patterns. A calibrated and validated SWAT
model was employed to quantify the impacts of future climate variations on the hydrology
driven by the five GCMs for the RCP4.5 and RCP8.5 emission scenarios. The SWAT model
simulated monthly streamflow in the watershed for two future periods (2021–2050 and
2071–2100) for comparison with the baseline. The impacts of climate change on drought
characteristics in the Bilate watershed for the near future and far future periods were further
evaluated using three drought indices, SPI, SDI, and RDI.

The maximum and minimum temperatures are expected to rise in the future. The
increase in the minimum temperature is predicted to be greater than the increase in the
maximum temperature, which would cause a reduction in the DTR. Due to a significant
rise in projected temperature, evapotranspiration is anticipated to increase, resulting in
water storage depletion. The results of all GCMs considered in this study show that the
annual average rainfall over the Bilate watershed is likely to decrease in future periods
under both scenarios, RCP4.5 and RCP8.5. The analysis of seasonal change in all five
GCM projections indicates a decrease in rainfall in the Kiremt and Belg seasons and an
increase in the Bega. The projected patterns of decrease and increase of the average annual
and seasonal streamflow percentage change are consistent with the rainfall projections,
implying that change in streamflow can mainly be attributed to rainfall. Such a consistent
projected decrease of rainfall and streamflow during the crop growing seasons (Belg and
Kiremt) suggests that the watershed is most likely to experience water scarcity in the future,
which would affect agricultural production. Moreover, the impact of climate change on
drought characteristics is analyzed using three drought indices, SPI, SDI, and RDI. The
findings indicate that future droughts (under both emission scenarios) would be more
severe and long-lasting than for the baseline period.

Residents in the Bilate watershed are quite dependent on surface water availability,
such as in rivers and seasonal streams, which can be severely affected by drought resulting
from climate change. Therefore, special attention needs to be given to developing water
resource management strategies and adapting to climate change to ensure sustainable agri-
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cultural production and food security in the study area. In addition, further investigation
is recommended to quantify the effects of LULC changes in association with the impacts of
climate change for proper utilization of the scarce water resources in the watershed.
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